Harmonic Oscillator in Two Dimensions

This paper deals with the 2-dimensional harmonic oscillator. It is based on:

http://quantum.phys.unm.edu/521-07/2DharmonicOscillator.pdf

http://ocw.nctu.edu.tw/upload/classbfs120904402944051.pdf

Hope | can help you with learning quantum mechanics.
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Harmonic Oscillator in Two Dimensions
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Harmonic Oscillator in Two Dimensions

Introduction

Classic
We use a particle moving in the xy-plane. Its potential energy V depends on x and y:

m

Vi y) =5 o’ (x* +y%)

This is a radial potential: x? + y? = r?
The classical Hamiltonian:

H = H,, + H,

1 1
Hyy, = 7 (pZ + pjz,) + Emwz(x2 +y2)

1

H, = =—p?
z Zmpz

Note: the oscillation takes place in the xy-plane. In the z-direction the particle is moving with
unchanged speed and no potential whatsoever.

Note: Hy, is a two-dimensional harmonic oscillator Hamiltonian.
The equation of motion.
The z-direction:

p.(t) = p,

Z(t)Z&'t-l-ZO
m

The x-direction:
(1) Py (t) = —mwxysin(wt — @,)
(2) x(t) = xgcos(wt — @,)

The y-direction:

(3) py (1) = —mwy,sin(wt — @)
(4) y(t) = yocos(wt — @)
Note: p,, Zg, Px, Py Xo, Yo are constants which depend on the y
initial conditions. x,, yo are assumed to be positive. ; \
The classical trajectory of a particle in a two-dimensional harmonic /
potential (x — y-plane) shows an ellipse. The x-coordinate is in the VR VA R B e

range from —x, to x,, the y-coordinate from —y, to y,.

2
The shape of the ellipse depends on the phase difference ¢, — ¢@y. k
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Harmonic Oscillator in Two Dimensions

-4 - -4
x 0 x 0 x 0

FOF(px:(),(pyZT[ For¢x=0»¢y=§ FOI”(px:O,(py:O

The total energy of the motion in the x, y-plane:

1
H —_— 2 2 + 2
xy =5 mw*(xg + y§)
The sum of the energies in x-direction and y-direction:

1

2.2 2.2
—Mmw°x; + —mw
2 0TS Yo

Rm
<
I
Rm
+
5
I

The orbital angular momentum L, along the z-axis:
L, = x(t)py — y(O)px
We use (1),(2),(3) and (4):

L, = —xmwy,sin(wt — ¢, ) + ymwx,sin(wt — ¢,) =
mw (y(t)xosin(wt — @) — x(t)yosin(wt — goy)) =

MmwyeXo (cos(wt — @y)sin(wt — ¢,) — cos(wt — @,)sin(wt — goy)) =
mwyoxosin(wt — @, — wt + @) =
ma)yoxosin((py — gox) = mwYyyXxoSin(Ag)
According to this result we state:

- L, is positive: 0 < A@ < m, rotation counterclockwise
- L, isnegative: —r < Agp < 0, rotation clockwise

- Lyiszero:Ap =0or+m

- L,ismaximal: Ap = ?gand Yo = Xg (circle)
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Harmonic Oscillator in Two Dimensions

Quantum mechanics
Note: all operators H,, etc. written without hat: H,,.

The quantum Hamiltonian:

PZ+P; 1
xy=—2m +§ma) (X4 +7Y9)
27 2m

The orbital angular momentum L, along the z-axis:
L, =X()P, —Y(D)P
The stationary states |@) of the particle:
H|p) = (Hyy + H,)l9) = Elg)
We choose a composed basis of eigenstates of H:
9} = l9xy)®l9;)
|(pxy) is an eigenvector of Hy,, in the state space Sy,:
Hyyl@xy) = Exyl@xy)
|@,) is an eigenvector of H, in the state space S,:
Hz|pz) = Ez|@z)
We get the total energy:

E=Ey +E,

Note: the degeneracy in § := 5, ®S, is not due solely to the degeneracy of E,,, in Sy,, and of E in

S,. Two eigenvectors of H of the form |p) = |(pxy)®|<pz) can have the same total energy E without

their corresponding values of E,, and of E, being equal.

Note: E, describes the stationary states of a free particle in a one-dimensional problem:

ip,z
(zlp,) = ¢ R
Note: p, is a real constant.
The energy in z-direction:
Z  2m

Note: The eigenvalues E, of H, are two-fold degenerate in the space S,.

Obviously, the problem is the motion in the plane:
nyl(/)xy) = Exyl(pxy)
L, commutes with neither H, nor H,,.

H commutes with L, but not with L, and L,,.

D. Kriesell
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Harmonic Oscillator in Two Dimensions

A complete set of commuting operators (CSCO) can be built of (ny, H, ), (ny, Hy) or (ny, LZ):

{Hay, Hy}
{Hay Hy}
{ny» Lz}
H commutes with L, but neither with L, nor L,, because the potential energy
m
Vi y) =5 o (x* +y%)
is rotation-invariant about the z-axis only.

We are working with L, because it acts in Sy, only.

Stationary states

Energies and stationary states
We will classify the stationary states by quantum numbers n, and n,,.

We search the solutions of the eigenvalue equation:
nyl(pxy) = Exyl(pxy)
H,, can be written as a sum of two independent directions x and y:
Hyy, =H,+H,

H, and H,, are both Hamiltonians of a one-dimensional harmonic oscillator:

P? 1
H, ===+ -mw?(X?)

2m 2
P? 1
I
Hy = % + Emwz(Yz)

We know the eigenstates |‘an) of Hyin S,:

_mwx?

@o(x) = (%)Ze 2h

1
mw)z 2mew _mwx?

<P1(X)=(% P 2h

The energies:

1

E, = (nx +E) hw

1
E, = (n + —) hw
y y 2
With this we get the eigenstates of H,,, by use of the tensor product:

|(pnx,ny> = |¢n,)® Iwny>

D. Kriesell
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Harmonic Oscillator in Two Dimensions

The energy:

Evy=Ex+E, =

1 1
(nx+z>hw+(ny+§>hw=

(nx +n, + 1)hw

Ey is non-degenerate in Sy, E,, is non-degenerate in S,,.
|‘anny> corresponds to a pair {ny,ny}.

{Hx, Hy} form a complete set of commutating operators (CSCO) in Sy;,.

We use the lowering operators:

a, = 1(ﬁX+lP)

NG
_ 1 ( Y+'Py)
ERN AT
mw
P=r
The raising operators:
1 P,
a, Z(B lﬁh
1 P,
t= y_'_y)
a, 2(,8 lﬁh
_ [mw
N h

ay, axT actinS,, ay, ayT act in Sy.

The only non-zero commutators between the four operators ay, a,, a,tand ay* are the
commutators between lowering and raising operator:

[ax a]=1= [ay' ayT]
Note: depending on the model (wave functions or matrices) "1" can be the identity matrix.
The numbering operators of the one-dimensional harmonic oscillators:
Ny, = ax-l-ax
Ny = ayta,
We rewrite the Hamiltonian:

Hyy = Hy +H, = (N, + N, + 1)wh

We apply the Hamiltonian H,,, to the wave function |q)nx7ny>:
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Harmonic Oscillator in Two Dimensions

ny |(pnx,ny> = (Nx + Ny + 1)wh |(pnx,ny> =
whNy |(pnx,ny> + whNy |(pnx,ny> + wh |(pnx,ny> =

O [Py ) + Ty [y ) + T [0, )

The ground state:

|90,0) = |€0nx=0>® |§0ny=o>

We apply the operators a, T and ayT and get:
Onnny) = -
(pnx,ny - m

The corresponding wave function is the product of ¢, (x) and <pny(y):

(axf)nx(ayf)nykl’o,d

1202, .2
5 D, (67) = i eI (B, (By)
JZ(”x+"y) TNl
Note:
_ [mw
N R

Note: the eigenvalues of the 2D harmonic oscillator are the sum of the two 1D harmonic oscillator
eigenvalues, the eigenfunctions are the product of two 1D eigenfunctions.

H,,, does not constitute a CSCO in S,
Eyy = (nx +n, + l)hw

To each value n = n, + n,, of energy correspond different orthogonal eigenvectors:

|‘pnx=n,ny=0> ) |(pnx=n—1,ny=1>' |(pnx=n—2,ny=2> LN |§0nx=0,ny=n>
As there are (n + 1) of these vectors, the eigenvalue E;, is (n + 1)-fold degenerate in S,,.
H,, alone does not constitute a CSCO.

{Hx, Hy} constitutes a CSCO as well as {Hx Hx} and {ny, Hy}.

yl

Stationary states and angular momenta

Significance and properties of the operator L,

We identified the stationary states by the quantum numbers n, and n,,. These numbers depend on
the axis chosen but are not unique. The energy is invariant under rotation about the z-axis, so we can
choose another system of orthogonal axes in the x — y plane. We will obtain different stationary
states.

To get rid of this ambiguity, we orient on the angular momentum L,:

L, =XP,—YP,
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Harmonic Oscillator in Two Dimensions

We can express the position operator X and the momentum operator P by the lowering operator
and raising operator axT, a, resp. ayT, ay:

aﬂz%(ﬁX—i;—;) aﬂz%(ﬁY—i%) ax:%<ﬁX+i[%) ay=%(,3Y+i%)

Note: § = %

The inverse relations:

h h . Imwh _ . |mwh
X= me(ax+axT) Y=42mw(ay+ay’r) P =i 2 (af —ay) | B=i|— (0" - ay)

We express L, in terms of operators:

L,=XP, —YP =

h ~ Imwh h ~ Imwh
’me (ax + axT) L (ayqL - ay) - ’%(ay + ayT) ) (ax;r - ax) =

%((ax +a)(ay" —ay) = (ay + ay")(a" - ax)) =

For easier calculation we work with:

a=ayb=a,c=a,d=a,’
We get:
ih
7((a +b)(d—-c)—(c+d)(b—- a)) =

ih
%(ad—ac+bd—bc—cb+ca—db+da)=

%(ad+da+ca—ac+bd—db—bc—cb) =;

Note: operators to different axes commute (they are independent).

ih

?(Zad — 2bc) = ih(ad — bc)
We get:

L, = ih(axayJr - axTay)
We compare with the expression for H,,,:
Hyy = Hy + Hy = (Ny + Ny + 1)wh
We use:
N, = a,Ta,

— t
Ny =ay'a,
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Harmonic Oscillator in Two Dimensions

We get:
Hyy = (axTax + ayTay + 1)wh
We build the commutator of L, and H,,,, omitting the factor iwh?:
[ny' LZ] =
nyLz - Lszy =
We substitute:
a=a,Ta,;b= ayTay; c = axayf;d = axTay
We get:
(@a+b+D(c—d)—(c—d)(a+b+1)=
[a+b,c—d]=
[a+ b,c] —[a+b,d]

We restitute:

[ny,LZ] = [axTax + ayTay,axayT] - [axTax + ayTay, axTay]
We examine at the first commutator:

[axTax + ayTay,axayT] =
laxTay, aya,t] + [a,tay, ara, ] =;
The first part:
[axTax, axayT] = axTaxaxayT - axayTaxTax = —axayJr + axayJr =0
Note: a,fa, = —id
The second part:
[ayTay, axayT] = ayTay, axayT - axayTayTay = —axayJr + axayJr =0

We examine the second commutator:

laxTa, + ayTay, aytay] = [a,Tay, ayTa, ] + [arTay, ayTa,] =

axTaxaxTay - axTayaxTax + axTayaxTax -, axTaxaxTay =

actay, —a,ta, + a,ta, —a,fa, =0
Result:
[Hyy L] =0

The component L, of the angular momentum and the Hamiltonian Hy,, = H, + H, commute.

We have a basis of eigenvectors common to Hy,, and L.
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Harmonic Oscillator in Two Dimensions

Right and left circular guantum numbers
We are dealing with the two-dimensional harmonic oscillator.

We need lowering and raising operators that are acting in it, raising and lowering the total energy by
lh+in=n
2 2

We define operators a; and ag:

1 1 1 1
ag = ﬁ (ax - iay) ag = ﬁ(ax + iay) agt = ﬁ (ax + iay) ang = ﬁ(ax - iay)

The action of a4 (or ag) on |q0nx,ny> yields a state that is a linear combination of |<an—1,ny> and

|‘an,ny—1>: a stationary state that has one less energy quantum Aw.

Analog, the action of a; T (or agT) on |<an,ny> yields a state that is a linear combination of |‘an—1,ny>

and |qonx,ny_1>, a stationary state that has one more energy quantum Aw.

We remember that the only nonzero commutators between a,, axT, ay, aer were:
lax,a;T] =1 =[ay,a,7]
Similar we have that the only nonzero commutators between a4, a4, ag, agJr were:
laa, aq"] =1 =ag,a,]
We rewrite the Hamiltonian:
Hyy = (axta, + a,Ta, + 1wk - (agtay + a;Ta; + 1)wh
We rewrite the momentum:
L, = h(axayJr - axTay) - ih(adadT - agTag)
The number operators for left and right circular quantum numbers becomes:
Ng = ag’ay
Ny = agTag
We rewrite the Hamiltonian and the momentum:
Hyy = (Ng + Ny + 1)wh
L, = h(Ng — Ny)

Stationary states of well-defined angular momentum
Using the operators a; and a, we could check their behavior - it is analog to a, and a,, (not done
here).

From these results it follows that the spectra of N; and N, are composed of all positive integers and

zero. The states |Xnd,ng> form an orthonormal basis for an infinite dimensional complex vector space.
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Harmonic Oscillator in Two Dimensions

In addition, specifying a pair {nd,ng} of such integers (eigenvalues) determines uniquely (up to a
constant factor) the eigenvector common to N; and Ny:

1
(adf)nd(aglr)ngkl’o,O)

Note: we will need these eigenvectors when calculating wave functions associated with eigenstates
common to Hy,, and L,

N4 and Ny form a CSCO in Sy.,.
|)(nd_ng> is eigenvector of Hy,, and L, with eigenvalues:

(nd +ng + 1)wh for Hy,,
(nd - ng)h forL,
We set:
Ng +ng:=v
Ng—Ngi=H
We rewrite the eigenvalues:
(v + Dwh for Hy,,
uh for L,

The action of the operator a;: a;* |Xnd,ng> produces a state with one more quantum number, to

which, since ng + ng grew by one, an additional angular momentum +# must be added. This
corresponds to a counterclockwise rotation.

Similar, agf produces a state with one more quantum number with an angular momentum —#. This
corresponds to a clockwise rotation.

ng and ng are positive integers (or zero).

The eigenvalues of H,, are of the form (v + 1)wh with v being a positive integer or zero. Their
degree of degeneracy is (v + 1) since, for any v we have (v + 1) possibilities of combination as the
left part of the table shows:

ng =v,n; =0 u=v
nd=v—1,ng=1 u=v-2
ng=v-—2,n, =2 u=v—4
nd=v—3,ng=3 U=v-—=6
ng =3,n, =v-—3 U=6-—v
nd=2,ng=v—2 u=4-v
ng=1n,=v-1 u=2-v
nd=0,ng= u=-v

. . . . v+u v—u

To any pair u, v corresponds a single eigenvector |Xnd,ng> with ng =g =—

Hyy and L, form a CSCO in Sy,,.

D. Kriesell page 12 of 19



Harmonic Oscillator in Two Dimensions

For a given value of energy E,,, the states |)(v'0) and |)(07v) corresponds to the maximal (vh) and
minimal (—vh) values of L,.

Common eigenstates of H,,, and L,
We switch to polar coordinates withr = 0and 0 < ¢ < 2m:

x =r1"-cos(p)

y =1"sin(e)

We examine the action of the operators a; and a4 on a function of r and ¢, f (7, @).

We remember:

1 1 P,
ag :=ﬁ(ax—iay) ay =—2<ﬁX+iﬁ>
1 1 P,
ag = ﬁ(ax +iay) a,t = E([)’X — 11@)
1 1
ag —E(ax+iay) ay—ﬁ(ﬂY+iﬁ—3;L)
1 1 P
agT =ﬁ(ax lay) ayT _ﬁ(ﬁy_iﬁ_j;l)
Note: f = %
aq %(ax iay) =
1 . Py v\ _
e ) -l
1 P . P,
E(ﬁX+iﬁ—l,8Y+B—3;l) =
1 1B, Py
z(ﬂ“‘l”*;‘;(%* %))
1 1y )
5<B<X‘W>+E(‘la—+a—)>
First part:

Blx —iy) = B(r - cos(p) =7 i-sin(p)) =
pr(cos(p) — i - sin(p)) =
Br(cos(—p) +i - sin(—¢)) =

Pre=t

Note: cos is symmetric, sin is antisymmetric.

For the second part we need some information of how to transform coordinates and partial
derivations. You find these in the paper on my website https://www.quantum-
abc.de/part_der coo_transf.pdf

D. Kriesell
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The following holds:

J Ja 1 . 0
ax—cosq) p rsmgo 90
J d N 1 d
ay—smgo p cosQ 0
We replace:
(137 5)
dy Ox
( ) a N 1 a ) +( Jd 1 d ) _
i|sing pm 7‘cos<p 0 cos@ p 7ﬂsmqo 30) =
. 0 i 0 N a 1 0
ising p rcos<p 0 cos@ p rsm(p 0

.. 0 0 1 Jd i 0
(i v ) (s 2~ v )

. o i, .. 9 _
(cosg — ising) Frehb (—ising + cosp) 90

[
(cosep — ising) e (cosp — ising) 70 =
or r do

(0 10
-12)
adr rde

We assemble the complete result. If we change to polar coordinates, we have:

1 17/ 9 @ 1 o L (0 10
ad—z ﬁ(x—ly)-l'E(—l@'i'a) —)E ,37"6 +E€ (E—;%)

In the same way we get:
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Harmonic Oscillator in Two Dimensions

We need the wave function according to that of the x, y-plane ((5), page 8):

B

\/2("x+"y) gl !

_1[32(x2+ 2
(pnx,ny(x'y') = e 2 Y an(ﬁx)Hny(.By)

This gives the ground state wave function for polar coordinates:
. 152 .
Xoo(r,@) = em0 Lo 8 emivp(r)
i \/E

Note: m = ng — ng. For the ground state we have ng = nyz > m = 0.

We examine the action of the operators az ' and a, T on a function of type e™*?F (r):

agt (em'i‘pF(r)) = %ei‘/’ (ﬁr - % (% + ;%)) (em'i‘pF(r)) =

B (e D) =5 G (o) = e G (R ) =
L orerapry - Setne L8 L nsin iy
%eﬂmﬂ)w (ﬁrF(r) - %;—rp(r) + %F(r)) -

%eﬂmﬂ)q) <(/3r + %) F(r) - %%F(r))

Analog we get:

o (omor) =322 o)

{50

The ¢-dependency of Xngng (r, ) is given by el(Ma=19)¢ Thisis a general result: the ¢ -dependency

of an eigenfunction of L, of eigenvalue mh is e™¢.

We choose:

1
F(r) = rme 27T

We apply the operator adT:

, 1.2
aqt (e‘m‘p rmeT2PT )=

1 1(6+i 6) (im(p m_%ﬁzrz)_
€ Br 5\or T rag e r’e =

1 . , _lﬁzrz 1 .10 . _1B2T2 1 . 1i 0 , _lﬁzrz
Ee“pﬂrelm"’-rme 2 —-e?——|[e™m? . .rMe 2 —-e?———/|e™M¢.rMe 2 =;

2 Ear

D. Kriesell
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Harmonic Oscillator in Two Dimensions

We do this in parts.

Part one:
1 . . _lﬁzrz 1 .
Ee“”ﬁre”’“” -rMe 2 = Ee‘

1
(m+1)g , ,m+1, B e—fﬁzrz

Part two:

lei‘pli(eim‘p - rme_%ﬁM) -
2 Bor

%ei(m“)"’l (mrm‘1 - e_%ﬁzrz — M. B2y e_%ﬁzrz) =

lei(m+1)(p . e_%ﬁzrz l (me_1 — pm+l, 52) —

Part three:

%ei¢%£%(6im¢ -rme_%ﬁ2r2> N
1 . 1i _1 d .
Zel . ym.g Zﬁzrz_(emup) —
2  fBr do
leiwli.rm.e—%ﬁzrz

2

Br

cim - eiMme =

Result:

1

lei(m+1)<p . pmtl B e—%ﬁzrz — Zeim+e . e—%ﬁzrz l (mrm—l — pmtl, ,82) +lei(m+1)(p_
2

2 B

1522
ym=1. 72Ty =

lei(m+1)<pe—%327”2 (rm+1 ,8 _ l (mrm—l — pm+l, ’32 —ym-1, m)) —

B
1 . _lﬁzrz
Zellm+1)o,—3 (™. B 4 B rmtl) =
. 12
B . el(m+1)<p CpmEL L SB°r
We got:
. _1B2r2 . 1 1 _1B2T2
ad’r(elmqo.rmez )=,3'el(m+)‘p-rm+ e 2
If we apply the operator a, T to Xo,0(r, @) ng-times, we get (the normalized function):
. 12
celma)¢ . (Bryna. ¢ 2PT

Xng,o(T) @) S
e VT ng!
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Harmonic Oscillator in Two Dimensions

Analog if we apply the operator agJr to xo,0(1, @) ng-times, we get (the normalized function):
. 1
XO,TLg ('r" (p) — L . el(ng)(p . (Br)ng . e_iﬁz‘rz
YT ng!
For a given energy level (n + 1)hw, the wave functions x,, o (7, ¢) and Xon, (7, @) correspond to

the limiting values +n and —n of the quantum number m. Their r-dependence is simple, their

. n
modulus reaches a maximum for r = \/%

As in the one-dimensional harmonic oscillator, the spatial spread of these wave functions increases
with the energy (n + 1)hw.
To construct a wave function of type Xngng (r, ), we apply the operators a; T resp. ag* to

X0,0 (r, ¢).

The result for the first levels:

ﬁ 1R2,.2
— 0ip _ F B -
n=0 =0 XO()(T (p) e m (BT) -
: 5 1,
n=1 {rn: (Xl,O(r;(p):el m o ZBT‘
m = _1
_ ciip P L L
Xo (r, ) =e  (Br)te
' - 1!
1
X20(T, ) = €¥%® 1 (ﬁr)Ze_Eﬁer
n=2 m=2 1
m=20 < X1, 1(7" (p) = eOL(P ((Br)z _ 1)6_7B2r2
—R242
Xo2(r @) = P L (ﬁr)ze‘zﬁ r

The functions xy,, 0 (7, ¢):

'8 i(n —1527”2
T, =—-"¢ P . r)Yd - "2
Xnd,()( (p) - nd! (,8 )

They are proportional to:

2,2 (ﬂr‘ei(p)nd

All their linear combinations are of the form:

_lﬁzrz .
F(r,p) = e2" 7 f(pre®)
Note: f is an arbitrary function of one variable.

The subspace of eigenfunctions of Nj; of eigenvalue zero is composed of functions F(r, ¢).

We remember:

1, 1,0 io
% =3¢ ﬁ”ﬁ(aﬁ_%)
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Harmonic Oscillator in Two Dimensions

We try:
agF(r; ®) =

o3 e ) -

2
1 ip.Ry. _%ﬁzrz ip 1 ip. 10 t90 ﬁ r? ip
—e'?-pr-e f(ﬁre )+Ee E(E-I_ra(p) f(ﬁre )

2

B C aaq;) ( E Zf (ﬁ’re“”))

We do this in parts.

Part one:
1 g2y
Ee“p pr-e 2 f(ﬁre“”)
Part two:
1. 1/90 1 .
Eel(p E(a) <€_§ﬂzr2f(ﬁreup)> —
1 2.2 , 1, 5 0 .
Eel(p E( ‘32 ﬁ r f(ﬁre“”) +e SB°r .af(lgrelip)) =
1 . 1,22 . 1 . 1 1,0, 0 .
—=e? - Br-e 2" f(Bre®) +5et ze 2P ‘Ef(ﬁre“p)
Part three:
1 1 i 1
22 3 i) (¢ 2o ) -
1 l _L1p2.2 a
zf"‘“"'ﬁ( " a(pf(ﬁre‘qo))
We combine:

le“” pr-e 3BT f(ﬂre“p)——e“p pr- e_fﬁ f(,[?rel‘p)+ el - %e‘—ﬁz r2 _f(ﬁre”p)

1 [ _lp2.2 ;
+Zel‘p é( ZB %f(ﬁre ‘p)):

1 . 1 0 ; i .
1321‘2 -—f(ﬁrel‘p) += eltp _e——BZ r? f(ﬁre“p) —

—_pl® . _p73
2e 'Be 2 o B
1,1 1p.  of -a(ﬁrei¢)+lei<p.ie-%ﬁzrz- of  a(pre*) _
Br d(pre'?)  0¢

—pl® . _ 2 _
2¢ B¢ a(Bre®)  or 2
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Harmonic Oscillator in Two Dimensions

leifp .le_%ﬁzrz .L_.ﬁeiﬁo +leig0 .Le_%ﬁzrz .—af‘ . iﬁreiqo —
2 B d(Bret®) 2 Br d(Bret®)
el .le—%ﬁzrz .L.ﬁeiq) — leilp .ie—%ﬁzrz . 8f‘ . Brei® =
2 B d(Bret®) 2 Br d(Bret®)

leiw . e-%ﬁzrz L el _leiw : e-%ﬁzrz . 6f' Lel® =

2 d(Bre'®) 2 d(Bre'®)

Result:
agF(r,9) =0

Similarly, the subspace of eigenfunctions of N; of eigenvalue zero is composed of functions G (r, ¢):

1 .
G(r,p) = e'fﬁzrzg(ﬁre_”p)

Note: g is an arbitrary function of one variable.
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