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Preface 

This file contains the exercises of „Quantum Mechanics, The Theoretical Minimum“ and is specific in 

this respect. On the other hand, the topics generally deal with quantum mechanics and maybe are 

helpful for reasons of training too. 

I tried to make the exercises explicit so most of them can be tackled without specific knowledge of 

the book itself. I also tried to write a kind of “deep dive” solutions that give you more information 

than just the correct result. 

Hope I can help you with learning quantum mechanics. 

I would like to thank Sunjiv Varsani, Dhruv Patel, Kenneth Verbist and Dr. Wolfgang Lindner that 

helped for minimizing the number of errors in this paper …  

Dieter Kriesell  
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Exercise 1.1 
a) Using the axioms for inner products, prove {⟨𝐴| + ⟨𝐵|}|𝐶⟩ = ⟨𝐴|𝐶⟩ + ⟨𝐵|𝐶⟩. 
b) Prove that ⟨𝐴|𝐴⟩ is a real number. 

 

Exercise 1.2 
Show that the inner product satisfies linearity and interchange. 
Inner product:  

⟨𝐴|𝐵⟩ = (𝑎1
∗𝑎2
∗ …𝑎𝑛

∗
1)(

𝑏1
𝑏2
…
𝑏𝑛

) = 𝑎1
∗𝑏1 + 𝑎2

∗𝑏2 +⋯+ 𝑎𝑛
∗𝑏𝑛 

Linearity:  ⟨𝐶|{|𝐴⟩ + |𝐵⟩} = ⟨𝐶|𝐴⟩ + ⟨𝐶|𝐵⟩ 
Interchange:  ⟨𝐵|𝐴⟩ = ⟨𝐴|𝐵⟩∗ 
 

Exercise 2.1 
Prove that the vector |𝑟⟩ is orthogonal to vector |𝑙⟩: 
 

|𝑟⟩ =
1

√2
|𝑢⟩ +

1

√2
|𝑑⟩ 

|𝑙⟩ =
1

√2
|𝑢⟩ −

1

√2
|𝑑⟩ 

 

Exercise 2.2 
Prove that |𝑖⟩ and |𝑜⟩ satisfy the conditions in Eqs. 2.7, 2.8, and 2.9.  
Are they unique in that respect? 
Eq. 2.7:  

⟨𝑖|𝑜⟩ = 0 
Eqs. 2.8: 

⟨𝑜|𝑢⟩⟨𝑢|𝑜⟩ =
1

2
  ⟨𝑜|𝑑⟩⟨𝑑|𝑜⟩ =

1

2
 

⟨𝑖|𝑢⟩⟨𝑢|𝑖⟩ =
1

2
  ⟨𝑖|𝑑⟩⟨𝑑|𝑖⟩ =

1

2
 

Eqs. 2.9 

⟨𝑜|𝑟⟩⟨𝑟|𝑜⟩ =
1

2
  ⟨𝑜|𝑙⟩⟨𝑙|𝑜⟩ =

1

2
 

⟨𝑖|𝑟⟩⟨𝑟|𝑖⟩ =
1

2
  ⟨𝑖|𝑙⟩⟨𝑙|𝑖⟩ =

1

2
 

 

|𝑖⟩ =
1

√2
|𝑢⟩ +

𝑖

√2
|𝑑⟩ and ⟨𝑖| = ⟨𝑢|

1

√2
− ⟨𝑑|

𝑖

√2
 

|𝑜⟩ =
1

√2
|𝑢⟩ −

𝑖

√2
|𝑑⟩ and ⟨𝑜| = ⟨𝑢|

1

√2
+ ⟨𝑑|

𝑖

√2
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Exercise 2.3 
Assume that |𝑖⟩ and |𝑜⟩ are given as: 

|𝑖⟩ = 𝛼|𝑢⟩ + 𝛽|𝑑⟩ and ⟨𝑖| = ⟨𝑢|𝛼∗ + ⟨𝑑|𝛽∗ 
|𝑜⟩ = 𝛾|𝑢⟩ − 𝛿|𝑑⟩ and ⟨𝑜| = ⟨𝑢|𝛾∗ − ⟨𝑑|𝛿∗ 

a) Use Eqs. 2.8 to show that 

𝛼∗𝛼 = 𝛽∗𝛽 = 𝛾∗𝛾 = 𝛿∗𝛿 =
1

2
 

b) Use the above result and Eqs. 2.9 to show that: 
𝛼∗𝛽 + 𝛼𝛽∗ = 0 

 
c) Show that 𝛼∗𝛽 must be pure imaginary. 
 
Eqs. 2.8: 

⟨𝑜|𝑢⟩⟨𝑢|𝑜⟩ =
1

2
  ⟨𝑜|𝑑⟩⟨𝑑|𝑜⟩ =

1

2
 

⟨𝑖|𝑢⟩⟨𝑢|𝑖⟩ =
1

2
  ⟨𝑖|𝑑⟩⟨𝑑|𝑖⟩ =

1

2
 

Eqs. 2.9 

⟨𝑜|𝑟⟩⟨𝑟|𝑜⟩ =
1

2
  ⟨𝑜|𝑙⟩⟨𝑙|𝑜⟩ =

1

2
 

⟨𝑖|𝑟⟩⟨𝑟|𝑖⟩ =
1

2
  ⟨𝑖|𝑙⟩⟨𝑙|𝑖⟩ =

1

2
 

 

Exercise 3.1 
Prove: If a vector space is N-dimensional, an orthonormal basis of N vectors can be constructed 
from the eigenvectors of a Hermitian operator.  
 

Exercise 3.2 
Prove that 𝜎𝑧 of Eq. 3.16 is the unique solution to Eqs. 3.14 und 3.15. 
Eq. 3.16 

𝜎𝑧 = (
(𝜎𝑧)11 (𝜎𝑧)12
(𝜎𝑧)21 (𝜎𝑧)21

) = (
1 0
0 −1

) 

Eq. 3.14 

(
(𝜎𝑧)11 (𝜎𝑧)12
(𝜎𝑧)21 (𝜎𝑧)21

)(
1
0
) = (

1
0
) 

Eq. 3.15 

(
(𝜎𝑧)11 (𝜎𝑧)12
(𝜎𝑧)21 (𝜎𝑧)21

) (
0
1
) = −(

0
1
) 

 

Exercise 3.3 
Calculate the eigenvectors and eigenvalues of 𝜎𝑛.  
Assume the eigenvector 𝜆1 has the form: 

(
cos𝛼
sin𝛼

) 

𝛼 is an unknown parameter. Plug this vector into the eigenvalue equation and solve for 𝛼 in terms 
of 𝜃.  
Why did we use a single parameter 𝛼?  
Notice that our suggested column vector must have unit length. 

𝜎𝑛 = (
𝑐𝑜𝑠 𝜃 sin 𝜃
sin𝜃 − cos 𝜃

) 

To show: 

(
𝑐𝑜𝑠 𝜃 sin 𝜃
sin 𝜃 −cos 𝜃

) (
cos 𝛼
sin 𝛼

) = 𝜆1 (
cos𝛼
sin𝛼

) 
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Exercise 3.4 
Let 𝑛𝑧 = 𝑐𝑜𝑠𝜃, 𝑛𝑥 = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙, and 𝑛𝑦 = 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙.  

Angles 𝜃 and 𝜙 are defined according to the usual conventions for spherical coordinates.  
Compute the eigenvalues and eigenvectors for the matrix 𝜎𝑛: 
 

𝜎𝑛 = (
𝑛𝑧 (𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑥 + 𝑖𝑛𝑦) −𝑛𝑧
) 

 

Exercise 3.5 
Suppose a spin is prepared so that 𝜎𝑚 = +1. The apparatus is then rotated to the �̂� direction and 
𝜎𝑛 is measured. What is the probability that the result is +1?  
Note that 𝜎𝑚 = 𝜎 ∙ �̂�, using the same convention we used for 𝜎𝑛. 
 

Exercise 4.1 
Prove that if (the time operator) U is unitary, and if |𝐴⟩ and |𝐵⟩ are any two state-vectors, then the 
inner product of 𝑈|𝐴⟩ and 𝑈|𝐵⟩ is the same as the inner product of |𝐴⟩ and |𝐵⟩. One could call this 
the conservation of overlaps. It expresses the fact that the logical relation between states is 
preserved with time. 
U is unitary: 

𝑈†𝑈 = 𝐼 
𝑈|𝐴⟩ = ⟨𝐴|𝑈† 

 

Exercise 4.2  
Prove that if 𝑀 and 𝐿 are both Hermitian, the (extended) commutator 𝑖[𝑀, 𝐿] is also Hermitian.  
Note that the 𝑖 is important. The commutator is, by itself, not Hermitian.  
 

Hermitian: the diagonal is pure real and: 𝑀 = 𝑀† 
 

Exercise 4.3 
With the definition of Poisson brackets check that the identification in Eq. 4.21 is dimensionally 
consistent. Show that without the factor ℏ, it would not be.  
Eq. 4.21 

[𝐹, 𝐺] ↔ 𝑖ℏ{𝐹, 𝐺} 

[ℏ] = 𝐽 ∙ 𝑠 =
𝑘𝑔 ∙ 𝑚2

𝑠2
∙ 𝑠 

 

Exercise 4.4 
Verify the commutation relations: 

[𝜎𝑥, 𝜎𝑦] = 2𝑖𝜎𝑧 

[𝜎𝑦, 𝜎𝑧] = 2𝑖𝜎𝑥 
[𝜎𝑧, 𝜎𝑥] = 2𝑖𝜎𝑦 

𝜎𝑥 = (
0 1
1 0

) , 𝜎𝑦 = (
0 −𝑖
𝑖 0

) , 𝜎𝑧 = (
1 0
0 −1

) 
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Exercise 4.5 
Take any unit 3-vector �⃗�  and form the operator 

𝐻 =
ℏ𝜔

2
𝜎 ∙ �⃗�  

Find the energy eigenvalues and eigenvectors by solving the time-independent Schrödinger 
equation. Recall 𝜎 ∙ �⃗�  in component form: 

𝜎𝑛 = 𝜎 ∙ �⃗� = (
𝑛𝑧 (𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑥 + 𝑖𝑛𝑦) −𝑛𝑧
) 

 

Exercise 4.6 
Carry out the Schrödinger Ket recipe for a single spin.  

The Hamiltonian is 𝐻 =
ℏ𝜔

2
𝜎𝑧 and the final observable is 𝜎𝑥.  

The initial state is given as |𝑢⟩ (the state in which 𝜎𝑧 = ±1). 
After time t, an experiment is done to measure 𝜎𝑦.  

What are the possible outcomes and what are the probabilities for those outcomes? 
 

Exercise 5.1 
Verify that any 2 × 2 Hermitian matrix L can be written as a sum of four terms, 

𝐿 = 𝑎𝜎𝑥 + 𝑏𝜎𝑦 + 𝑐𝜎𝑧 + 𝑑𝐼 

where a, b, c and d are real numbers. 
The four Pauli matrices: 

𝜎𝑥 = (
0 1
1 0

), 𝜎𝑦 = (
0 −𝑖
𝑖 0

), 𝜎𝑧 = (
1 0
0 −1

), I= (
1 0
0 1

) 

A general Hermitian matrix (𝑟, 𝑟) are real numbers: 

(
𝑟 𝑤
𝑤∗ 𝑟′

) 

 

Exercise 5.2 

1) Show that (△ 𝐴)2 = 〈�̅�2〉 and (△ 𝐵)2 = 〈�̅�2〉 

2) Show that [�̅�, �̅�] = [𝐴, 𝐵] 

3) Using these relations, show that △𝐴 △ 𝐵 ≥
1

2
|⟨Ψ|[𝐴, 𝐵]|Ψ⟩| 

 
The square of uncertainty (or standard deviation) of A, (△ 𝐴)2: 

(△ 𝐴)² =∑�̅�2𝑃(𝑎)

𝑎

=∑(𝑎 − 〈𝐴〉)2𝑃(𝐴)

𝑎

 

 

Exercise 6.1 
Prove that if 𝑃(𝑎, 𝑏) factorizes:  

𝑃(𝑎, 𝑏) = 𝑃𝐴(𝑎)𝑃𝑏(𝑏) 
then the correlation between a and b is zero: 

〈𝜎𝐴𝜎𝐵〉 − 〈𝜎𝐴〉〈𝜎𝐵〉 = 0 
 
Average:  

〈𝜎𝐴〉 =∑𝑎𝑛𝑃(𝑎𝑛)

𝑛

 

〈𝜎𝐵〉 =∑𝑏𝑛𝑃(𝑏𝑛)

𝑛

 

〈𝜎𝐴𝜎𝐵〉 =∑∑𝑎𝑛𝑏𝑛𝑃(𝑎𝑛𝑏𝑛)

𝑛𝑛
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Exercise 6.2 
Show that if the two normalization conditions are satisfied: 
 

𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑 = 1 
𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑 = 1 
 
then the state-vector is automatically normalized as well: 
 

𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩ 
 
In other words, show that for this product state, normalizing the overall state-vector does not put 
any additional constraints on the 𝛼′𝑠 and 𝛽′𝑠. 
 

Exercise 6.3 
Prove that the state |𝑠𝑖𝑛𝑔⟩ cannot be written as a product state. 

|𝑠𝑖𝑛𝑔⟩ =
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩) 

The shape of a product state: 
𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩ 

 

Exercise 6.4 
Use the matrix forms of 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 and the column vectors for |𝑢⟩  and |𝑑⟩ to verify: 

 
𝜎𝑧|𝑢⟩ = |𝑢⟩  and  𝜎𝑧|𝑑⟩ = −|𝑑⟩ 
𝜎𝑥|𝑢⟩ = |𝑑⟩  and  𝜎𝑥|𝑑⟩ = |𝑢⟩ 
𝜎𝑦|𝑢⟩ = 𝑖|𝑑⟩  and  𝜎𝑦|𝑑⟩ = −𝑖|𝑢⟩ 

 
Then, use: 

𝜏𝑧|𝑢⟩ = |𝑢⟩  and  𝜏𝑧|𝑑⟩ = −|𝑑⟩ 
𝜏𝑥|𝑢⟩ = |𝑑⟩  and  𝜏𝑥|𝑑⟩ = |𝑢⟩ 
𝜏𝑦|𝑢⟩ = 𝑖|𝑑⟩  and  𝜏𝑦|𝑑⟩ = −𝑖|𝑢⟩ 

 
to write the equations for all possible combinations of the tensor product states 𝜎𝑧|𝑢𝑢⟩ = |𝑢𝑢⟩ 
etc. 
 

Exercise 6.5 
Prove the following theorem: 
When any one of Alice’s and Bob’s spin operators acts on a product state, the result is still a 
product state. 
Show that in a product state, the expectation value of any component of �̅� or �̅� is the same as it 
would be in the individual single-spin states. 
 

Exercise 6.6 
Assume Charlie has prepared the two spins in the singlet state. This time, Bob measures 𝜏𝑦 and 

Alice measures 𝜎𝑥. What is the expectation value of 𝜎𝑥𝜏𝑦? 

What does this say about the correlation between the two measurements? 

|𝑠𝑖𝑛𝑔⟩ =
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩) 

⟨𝑠𝑖𝑛𝑔| =
1

√2
(⟨𝑢𝑑| − ⟨𝑑𝑢|) 
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Exercise 6.7 
Next (after Charlie has had prepared the two spins in the singlet state), Charlie prepares the spins 
in a different state, called |𝑇1⟩, where 

|𝑇1⟩ =
1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩) 

T stands for triplet. The triplet states are completely different from the states in the coin and die 
examples.  
What are the expectation values of the operators 𝜎𝑧𝜏𝑧, 𝜎𝑥𝜏𝑥, and 𝜎𝑦𝜏𝑦? 

Notice what a difference a sign can make. 
 

Exercise 6.8 
Calculate the expectation values of the operators 𝜎𝑧𝜏𝑧, 𝜎𝑥𝜏𝑥, and 𝜎𝑦𝜏𝑦 for the other two 

entangled triplet states: 

|𝑇2⟩ =
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩) 

|𝑇3⟩ =
1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩) 

(Addendum: at the end of this exercise we check the expectation values for the singlet state too.) 
 

Exercise 6.9 
Prove that the four vectors |𝑠𝑖𝑛𝑔⟩, |𝑇1⟩, |𝑇2⟩, |𝑇3⟩ are eigenvectors of 𝜎 ∙ 𝜏 . 
What are their eigenvalues? 

|𝑠𝑖𝑛𝑔⟩ =
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩)  

|𝑇1⟩ =
1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩) |𝑇2⟩ =

1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩) |𝑇3⟩ =

1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩) 

 

Exercise 6.10 
A system of two spins has the Hamiltonian: 

ℋ =
𝜔ℏ

2
𝜎 ∙ 𝜏  

Question 1) 
What are the possible energies of the system, and what are the eigenvectors of the Hamiltonian? 
Question 2) 
Suppose the system starts in the state |𝑢𝑢⟩.  
What is the state at any later time?  
Answer the same question for initial states of |𝑢𝑑⟩, |𝑑𝑢⟩, |𝑑𝑑. 
 

Exercise 7.1 
Write the tensor product 𝐼 ⨂ 𝜏𝑥 as a matrix, and apply that matrix to each of the |𝑢𝑢⟩, |𝑢𝑑⟩, |𝑑𝑢⟩ 
and |𝑑𝑑⟩ column vectors. Show that Alice’s half of the state-vector is unchanged in each case. 
Recall that 𝐼 is the 2 × 2 unit matrix. 
 

Exercise 7.2 
Calculate the matrix elements of 𝜎𝑧 ⨂ 𝜏𝑥 by forming the inner product analog to: 

𝜎𝑧 ⨂ 𝐼 = (

⟨𝑢𝑢|𝜎𝑧𝐼|𝑢𝑢⟩ ⟨𝑢𝑢|𝜎𝑧𝐼|𝑢𝑑⟩ ⟨𝑢𝑢|𝜎𝑧𝐼|𝑑𝑢⟩ ⟨𝑢𝑢|𝜎𝑧𝐼|𝑑𝑑⟩

⟨𝑢𝑑|𝜎𝑧𝐼|𝑢𝑢⟩ ⟨𝑢𝑑|𝜎𝑧𝐼|𝑢𝑑⟩ ⟨𝑢𝑑|𝜎𝑧𝐼|𝑑𝑢⟩ ⟨𝑢𝑑|𝜎𝑧𝐼|𝑑𝑑⟩

⟨𝑑𝑢|𝜎𝑧𝐼|𝑢𝑢⟩ ⟨𝑑𝑢|𝜎𝑧𝐼|𝑢𝑑⟩ ⟨𝑑𝑢|𝜎𝑧𝐼|𝑑𝑢⟩ ⟨𝑑𝑢|𝜎𝑧𝐼|𝑑𝑑⟩

⟨𝑑𝑑|𝜎𝑧𝐼|𝑢𝑢⟩ ⟨𝑑𝑑|𝜎𝑧𝐼|𝑢𝑑⟩ ⟨𝑑𝑑|𝜎𝑧𝐼|𝑑𝑢⟩ ⟨𝑑𝑑|𝜎𝑧𝐼|𝑑𝑑⟩

) 

𝜎𝑧 operates to the left, 𝐼 to the right. 
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Exercise 7.3 
Consider the equation: 

(𝐴 ⨂ 𝐵)(𝑎 ⨂ 𝑏) = (𝐴𝑎 ⨂ 𝐵𝑏) 
 
𝐴 and 𝐵 represent 2 × 2 matrices (or operators), and 𝐴 and 𝑏 represent 2 × 1 column vectors. 
 
 
a) Rewrite the equation: 

(𝐴 ⨂ 𝐵)(𝑎 ⨂ 𝑏) = (𝐴𝑎 ⨂ 𝐵𝑏) 
 
in component form, replacing the symbols 𝐴, 𝐵, 𝑎, 𝑏 with the following matrices and column 
vectors: 
 

𝐴 ⨂ 𝐵 = (

𝐴11𝐵11 𝐴11𝐵12 𝐴12𝐵11 𝐴12𝐵12
𝐴11𝐵21 𝐴11𝐵22 𝐴12𝐵21 𝐴12𝐵22
𝐴21𝐵11 𝐴21𝐵12 𝐴22𝐵11 𝐴22𝐵12
𝐴21𝐵21 𝐴21𝐵22 𝐴22𝐵21 𝐴22𝐵22

) 

 

(
𝑎11
𝑎21
)⨂(

𝑏11
𝑏21
) = (

𝑎11𝑏11
𝑎11𝑏21
𝑎21𝑏11
𝑎21𝑏21

) 

 
b) Perform the matrix multiplication 𝐴𝑎 and 𝐵𝑏 on the right-hand side. Verify that each result is a 
4 × 1 matrix. 
 
c) Expand all three Kronecker products. 
 
d) Verify the row and column sizes of each Kronecker product: 

• 𝐴⨂𝐵 : 4 × 4 
• 𝑎⨂𝑏 : 4 × 1 
• 𝐴𝑎⨂𝐵𝑏 : 4 × 1 

 
e) Perform the matrix multiplication on the left-hand side, resulting in a 4 × 1 column vector. Each 
row should be the sum of four separate terms 
 
f) Finally, verify that the resulting column vectors on the left and right sides are identical. 
 

Exercise 7.4 
Calculate the density matrix for: 

|Ψ⟩ = 𝛼|𝑢𝑢⟩ + 𝛽|𝑢𝑢⟩ 
Answer: 

𝜓(𝑢) = 𝛼; 𝜓∗(𝑢) = 𝛼∗ 
𝜓(𝑑) = 𝛽; 𝜓∗(𝑑) = 𝛽∗ 

 

𝜌𝑎′𝑎 = (
𝛼∗𝛼 𝛼∗𝛽
𝛽∗𝛼 𝛽∗𝛽

) 

 
Now try plugging some numbers for 𝛼 and 𝛽. Make sure they are normalized to 1. For example, 

𝛼 =
1

√2
, 𝛽 =

1

√2
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Exercise 7.5 
a) Show: 

(
𝑎 0
0 𝑏

)
2

= (𝑎
2 0
0 𝑏2

) 

b) Now, suppose: 

𝜌 = (
1
3⁄ 0

0 2
3⁄
) 

Calculate: 
𝜌2, 𝑇𝑟(𝜌), 𝑇𝑟(𝜌2) 

 
c) If 𝜌 is a density matrix, does it represent a pure state or a mixed state? 
 

Exercise 7.6 
By the standard rules of probability, the probability for a: 

𝑃(𝑎) =∑𝜓∗(𝑎, 𝑏)𝜓(𝑎, 𝑏)

𝑏

 

This is just a diagonal entry in the density matrix: 
𝑃(𝑎) = 𝜌𝑎𝑎 

 
Use 𝑃(𝑎) = 𝜌𝑎𝑎 to show that if 𝜌 is a density matrix, then: 

𝑇𝑟(𝜌) = 1 
 

Exercise 7.7 
We have the density matrix: 

𝜌 = (
1
2⁄ 0

0 1
2⁄
) 

Calculate 𝜌2. How does this result confirm that 𝜌 represents an entangled state? 
 

Exercise 7.8 
Consider the following states: 

|𝜓1⟩ =
1

2
(|𝑢𝑢⟩ + |𝑢𝑑⟩ + |𝑑𝑢⟩ + |𝑑𝑑⟩) 

|𝜓2⟩ =
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩) 

|𝜓3⟩ =
1

5
(3|𝑢𝑢⟩ + 4|𝑑𝑑⟩) 

For each one, calculate Alice’s density matrix and Bob’s density matrix. Check their properties. 
 

Exercise 7.9 
Given any Alice observable 𝐴 and Bo observable 𝐵, show that for a product state, the correlation 
𝐶(𝐴, 𝐵) is zero. 
 

Exercise 7.10 
Given a measuring apparatus with the states |𝑏⟩ for initial blank state, |+1⟩ for “result of spin 
measurement is up” and |−1⟩ for “result of spin measurement is down”. 
Verify that the state-vector 

αu|u, b⟩ + αd|d, b⟩ 
represents a completely unentangled state. 
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Exercise 7.11 
Calculate Alice’s density matrix for 𝜎𝑧 for the “near-singlet” state. 
 

Exercise 7.12 
Verify the numerical values in each rap sheet. 
This is a very specific exercise that refers to so called “rap sheets”. The solution here is for reasons 
of completeness only. It is a superset of the solution to exercise 7.11. 
 

Exercise 8.1 
Prove that the position operator 𝑋 and the momentum operator 𝐷 are linear operators. 

𝑿:𝑿𝜑(𝑥) = 𝑥𝜑(𝑥) 

𝑫:𝑫𝜑(𝑥) =
𝑑𝜑(𝑥)

𝑑𝑥
 

 

Exercise 9.1 
Applicate the Hamiltonian 

−
ℏ2

2𝑚

𝜕2𝜓(𝑥)

𝜕𝑥2
= 𝐸𝜓(𝑥) 

to the wave function: 

𝜓(𝑥) = 𝑒
𝑖𝑝
ℏ
𝑥

 
Show that this wave function is a solution, if we set: 

𝐸 =
𝑝2

2𝑚
 

 

Exercise 9.2 
Prove the following equation by expanding each side and comparing the results: 

[𝑃2, 𝑋] = 𝑃[𝑃, 𝑋] + [𝑃, 𝑋]𝑃 
𝑃 is the momentum operator, 𝑋 is the position operator – both are matrices. 
[𝑃, 𝑋] is the commutator relation: [𝑃, 𝑋] = 𝑃𝑋 − 𝑋𝑃 
 

Exercise 9.3 
Show that the right-hand side of  

[𝑉(𝑥), 𝑃]𝜓(𝑥) = 𝑉(𝑥) (−𝑖ℏ
𝑑

𝑑𝑥 
)𝜓(𝑥) − (−𝑖ℏ

𝑑

𝑑𝑥 
) 𝑉(𝑥)𝜓(𝑥) 

simplifies to the right-hand side of: 

[𝑉(𝑥), 𝑃]𝜓(𝑥) = 𝑖ℏ
𝑑𝑉(𝑥)

𝑑𝑥 
 

Hint: First expand the second term by taking the derivative of the product.  
Then look for cancellations. 
 

Exercise 10.1 
Find the second derivative of 𝑥: 

𝑥 = 𝐴 ∙ 𝑐𝑜𝑠(𝜔𝑡) + 𝐵 ∙ 𝑠𝑖𝑛(𝜔𝑡) 
Show thereby that it solves: 

−𝜔2𝑥 = �̈� 
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Exercise 1.1 

a) Using the axioms for inner products, prove {⟨𝐴| + ⟨𝐵|}|𝐶⟩ = ⟨𝐴|𝐶⟩ + ⟨𝐵|𝐶⟩. 

b) Prove that ⟨𝐴|𝐴⟩ is a real number. 

* * * * * * * * * * 

a) 

{⟨𝐴| + ⟨𝐵|}|𝐶⟩ = 

[⟨𝐶|{|𝐴⟩ + |𝐵⟩}]∗ = 

⟨𝐶|𝐴⟩∗ + ⟨𝐶|𝐵⟩∗ = 

⟨𝐴|𝐶⟩∗∗ + ⟨𝐵|𝐶⟩∗∗ = 

⟨𝐴|𝐶⟩ + ⟨𝐵|𝐶⟩ 

b)  

⟨𝐴|𝐴⟩ = (𝑎1
∗𝑎2
∗ …𝑎𝑛

∗
1)(

𝑎1
𝑎2
…
𝑎𝑛

) = 

𝑎1
∗𝑎1 + 𝑎2

∗𝑎2 +⋯+ 𝑎𝑛
∗𝑎𝑛 = 

|𝑎1|
2 + |𝑎2|

2 +⋯+ |𝑎𝑛|
2 ∈ ℝ 
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Exercise 1.2 

Show that the inner product defined by Eq. 1.2 satisfies all the axioms of inner products. 

Inner product:  

⟨𝐴|𝐵⟩ = (𝑎1
∗𝑎2
∗ …𝑎𝑛

∗
1)(

𝑏1
𝑏2
…
𝑏𝑛

) = 𝑎1
∗𝑏1 + 𝑎2

∗𝑏2 +⋯+ 𝑎𝑛
∗𝑏𝑛 

Linearity:  ⟨𝐶|{|𝐴⟩ + |𝐵⟩} = ⟨𝐶|𝐴⟩ + ⟨𝐶|𝐵⟩ 

Interchange:  ⟨𝐵|𝐴⟩ = ⟨𝐴|𝐵⟩∗ 

* * * * * * * * * * 

Linearity: 

⟨𝐶|{|𝐴⟩ + |𝐵⟩} = 

(𝑐1
∗𝑐2
∗…𝑐𝑛

∗
1)(

𝑎1 + 𝑏1
𝑎2 + 𝑏2
…

𝑎𝑛 + 𝑏𝑛

) = 

𝑐1
∗(𝑎1 + 𝑏1) + 𝑐2

∗(𝑎2 + 𝑏2) + ⋯+ 𝑐𝑛
∗(𝑎𝑛 + 𝑏𝑛) = 

𝑐1
∗𝑎1 + 𝑐1

∗𝑏1 + 𝑐2
∗𝑎2 + 𝑐2

∗𝑏2 +⋯+ 𝑐𝑛
∗𝑎𝑛 + 𝑐𝑛

∗𝑏𝑛 = 

𝑐1
∗𝑎1 + 𝑐2

∗𝑎2 +⋯+ 𝑐𝑛
∗𝑎𝑛 + 𝑐1

∗𝑏1 + 𝑐2
∗𝑏2 +⋯+ 𝑐𝑛

∗𝑏𝑛 = 

(𝑐1
∗𝑐2
∗…𝑐𝑛

∗
1)(

𝑎1
𝑎2
…
𝑎𝑛

)+ (𝑐1
∗𝑐2
∗…𝑐𝑛

∗
1)(

𝑏1
𝑏2
…
𝑏𝑛

) = 

⟨𝐶|𝐴⟩ + ⟨𝐶|𝐵⟩ 

Interchange: 

⟨𝐴|𝐵⟩∗ = [(𝑎1
∗𝑎2
∗ …𝑎𝑛

∗
1)(

𝑏1
𝑏2
…
𝑏𝑛

)] =∗ 

(𝑎1
∗𝑏1 + 𝑎2

∗𝑏2 +⋯+ 𝑎𝑛
∗𝑏𝑛)

∗ = 

𝑎1
∗∗𝑏1

∗ + 𝑎2
∗∗𝑏2

∗ +⋯+ 𝑎𝑛
∗∗𝑏𝑛

∗ = 

𝑎1𝑏1
∗ + 𝑎2𝑏2

∗ +⋯+ 𝑎𝑛𝑏𝑛
∗ = 

𝑏1
∗𝑎1 + 𝑏2

∗𝑎2 +⋯+ 𝑏𝑛
∗𝑎𝑛 = 

(𝑏1
∗𝑏2
∗…𝑏𝑛

∗)(

𝑎1
𝑎2
…
𝑎𝑛

) = 

⟨𝐵|𝐴⟩ 
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Exercise 2.1 

Prove that the vector |𝑟⟩ is orthogonal to vector |𝑙⟩: 

|𝑟⟩ =
1

√2
|𝑢⟩ +

1

√2
|𝑑⟩ 

|𝑙⟩ =
1

√2
|𝑢⟩ −

1

√2
|𝑑⟩ 

* * * * * * * * * * 

If |𝑟⟩ is orthogonal to |𝑙⟩, then the scalar product ⟨𝑟|𝑙⟩ must be 0. 

⟨𝑟|𝑙⟩ = 

(⟨𝑢|
1

√2
+ ⟨𝑑|

1

√2
) (
1

√2
|𝑢⟩ −

1

√2
|𝑑⟩) = 

1

√2

1

√2
⟨𝑢|𝑢⟩ −

1

√2

1

√2
⟨𝑢|𝑑⟩ +

1

√2

1

√2
⟨𝑑|𝑢⟩ −

1

√2

1

√2
⟨𝑑|𝑑⟩ = 

1

2
⟨𝑢|𝑢⟩ −

1

2
⟨𝑢|𝑑⟩ +

1

2
⟨𝑑|𝑢⟩ −

1

2
⟨𝑑|𝑑⟩ = 

1

2
− 0 + 0 −

1

2
= 0 
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Exercise 2.2 

Prove that |𝑖⟩ and |𝑜⟩ satisfy all the conditions in Eqs. 2.7, 2.8, and 2.9.  

Are they unique in that respect? 

Eq. 2.7:  

⟨𝑖|𝑜⟩ = 0 

Eqs. 2.8: 

⟨𝑜|𝑢⟩⟨𝑢|𝑜⟩ =
1

2
  ⟨𝑜|𝑑⟩⟨𝑑|𝑜⟩ =

1

2
 

⟨𝑖|𝑢⟩⟨𝑢|𝑖⟩ =
1

2
  ⟨𝑖|𝑑⟩⟨𝑑|𝑖⟩ =

1

2
 

Eqs. 2.9 

⟨𝑜|𝑟⟩⟨𝑟|𝑜⟩ =
1

2
  ⟨𝑜|𝑙⟩⟨𝑙|𝑜⟩ =

1

2
 

⟨𝑖|𝑟⟩⟨𝑟|𝑖⟩ =
1

2
  ⟨𝑖|𝑙⟩⟨𝑙|𝑖⟩ =

1

2
 

 

|𝑖⟩ =
1

√2
|𝑢⟩ +

𝑖

√2
|𝑑⟩ and ⟨𝑖| = ⟨𝑢|

1

√2
− ⟨𝑑|

𝑖

√2
 

|𝑜⟩ =
1

√2
|𝑢⟩ −

𝑖

√2
|𝑑⟩ and ⟨𝑜| = ⟨𝑢|

1

√2
+ ⟨𝑑|

𝑖

√2
 

* * * * * * * * * * 

Eq. 2.7: ⟨𝑖|𝑜⟩ = 0 

⟨𝑖|𝑜⟩ = 

(⟨𝑢|
1

√2
− ⟨𝑑|

𝑖

√2
) (
1

√2
|𝑢⟩ −

𝑖

√2
|𝑑⟩) = 

1

√2

1

√2
⟨𝑢|𝑢⟩ −

1

√2

𝑖

√2
⟨𝑢|𝑑⟩ −

𝑖

√2

1

√2
⟨𝑑|𝑢⟩ +

𝑖

√2

𝑖

√2
⟨𝑑|𝑑⟩ = 

1

2
∙ 1 −

𝑖

2
∙ 0 −

𝑖

2
∙ 0 −

1

2
∙ 1 = 0 

 

Eqs. 2.8 ⟨𝑜|𝑢⟩⟨𝑢|𝑜⟩: 

⟨𝑜|𝑢⟩ = (⟨𝑢|
1

√2
+ ⟨𝑑|

𝑖

√2
) (|𝑢⟩) = 

(
1

√2
⟨𝑢|𝑢⟩ +

𝑖

√2
⟨𝑑|𝑢⟩) = 

(
1

√2
+ 0) =

1

√2
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⟨𝑢|𝑜⟩ = (⟨𝑢|) (
1

√2
|𝑢⟩ −

𝑖

√2
|𝑑⟩) = 

1

√2
⟨𝑢|𝑢⟩ −

𝑖

√2
⟨𝑢|𝑑⟩ = 

1

√2
− 0 =

1

√2
 

 

⟨𝑜|𝑢⟩⟨𝑢|𝑜⟩ =
1

√2

1

√2
=
1

2
 

 

Eqs. 2.8 ⟨𝑜|𝑑⟩⟨𝑑|𝑜⟩: 

⟨𝑜|𝑑⟩ = (⟨𝑢|
1

√2
+ ⟨𝑑|

𝑖

√2
) (|𝑑⟩) = 

(
1

√2
⟨𝑢|𝑑⟩ +

𝑖

√2
⟨𝑑|𝑑⟩) = 

(0 +
𝑖

√2
) =

𝑖

√2
 

 

⟨𝑑|𝑜⟩ = (⟨𝑑|) (
1

√2
|𝑢⟩ −

𝑖

√2
|𝑑⟩) = 

1

√2
⟨𝑑|𝑢⟩ −

𝑖

√2
⟨𝑑|𝑑⟩ = 

0 −
𝑖

√2
= −

𝑖

√2
 

 

⟨𝑜|𝑑⟩⟨𝑑|𝑜⟩ =
𝑖

√2

−𝑖

√2
=
1

2
 

 

Eqs. 2.8 ⟨𝑖|𝑢⟩⟨𝑢|𝑖⟩: 

⟨𝑖|𝑢⟩ = (⟨𝑢|
1

√2
− ⟨𝑑|

𝑖

√2
) (|𝑢⟩) = 

(
1

√2
⟨𝑢|𝑢⟩ −

𝑖

√2
⟨𝑑|𝑢⟩) = 

(
1

√2
− 0) =

1

√2
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⟨𝑢|𝑖⟩ = (⟨𝑢|) (
1

√2
|𝑢⟩ +

𝑖

√2
|𝑑⟩) = 

1

√2
⟨𝑢|𝑢⟩ −

𝑖

√2
⟨𝑢|𝑑⟩ = 

1

√2
− 0 =

1

√2
 

 

⟨𝑖|𝑢⟩⟨𝑢|𝑖⟩ =
1

√2

1

√2
=
1

2
 

 

Eqs. 2.8 ⟨𝑖|𝑑⟩⟨𝑑|𝑖⟩: 

⟨𝑖|𝑑⟩ = (⟨𝑢|
1

√2
− ⟨𝑑|

𝑖

√2
) (|𝑑⟩) = 

(
1

√2
⟨𝑢|𝑑⟩ −

𝑖

√2
⟨𝑑|𝑑⟩) = 

(0 −
𝑖

√2
) =

−𝑖

√2
 

 

⟨𝑑|𝑖⟩ = (⟨𝑑|) (
1

√2
|𝑢⟩ +

𝑖

√2
|𝑑⟩) = 

1

√2
⟨𝑑|𝑢⟩ −

𝑖

√2
⟨𝑑|𝑑⟩ = 

0 −
𝑖

√2
=
−𝑖

√2
 

 

⟨𝑖|𝑑⟩⟨𝑑|𝑖⟩ =
−𝑖

√2

−𝑖

√2
=
1

2
 

 

Eqs. 2.9 ⟨𝑜|𝑟⟩⟨𝑟|𝑜⟩: 

|𝑖⟩ =
1

√2
|𝑢⟩ +

𝑖

√2
|𝑑⟩ and ⟨𝑖| = ⟨𝑢|

1

√2
− ⟨𝑑|

𝑖

√2
 

|𝑜⟩ =
1

√2
|𝑢⟩ −

𝑖

√2
|𝑑⟩ and ⟨𝑜| = ⟨𝑢|

1

√2
+ ⟨𝑑|

𝑖

√2
 

|𝑟⟩ =
1

√2
|𝑢⟩ +

1

√2
|𝑑⟩ and ⟨𝑟| = ⟨𝑢|

1

√2
+ ⟨𝑑|

1

√2
 

|𝑙⟩ =
1

√2
|𝑢⟩ −

1

√2
|𝑑⟩ and ⟨𝑙| = ⟨𝑢|

1

√2
− ⟨𝑑|

1

√2
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Eqs. 2.9 ⟨𝑜|𝑟⟩⟨𝑟|𝑜⟩: 

⟨𝑜|𝑟⟩ = (⟨𝑢|
1

√2
+ ⟨𝑑|

𝑖

√2
) (
1

√2
|𝑢⟩ +

1

√2
|𝑑⟩) = 

1

√2

1

√2
⟨𝑢|𝑢⟩ +

1

√2

1

√2
⟨𝑢|𝑑⟩ +

𝑖

√2

1

√2
⟨𝑑|𝑢⟩ +

𝑖

√2

1

√2
⟨𝑑|𝑑⟩ = 

1

2
∙ 1 +

1

2
∙ 0 +

𝑖

2
∙ 0 +

𝑖

2
∙ 1 = 

1 + 𝑖

2
 

⟨𝑟|𝑜⟩ = (⟨𝑢|
1

√2
+ ⟨𝑑|

1

√2
) (
1

√2
|𝑢⟩ −

𝑖

√2
|𝑑⟩) = 

1

√2

1

√2
⟨𝑢|𝑢⟩ −

1

√2

𝑖

√2
⟨𝑢|𝑑⟩ +

1

√2

1

√2
⟨𝑑|𝑢⟩ −

1

√2

𝑖

√2
⟨𝑑|𝑑⟩ = 

1

2
∙ 1 −

𝑖

2
∙ 0 +

1

2
∙ 0 −

𝑖

2
∙ 1 = 

1 − 𝑖

2
 

⟨𝑜|𝑟⟩⟨𝑟|𝑜⟩ =
1 + 𝑖

2
∙
1 − 𝑖

2
=
1 − (𝑖 ∙ 𝑖)2

4
=
2

4
=
1

2
 

 

Eqs. 2.9 ⟨𝑜|𝑙⟩⟨𝑙|𝑜⟩: 

⟨𝑜|𝑙⟩ = (⟨𝑢|
1

√2
+ ⟨𝑑|

𝑖

√2
) (
1

√2
|𝑢⟩ −

1

√2
|𝑑⟩) = 

1

√2

1

√2
⟨𝑢|𝑢⟩ −

1

√2

1

√2
⟨𝑢|𝑑⟩ +

𝑖

√2

1

√2
⟨𝑑|𝑢⟩ −

𝑖

√2

1

√2
⟨𝑑|𝑑⟩ = 

1

2
∙ 1 −

1

2
∙ 0 +

𝑖

2
∙ 0 −

𝑖

2
∙ 1 = 

1 − 𝑖

2
 

⟨𝑙|𝑜⟩ = (⟨𝑢|
1

√2
− ⟨𝑑|

1

√2
) (
1

√2
|𝑢⟩ −

𝑖

√2
|𝑑⟩) = 

1

√2

1

√2
⟨𝑢|𝑢⟩ −

1

√2

𝑖

√2
⟨𝑢|𝑑⟩ −

1

√2

1

√2
⟨𝑑|𝑢⟩ +

1

√2

𝑖

√2
⟨𝑑|𝑑⟩ = 

1

2
∙ 1 −

𝑖

2
∙ 0 +

1

2
∙ 0 +

𝑖

2
∙ 1 = 

1 + 𝑖

2
 

⟨𝑜|𝑙⟩⟨𝑙|𝑜⟩ =
1 − 𝑖

2
∙
1 + 𝑖

2
=
1 − (𝑖 ∙ 𝑖)2

4
=
2

4
=
1

2
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Eqs. 2.9 ⟨𝑖|𝑟⟩⟨𝑟|𝑖⟩: 

⟨𝑖|𝑟⟩ = (⟨𝑢|
1

√2
− ⟨𝑑|

𝑖

√2
) (
1

√2
|𝑢⟩ +

1

√2
|𝑑⟩) = 

1

√2

1

√2
⟨𝑢|𝑢⟩ +

1

√2

1

√2
⟨𝑢|𝑑⟩ −

𝑖

√2

1

√2
⟨𝑑|𝑢⟩ −

𝑖

√2

1

√2
⟨𝑑|𝑑⟩ = 

1

2
∙ 1 +

1

2
∙ 0 −

𝑖

2
∙ 0 −

𝑖

2
∙ 1 = 

1 − 𝑖

2
 

⟨𝑟|𝑖⟩ = (⟨𝑢|
1

√2
+ ⟨𝑑|

1

√2
) (
1

√2
|𝑢⟩ +

𝑖

√2
|𝑑⟩) = 

1

√2

1

√2
⟨𝑢|𝑢⟩ +

1

√2

𝑖

√2
⟨𝑢|𝑑⟩ +

1

√2

1

√2
⟨𝑑|𝑢⟩ +

1

√2

𝑖

√2
⟨𝑑|𝑑⟩ = 

1

2
∙ 1 +

𝑖

2
∙ 0 +

1

2
∙ 0 +

𝑖

2
∙ 1 = 

1 + 𝑖

2
 

⟨𝑖|𝑟⟩⟨𝑟|𝑖⟩ =
1 − 𝑖

2
∙
1 + 𝑖

2
=
1 − (𝑖 ∙ 𝑖)2

4
=
2

4
=
1

2
 

 

Eqs. 2.9 ⟨𝑖|𝑙⟩⟨𝑙|𝑖⟩: 

⟨𝑖|𝑙⟩ = (⟨𝑢|
1

√2
− ⟨𝑑|

𝑖

√2
) (
1

√2
|𝑢⟩ −

1

√2
|𝑑⟩) = 

1

√2

1

√2
⟨𝑢|𝑢⟩ −

1

√2

1

√2
⟨𝑢|𝑑⟩ −

𝑖

√2

1

√2
⟨𝑑|𝑢⟩ +

𝑖

√2

1

√2
⟨𝑑|𝑑⟩ = 

1

2
∙ 1 −

1

2
∙ 0 −

𝑖

2
∙ 0 +

𝑖

2
∙ 1 = 

1 + 𝑖

2
 

 

⟨𝑙|𝑖⟩ = (⟨𝑢|
1

√2
− ⟨𝑑|

1

√2
) (
1

√2
|𝑢⟩ +

𝑖

√2
|𝑑⟩) = 

1

√2

1

√2
⟨𝑢|𝑢⟩ +

1

√2

𝑖

√2
⟨𝑢|𝑑⟩ −

1

√2

1

√2
⟨𝑑|𝑢⟩ −

1

√2

𝑖

√2
⟨𝑑|𝑑⟩ = 

1

2
∙ 1 +

𝑖

2
∙ 0 −

1

2
∙ 0 −

𝑖

2
∙ 1 = 

1 − 𝑖

2
 

⟨𝑖|𝑙⟩⟨𝑙|𝑖⟩ =
1 + 𝑖

2
∙
1 − 𝑖

2
=
1 − (𝑖 ∙ 𝑖)2

4
=
2

4
=
1

2
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Are |𝑖⟩ and |𝑜⟩ unique in that respect? 

I think that this question goes to the phase ambiguity. |𝑖⟩ and |𝑜⟩ can be multiplied by any z of the 

form 𝑧 = 𝑒𝑖𝜃 without disturbing the relationships 2.7, 2.8 and 2.9. 
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Exercise 2.3 

Assume that |𝑖⟩ and |𝑜⟩ are given as: 

|𝑖⟩ = 𝛼|𝑢⟩ + 𝛽|𝑑⟩ and ⟨𝑖| = ⟨𝑢|𝛼∗ + ⟨𝑑|𝛽∗ 

|𝑜⟩ = 𝛾|𝑢⟩ − 𝛿|𝑑⟩ and ⟨𝑜| = ⟨𝑢|𝛾∗ − ⟨𝑑|𝛿∗ 

a) Use Eqs. 2.8 to show that 

𝛼∗𝛼 = 𝛽∗𝛽 = 𝛾∗𝛾 = 𝛿∗𝛿 =
1

2
 

b) Use the above result and Eqs. 2.9 to show that: 

𝛼∗𝛽 + 𝛼𝛽∗ = 0 

c) Show that 𝛼∗𝛽 must be pure imaginary. 

Eqs. 2.8: 

⟨𝑜|𝑢⟩⟨𝑢|𝑜⟩ =
1

2
  ⟨𝑜|𝑑⟩⟨𝑑|𝑜⟩ =

1

2
 

⟨𝑖|𝑢⟩⟨𝑢|𝑖⟩ =
1

2
  ⟨𝑖|𝑑⟩⟨𝑑|𝑖⟩ =

1

2
 

Eqs. 2.9 

⟨𝑜|𝑟⟩⟨𝑟|𝑜⟩ =
1

2
  ⟨𝑜|𝑙⟩⟨𝑙|𝑜⟩ =

1

2
 

⟨𝑖|𝑟⟩⟨𝑟|𝑖⟩ =
1

2
  ⟨𝑖|𝑙⟩⟨𝑙|𝑖⟩ =

1

2
 

* * * * * * * * * * 

a) Use Eqs. 2.8 to show that 𝛼∗𝛼 = 𝛽∗𝛽 = 𝛾∗𝛾 = 𝛿∗𝛿 =
1

2
 

⟨𝑜|𝑢⟩⟨𝑢|𝑜⟩ =
1

2
 

⟨𝑜|𝑢⟩ = (⟨𝑢|𝛾∗ − ⟨𝑑|𝛿∗)|𝑢⟩ = 

𝛾∗⟨𝑢|𝑢⟩ − 𝛿∗⟨𝑑|𝑢⟩ = 

𝛾∗ ∙ 1 − 𝛿∗ ∙ 0 = 𝛾∗ 

 

⟨𝑢|𝑜⟩ = ⟨𝑢|(𝛾|𝑢⟩ − 𝛿|𝑑⟩) = 

𝛾⟨𝑢|𝑢⟩ − 𝛿⟨𝑢|𝑑⟩ = 

𝛾 ∙ 1 − 𝛿 ∙ 0 = 𝛾 

⟨𝑜|𝑢⟩⟨𝑢|𝑜⟩ = 𝛾∗𝛾 

 

According to equation 2.8 this gives 𝛾∗𝛾 =
1

2
. 

⟨𝑜|𝑑⟩⟨𝑑|𝑜⟩ =
1

2
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⟨𝑜|𝑑⟩ = (⟨𝑢|𝛾∗ − ⟨𝑑|𝛿∗)|𝑑⟩ = 

𝛾∗⟨𝑢|𝑑⟩ − 𝛿∗⟨𝑑|𝑑⟩ = 

𝛾∗ ∙ 0 − 𝛿∗ ∙ 1 = −𝛿∗ 

 

⟨𝑑|𝑜⟩ = ⟨𝑑|(𝛾|𝑢⟩ − 𝛿|𝑑⟩) = 

𝛾⟨𝑑|𝑢⟩ − 𝛿⟨𝑑|𝑑⟩ = 

𝛾 ∙ 0 − 𝛿 ∙ 1 = −𝛿 

⟨𝑜|𝑑⟩⟨𝑑|𝑜⟩ = 𝛿∗𝛿 

According to equation 2.8 this gives 𝛿∗𝛿 =
1

2
. 

⟨𝑖|𝑢⟩⟨𝑢|𝑖⟩ =
1

2
 

⟨𝑖|𝑢⟩ = (⟨𝑢|𝛼∗ + ⟨𝑑|𝛽∗)|𝑢⟩ = 

𝛼∗⟨𝑢|𝑢⟩ + 𝛽∗⟨𝑑|𝑢⟩ = 

𝛼∗ ∙ 1 + 𝛽∗ ∙ 0 = 𝛼∗ 

 

⟨𝑢|𝑖⟩ = ⟨𝑢|(𝛼|𝑢⟩ + 𝛽|𝑑⟩) = 

𝛼⟨𝑢|𝑢⟩ + 𝛽⟨𝑢|𝑑⟩ = 

𝛼 ∙ 1 + 𝛽 ∙ 0 = 𝛼 

⟨𝑜|𝑢⟩⟨𝑢|𝑜⟩ = 𝛼∗𝛼 

According to equation 2.8 this gives 𝛼∗𝛼 =
1

2
. 

⟨𝑖|𝑑⟩⟨𝑑|𝑖⟩ =
1

2
 

⟨𝑖|𝑑⟩ = (⟨𝑢|𝛼∗ + ⟨𝑑|𝛽∗)|𝑑⟩ = 

𝛼∗⟨𝑢|𝑑⟩ + 𝛽∗⟨𝑑|𝑑⟩ = 

𝛼∗ ∙ 0 + 𝛽∗ ∙ 1 = 𝛽∗ 

 

⟨𝑑|𝑖⟩ = ⟨𝑑|(𝛼|𝑢⟩ + 𝛽|𝑑⟩) = 

𝛼⟨𝑑|𝑢⟩ + 𝛽⟨𝑑|𝑑⟩ = 

𝛼 ∙ 0 + 𝛽 ∙ 1 = 𝛽 

⟨𝑖|𝑑⟩⟨𝑑|𝑖⟩ = 𝛽∗𝛽 

According to equation 2.8 this gives 𝛽∗𝛽 =
1

2
. 

b) Use the above result and Eqs. 2.9 to show that 

𝛼∗𝛽 + 𝛼𝛽∗ = 0 
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|𝑖⟩ = 𝛼|𝑢⟩ + 𝛽|𝑑⟩ and ⟨𝑖| = ⟨𝑢|𝛼∗ + ⟨𝑑|𝛽∗ 

|𝑟⟩ =
1

√2
|𝑢⟩ +

1

√2
|𝑑⟩ and ⟨𝑟| = ⟨𝑢|

1

√2
+ ⟨𝑑|

1

√2
 

⟨𝑖|𝑟⟩ = (⟨𝑢|𝛼∗ + ⟨𝑑|𝛽∗) (
1

√2
|𝑢⟩ +

1

√2
|𝑑⟩) = 

𝛼∗

√2
⟨𝑢|𝑢⟩ +

𝛼∗

√2
⟨𝑢|𝑑⟩ +

𝛽∗

√2
⟨𝑑|𝑢⟩ +

𝛽∗

√2
⟨𝑑|𝑑⟩ = 

𝛼∗

√2
∙ 1 +

𝛼∗

√2
∙ 0 +

𝛽∗

√2
∙ 0 +

𝛽∗

√2
∙ 1 = 

𝛼∗

√2
+
𝛽∗

√2
 

 

⟨𝑟|𝑖⟩ = (
1

√2
|𝑢⟩ +

1

√2
|𝑑⟩) (⟨𝑢|𝛼 + ⟨𝑑|𝛽) = 

𝛼

√2
⟨𝑢|𝑢⟩ +

𝛼

√2
⟨𝑢|𝑑⟩ +

𝛽

√2
⟨𝑑|𝑢⟩ +

𝛽

√2
⟨𝑑|𝑑⟩ = 

𝛼

√2
∙ 1 +

𝛼

√2
∙ 0 +

𝛽

√2
∙ 0 +

𝛽

√2
∙ 1 = 

𝛼

√2
+
𝛽

√2
 

 

⟨𝑖|𝑟⟩⟨𝑟|𝑖⟩ =
1

2
 

⟨𝑖|𝑟⟩⟨𝑟|𝑖⟩ = (
𝛼∗

√2
+
𝛽∗

√2
) (
𝛼

√2
+
𝛽

√2
) = 

1

√2
(𝛼∗ + 𝛽∗)

1

√2
(𝛼 + 𝛽) = 

1

2
(𝛼∗ + 𝛽∗)(𝛼 + 𝛽) = 

1

2
(𝛼∗𝛼 + 𝛼∗𝛽 + 𝛽∗𝛼 + 𝛽∗𝛽) = 

⟨𝑖|𝑟⟩⟨𝑟|𝑖⟩ =
1

2
(𝛼∗𝛼 + 𝛽∗𝛽 + 𝛼∗𝛽 + 𝛽∗𝛼) =

1

2
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From part a) we know that 𝛼∗𝛼 = 𝛽∗𝛽 =
1

2
 

1

2
(
1

2
+
1

2
+ 𝛼∗𝛽 + 𝛽∗𝛼) =

1

2
 

1

2
+
1

2
+ 𝛼∗𝛽 + 𝛽∗𝛼 = 1 

1 + 𝛼∗𝛽 + 𝛽∗𝛼 = 1 

𝛼∗𝛽 + 𝛽∗𝛼 = 0 

 

c) Show that 𝛼∗𝛽 must be pure imaginary. 

Let 𝛼 = 𝑟 + 𝑖𝑠, 𝛼∗ = 𝑟 − 𝑖𝑠, 𝛽 = 𝑡 + 𝑖𝑢, 𝛽∗ = 𝑡 − 𝑖𝑢. 

𝛼∗𝛽 + 𝛽∗𝛼 = 0 → (𝑟 − 𝑖𝑠)(𝑡 + 𝑖𝑢) + (𝑟 + 𝑖𝑠)(𝑡 − 𝑖𝑢) = 0 

(𝑟𝑡 + 𝑖𝑟𝑢 − 𝑖𝑠𝑡 + 𝑠𝑢) + (𝑟𝑡 − 𝑖𝑟𝑢 + 𝑖𝑠𝑡 + 𝑠𝑢) = 0 

2𝑟𝑡 + 2𝑠𝑢 = 0 

𝑟𝑡 + 𝑠𝑢 = 0 

𝑟𝑡 = −𝑠𝑢 

𝑟 = −
𝑠𝑢

𝑡
 

 

𝛼∗𝛽 = (𝑟 − 𝑖𝑠)(𝑡 + 𝑖𝑢) = (−
𝑠𝑢

𝑡
− 𝑖𝑠) (𝑡 + 𝑖𝑢) = 

−𝑠𝑢 −
𝑖𝑠𝑢2

𝑡
− 𝑖𝑠𝑡 + 𝑠𝑢 = 

−
𝑖𝑠𝑢2

𝑡
− 𝑖𝑠𝑡 = −𝑖 (

𝑠𝑢2

𝑡
+ 𝑠𝑡) = −𝑖 (

𝑠𝑢2 + 𝑠𝑡2

𝑡
) 
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Exercise 3.1 

Prove: If a vector space is N-dimensional, an orthonormal basis of N vectors can be constructed from 

the eigenvectors of a Hermitian operator.  

* * * * * * * * * * 

The eigenvectors of a Hermitian operator form a complete set of linear independent vectors, out of 

these can be constructed an orthogonal basis and, by dividing through their length an orthonormal 

basis. This holds for finite dimensional vector spaces. 

For the example of the R³ we want to show how to construct the change of basis vectors. 

Let (
1
0
1
) , (

1
1
0
)  𝑎𝑛𝑑 (

0
1
1
) be a set of vectors B1, B2 and B3 that form a basis B of R³. 

They are linear independent: 

𝑎 (
1
0
1
) + 𝑏(

1
1
0
) + 𝑐 (

0
1
1
) = (

0
0
0
) 

1 1 0
0 1 1
1 0 1

|
0
0
0

 

We transform this: 

1 1 0
0 1 1
1 0 1

|
0
0
0
→  

1 0 −1
0 1 1
1 0 1

|
0
0
0
→  

2 0 0
0 1 1
1 0 1

|
0
0
0
→  

2 0 0
0 1 1
0 0 1

|
0
0
0
→  

2 0 0
0 1 0
0 0 1

|
0
0
0

 

which makes clear that the only solution to this is a = b = c = 0.  

The linear independent vectors define a matrix P, a linear map: 

𝑃 ≔ (
1 1 0
0 1 1
1 0 1

) 

Let (

𝑥1
𝑥2
𝑥3
) be a vector with respect to this basis B: 𝑥 = 𝑥1𝐵1 + 𝑥2𝐵2 + 𝑥3𝐵3.  

Then 𝑃 (

𝑥1
𝑥2
𝑥3
) give the coordinates of 𝑥 in the canonical basis E1, E2 and E3: (

1
0
0
) , (

0
1
0
)  𝑎𝑛𝑑 (

0
0
1
). 

𝑃 (

𝑥1
𝑥2
𝑥3
) = (

1 1 0
0 1 1
1 0 1

)(

𝑥1
𝑥2
𝑥3
) = (

𝑥1 + 𝑥2
𝑥2 + 𝑥3
𝑥1 + 𝑥3

) 

Check: 

𝑃 (
1
0
0
) = (

1 1 0
0 1 1
1 0 1

)(
1
0
0
) = (

1
0
1
) 

𝑃 (
0
1
0
) = (

1 1 0
0 1 1
1 0 1

)(
0
1
0
) = (

1
1
0
) 
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𝑃 (
0
0
1
) = (

1 1 0
0 1 1
1 0 1

)(
0
0
1
) = (

0
1
1
) 

 

To get this the other way around we must find the inverse matrix 𝑃−1. 

(
1 1 0
0 1 1
1 0 1

) | (
1 0 0
0 1 0
0 0 1

) 

(
1 1 0
0 1 1
0 −1 1

) | (
1 0 0
0 1 0
−1 0 1

) 

(
1 1 0
0 1 1
0 0 2

) | (
1 0 0
0 1 0
−1 1 1

) 

(
1 0 0
0 1 0
0 0 2

) |

(

 
 

1

2
−
1

2

1

2
1

2

1

2
−
1

2
−1 1 1 )

 
 

 

(
1 0 0
0 1 0
0 0 1

) |

(

 
 
 

1

2
−
1

2

1

2
1

2

1

2
−
1

2

−
1

2

1

2

1

2 )

 
 
 

 

Our inverse matrix 𝑃−1: 

1

2
(
1 −1 1
1 1 −1
−1 1 1

) 

Applied to the linear independent vectors 𝐵1, 𝐵2, 𝐵3 this must give the canonical basis 𝐸1, 𝐸2, 𝐸3. 

Check: 

𝑃−1 (
1
0
1
) =

1

2
(
1 −1 1
1 1 −1
−1 1 1

)(
1
0
1
) =

1

2
(
2
0
0
) = (

1
0
0
) 

𝑃−1 (
1
1
0
) =

1

2
(
1 −1 1
1 1 −1
−1 1 1

)(
1
1
0
) =

1

2
(
0
2
0
) = (

0
1
0
) 

𝑃−1 (
0
1
1
) =

1

2
(
1 −1 1
1 1 −1
−1 1 1

)(
0
1
1
) =

1

2
(
0
0
2
) = (

0
0
1
) 

  

line 3 minus line 1 

line 3 plus line 2 

line 2 minus line 3/2 

line 3 divided by 2 



The exercises of „Quantum Mechanics, The Theoretical Minimum“ 

 page 26 of 106 

Exercise 3.2 

Prove that 𝜎𝑧 of Eq. 3.16 is the unique solution to Eqs. 3.14 und 3.15. 

Eq. 3.16 

𝜎𝑧 = (
(𝜎𝑧)11 (𝜎𝑧)12
(𝜎𝑧)21 (𝜎𝑧)21

) = (
1 0
0 −1

) 

Eq. 3.14 

(
(𝜎𝑧)11 (𝜎𝑧)12
(𝜎𝑧)21 (𝜎𝑧)21

)(
1
0
) = (

1
0
) 

Eq. 3.15 

(
(𝜎𝑧)11 (𝜎𝑧)12
(𝜎𝑧)21 (𝜎𝑧)21

) (
0
1
) = −(

0
1
) 

* * * * * * * * * * 

Eq. 3.14 

(
𝑎 𝑏
𝑐 𝑑

) (
1
0
) = (

𝑎
𝑐
) → 𝑎 = 1; 𝑐 = 0 

Eq. 3.15 

(
𝑎 𝑏
𝑐 𝑑

) (
0
1
) = (

𝑏
𝑑
) → 𝑏 = 0; 𝑑 = −1 

The result is the matrix 

(
𝑎 𝑏
𝑐 𝑑

) = (
1 0
0 −1

) 

 

Proof by contradiction eq. 3.14: 

let (
𝑎
𝑏
) with 𝑎 ≠ 1 and 𝑏 ≠ 0 

and (
1 0
0 −1

) (
𝑎
𝑏
) = (

1
0
) 

1 ∙ 𝑎 + 0 ∙ 𝑏 = 1 → 𝑎 = 1 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

0 ∙ 𝑎 − 1 ∙ 𝑏 = 0 → 𝑏 = 0 𝑐𝑜𝑛𝑡𝑟. 

The same holds for eq. 3.15: 

let (
𝑎
𝑏
) with 𝑎 ≠ 0 and 𝑏 ≠ 1 

and (
1 0
0 −1

) (
𝑎
𝑏
) = (

0
−1
) 

1 ∙ 𝑎 + 0 ∙ 𝑏 = 0 → 𝑎 = 0 𝑐𝑜𝑛𝑡𝑟. 

0 ∙ 𝑎 − 1 ∙ 𝑏 = −1 → 𝑏 = 1 𝑐𝑜𝑛𝑡𝑟. 
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Exercise 3.3 

Calculate the eigenvectors and eigenvalues of 𝜎𝑛. Assume the eigenvector 𝜆1 has the form: 

(
cos𝛼
sin𝛼

) 

𝛼 is an unknown parameter. Plug this vector into the eigenvalue equation and solve for 𝛼 in terms of 

𝜃. Why did we use a single parameter 𝛼? Notice that our suggested column vector must have unit 

length. 

𝜎𝑛 = (
𝑐𝑜𝑠 𝜃 sin 𝜃
sin𝜃 − cos 𝜃

) 

To show: 

(
𝑐𝑜𝑠 𝜃 sin𝜃
sin 𝜃 −cos 𝜃

) (
cos 𝛼
sin𝛼

) = 𝜆1 (
cos𝛼
sin𝛼

) 

* * * * * * * * * * 

(
𝑐𝑜𝑠 𝜃 sin𝜃
sin𝜃 − cos𝜃

) (
cos𝛼
sin𝛼

) = (
𝑐𝑜𝑠 𝜃 ∙ cos𝛼 + sin 𝜃 ∙ sin 𝛼
sin 𝜃 ∙ cos 𝛼 − cos 𝜃 ∙ sin 𝛼

) 

(
𝑐𝑜𝑠 𝜃 ∙ cos 𝛼 + sin𝜃 ∙ sin𝛼
sin𝜃 ∙ cos 𝛼 − cos𝜃 ∙ sin𝛼

) = 𝜆1 (
cos𝛼
sin𝛼

) 

This must be valid for every coordinate, so we get two equations: 

𝑐𝑜𝑠 𝜃 ∙ cos 𝛼 + sin𝜃 ∙ sin𝛼 = 𝜆1 ∙ cos 𝛼 

sin 𝜃 ∙ cos 𝛼 − cos 𝜃 ∙ sin 𝛼 = 𝜆1 ∙ sin𝛼 

Trigonometric identities: 

𝑐𝑜𝑠 𝜃 ∙ cos𝛼 + sin 𝜃 ∙ sin 𝛼 = cos (𝜃 − 𝛼) 

sin 𝜃 ∙ cos𝛼 − cos 𝜃 ∙ sin 𝛼 = sin (𝜃 − 𝛼) 

We have: 

cos (𝜃 − 𝛼) = 𝜆1 ∙ cos 𝛼 

sin (𝜃 − 𝛼) = 𝜆1 ∙ sin 𝛼 

Sin and cos are nonlinear functions, the only possible solution is: 𝜆1 = 1 and 𝛼 =
𝜃

2
: 

(
𝑐𝑜𝑠 𝜃 sin𝜃
sin𝜃 − cos𝜃

)(
cos

𝜃

2

sin
𝜃

2

) = (
cos

𝜃

2

sin
𝜃

2

) 

For the second eigenvalue/eigenvector we use that both eigenvectors must be orthogonal.  

(
cos𝛼
sin𝛼

) (
𝑎
𝑏
) = 0 

𝑎 ∙ cos𝛼 + b ∙ sin𝛼 = 0 

Again, as sin and cos are nonlinear functions, possible solutions are 

𝑎 = −sin𝛼 ; 𝑏 = cos𝛼 

𝑎 = sin𝛼 ; 𝑏 = −cos𝛼 
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We try the first one: 𝑎 = −sin𝛼 ; 𝑏 = cos𝛼 

(
𝑐𝑜𝑠 𝜃 sin𝜃
sin 𝜃 − cos𝜃

) (
− sin 𝛼
cos𝛼

) = (
−𝑐𝑜𝑠 𝜃 ∙ sin𝛼 + sin 𝜃 ∙ cos 𝛼
−sin 𝜃 ∙ sin 𝛼 − cos𝜃 ∙ cos 𝛼

) 

(
−𝑐𝑜𝑠 𝜃 ∙ sin 𝛼 + sin 𝜃 ∙ cos𝛼
− sin𝜃 ∙ sin𝛼 − cos 𝜃 ∙ cos 𝛼

) = 𝜆2 (
− sin𝛼
cos𝛼

) 

Using the trigonometric identities again we get: 

sin(𝜃 − 𝛼) = 𝜆2 ∙ (− sin𝛼) 

−cos (𝜃 − 𝛼) = 𝜆2 ∙ cos𝛼 

with the solution: 𝜆2 = −1 and again 𝛼 =
𝜃

2
 

 

Check the second solution 𝑎 = sin𝛼 ; 𝑏 = −cos𝛼: 

(
𝑐𝑜𝑠 𝜃 sin𝜃
sin 𝜃 − cos𝜃

) (
sin𝛼
−cos𝛼

) = (
𝑐𝑜𝑠 𝜃 ∙ sin𝛼 − sin𝜃 ∙ cos 𝛼
sin𝜃 ∙ sin 𝛼 + cos 𝜃 ∙ cos 𝛼

) 

(
𝑐𝑜𝑠 𝜃 ∙ sin𝛼 − sin 𝜃 ∙ cos 𝛼
sin𝜃 ∙ sin𝛼 + cos 𝜃 ∙ cos 𝛼

) = 𝜆2 (
 sin 𝛼
−cos𝛼

) 

Using the trigonometric identities again we get: 

−sin(𝜃 − 𝛼) = 𝜆2 ∙ sin 𝛼 

cos (𝜃 − 𝛼) = 𝜆2 ∙ (−cos𝛼) 

with the same solution: 𝜆2 = −1 and 𝛼 =
𝜃

2
. 

 

Why did we use a single parameter 𝛼? Notice that our suggested column vector must have unit 

length. 

Working with polar coordinates in a plane we need two parameters to determine a vector. One 

parameter is the length that is fixed to one, so we have as second parameter the angle. 

  



The exercises of „Quantum Mechanics, The Theoretical Minimum“ 

 page 29 of 106 

Exercise 3.4 

Let 𝑛𝑧 = 𝑐𝑜𝑠𝜃, 𝑛𝑥 = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙, and 𝑛𝑦 = 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙.  

Angles 𝜃 and 𝜙 are defined according to the usual conventions for spherical coordinates.  

Compute the eigenvalues and eigenvectors for the matrix 𝜎𝑛: 

𝜎𝑛 = (
𝑛𝑧 (𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑥 + 𝑖𝑛𝑦) −𝑛𝑧
) 

* * * * * * * * * * 

With the above definitions this transforms to: 

𝜎𝑛 = (
𝑐𝑜𝑠 𝜃 sin𝜃 𝑐𝑜𝑠𝜙 − 𝑖 sin𝜃 𝑠𝑖𝑛𝜙

sin𝜃 𝑐𝑜𝑠𝜙 + sin𝜃 𝑠𝑖𝑛𝜙 −cos 𝜃
) 

The determinant of the matrix 

(
(𝑐𝑜𝑠 𝜃) − 𝜆 sin 𝜃 𝑐𝑜𝑠𝜙 − 𝑖 sin 𝜃 𝑠𝑖𝑛𝜙

sin𝜃 𝑐𝑜𝑠𝜙 + sin𝜃 𝑠𝑖𝑛𝜙 − (cos 𝜃) − 𝜆
) 

must be zero in order the matrix to have eigenvectors. 

|(
(𝑐𝑜𝑠 𝜃) − 𝜆 sin𝜃 𝑐𝑜𝑠𝜙 − 𝑖 sin 𝜃 𝑠𝑖𝑛𝜙

sin𝜃 𝑐𝑜𝑠𝜙 + sin𝜃 𝑠𝑖𝑛𝜙 − (cos 𝜃) − 𝜆
)| = 0 

 

((𝑐𝑜𝑠 𝜃) − 𝜆)(− (cos 𝜃) − 𝜆) − (sin𝜃 𝑐𝑜𝑠𝜙 − 𝑖 sin𝜃 𝑠𝑖𝑛𝜙)(sin 𝜃 𝑐𝑜𝑠𝜙 + sin 𝜃 𝑠𝑖𝑛𝜙) = 

−𝑐𝑜𝑠2𝜃 + 𝜆2 − (𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜙 + 𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝜙) = 

−𝑐𝑜𝑠2𝜃 + 𝜆2 − 𝑠𝑖𝑛2𝜃(𝑐𝑜𝑠2𝜙 + 𝑠𝑖𝑛2𝜙) = 

−𝑐𝑜𝑠2𝜃 + 𝜆2 − 𝑠𝑖𝑛2𝜃 = 

𝜆2 − (𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃) = 

𝜆2 − 1 

The characteristic polynomial is 𝜆2 − 1 = 0 with the solutions 𝜆 = ∓1. 

As candidate for eigenvector we choose the same as in exercise 3.3: (
cos𝛼
sin𝛼

) 

Eigenvalue 𝜆 = +1 

(
𝑐𝑜𝑠 𝜃 sin 𝜃 𝑐𝑜𝑠𝜙 − 𝑖 sin 𝜃 𝑠𝑖𝑛𝜙

sin𝜃 𝑐𝑜𝑠𝜙 + i sin 𝜃 𝑠𝑖𝑛𝜙 − cos𝜃
) (
cos𝛼
sin𝛼

) = (
cos𝛼
sin𝛼

) 

leads to two equations: 

𝑐𝑜𝑠 𝜃 cos 𝛼 + (sin𝜃 𝑐𝑜𝑠𝜙 − 𝑖 sin𝜃 𝑠𝑖𝑛𝜙) sin𝛼 = cos𝛼 

(sin 𝜃 𝑐𝑜𝑠𝜙 + isin𝜃 𝑠𝑖𝑛𝜙) cos 𝛼 − cos 𝜃 sin𝛼 = sin𝛼 

First equation: 

𝑐𝑜𝑠 𝜃 cos 𝛼 + sin𝛼 sin𝜃 𝑐𝑜𝑠𝜙 − 𝑖 sin𝛼 sin 𝜃 𝑠𝑖𝑛𝜙 = cos𝛼 

Second equation: 
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sin𝜃 𝑐𝑜𝑠𝜙 cos𝛼 + 𝑖 sin𝜃 𝑠𝑖𝑛𝜙 cos𝛼 − cos 𝜃 sin𝛼 = sin𝛼 

We eliminate the imaginary part of the first equation:  

sin 𝛼 sin𝜃 𝑐𝑜𝑠𝜙 − 𝑖 sin𝛼 sin 𝜃 𝑠𝑖𝑛𝜙 = 

sin 𝛼 sin𝜃 (𝑐𝑜𝑠𝜙 − 𝑖 𝑠𝑖𝑛𝜙) = 

sin𝛼 sin 𝜃 

because  

(𝑐𝑜𝑠𝜙 − 𝑖 𝑠𝑖𝑛𝜙) = 𝑒−𝑖𝜙 

and 

|𝑒−𝑖𝜙| = 1 

The same holds for the second equation: 

sin𝜃 𝑐𝑜𝑠𝜙 cos𝛼 + 𝑖 sin𝜃 𝑠𝑖𝑛𝜙 cos𝛼 = 

sin 𝜃 cos𝛼 (𝑐𝑜𝑠𝜙 + 𝑖 𝑠𝑖𝑛𝜙) = 

sin𝜃 cos𝛼 

The two equations simplify: 

First equation: 

𝑐𝑜𝑠 𝜃 cos𝛼 + sin𝛼 sin𝜃 = cos𝛼 

Second equation: 

sin𝜃 cos𝛼 − cos 𝜃 sin𝛼 = sin𝛼 

Some more trigonometric identities 

𝑐𝑜𝑠 𝜃 cos 𝛼 =
1

2
(cos (𝜃 − 𝛼) + 𝑐𝑜𝑠(𝜃 + 𝛼)) 

𝑠𝑖𝑛 𝜃 sin 𝛼 =
1

2
(cos (𝜃 − 𝛼) − 𝑐𝑜𝑠(𝜃 + 𝛼)) 

applied to the first equation 

𝑐𝑜𝑠 𝜃 cos𝛼 + sin𝛼 sin 𝜃 =  cos (𝜃 − 𝛼) 

we get  

cos(𝜃 − 𝛼) = cos𝛼 

with the solution: 

𝛼 =
𝜃

2
 

More trigonometric identities: 

𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 =
1

2
(sin (𝜃 − 𝛼) + 𝑠𝑖𝑛(𝜃 + 𝛼)) 
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𝑐𝑜𝑠 𝜃 sin 𝛼 =
1

2
(sin (𝛼 − 𝜃) + 𝑠𝑖𝑛(𝜃 + 𝛼)) 

With sin(𝑥) = −sin (−𝑥) we write 

𝑐𝑜𝑠 𝜃 sin 𝛼 = −
1

2
(sin (𝜃 − 𝛼) + 𝑠𝑖𝑛(𝜃 + 𝛼)) 

and apply to the second equation: 

𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 − 𝑐𝑜𝑠 𝜃 sin𝛼 =  sin (𝜃 − 𝛼) 

We get  

sin(𝜃 − 𝛼) = sin𝛼 

with the solution: 

𝛼 =
𝜃

2
 

The computation for the eigenvalue 𝜆 = +1 is omitted (see exercise 3.3). 
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Exercise 3.5 

Suppose that a spin is prepared so that 𝜎𝑚 = +1. The apparatus is then rotated to an arbitrary �̂� 

direction and 𝜎𝑛 is measured. What is the probability that the result is +1?  

Note that 𝜎𝑚 = 𝜎 ∙ �̂�, using the same convention we used for 𝜎𝑛. 

* * * * * * * * * * 

We rotate the coordinate system twice.  

Rotation doesn’t change the length of vectors and preserve the relative dependencies between 

vectors (see exercise 4.1. is a rotation matrix unitary?).  

We rotate one time in a way that �̂� will be the z-axis, a second time in a way that �̂� will be in the x-z-

plane.  

This is the situation of exercise 3.3 with the solution 

𝜆1 = 1 

|𝜆1⟩ = (
𝑐𝑜𝑠

𝜃

2

𝑠𝑖𝑛
𝜃

2

) 

𝜆2 = −1 

|𝜆2⟩ = (
−𝑠𝑖𝑛

𝜃

2

𝑐𝑜𝑠
𝜃

2

) 

with the probability 

𝑃(+1) = |⟨𝑢|𝜆1⟩|
2 = (𝑐𝑜𝑠

𝜃

2
)
2
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Exercise 4.1 

Prove that if (the time operator) U is unitary, and if |𝐴⟩ and |𝐵⟩ are any two state-vectors, then the 

inner product of 𝑈|𝐴⟩ and 𝑈|𝐵⟩ is the same as the inner product of |𝐴⟩ and |𝐵⟩. One could call this 

the conservation of overlaps. It expresses the fact that the logical relation between states is 

preserved with time. 

U is unitary: 

𝑈†𝑈 = 𝐼 

𝑈|𝐴⟩ = ⟨𝐴|𝑈† 

* * * * * * * * * * 

⟨𝐴|𝐵⟩ = ⟨𝐴|𝐼|𝐵⟩ = ⟨𝐴|𝑈†𝑈|𝐵⟩ 

with ⟨𝐴|𝑈†𝑈|𝐵⟩ being the inner product of 𝑈|𝐴⟩ and 𝑈|𝐵⟩. 
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Exercise 4.2  
Prove that if 𝑀 and 𝐿 are both Hermitian, the (extended) commutator 𝑖[𝑀, 𝐿] is also Hermitian.  
Note that the 𝑖 is important. The commutator is, by itself, not Hermitian.  
 

Hermitian: the diagonal is pure real and: 𝑀 = 𝑀† 

* * * * * * * * * * 

Proof for a 3 × 3-matrix: 

𝑀 ≔ (
𝑎 𝑏 𝑐
𝑏∗ 𝑑 𝑒
𝑐∗ 𝑒∗ 𝑓

) and 𝐿 ≔ (
𝑔 ℎ 𝑢
ℎ∗ 𝑗 𝑘

𝑢∗ 𝑘∗ 𝑙

) with 𝑎, 𝑑, 𝑓, 𝑔, 𝑗, 𝑙 being real. 

𝑀𝐿 = (

𝑎𝑔 + 𝑏ℎ∗ + 𝑐𝑢 𝑎ℎ + 𝑏𝑗 + 𝑐𝑘∗ 𝑎𝑖 + 𝑏𝑘 + 𝑐𝑙
𝑏∗𝑔 + 𝑑ℎ∗ + 𝑒𝑢∗ 𝑏∗ℎ + 𝑑𝑗 + 𝑒𝑘∗ 𝑏∗𝑢 + 𝑑𝑘 + 𝑒𝑙
𝑐∗𝑔 + 𝑒∗ℎ∗ + 𝑓𝑢∗ 𝑐∗ℎ + 𝑒∗𝑗 + 𝑓𝑘∗ 𝑐∗𝑢 + 𝑒∗𝑘 + 𝑓𝑙

) 

𝐿𝑀 = (

𝑔𝑎 + ℎ𝑏∗ + 𝑢𝑐∗ 𝑔𝑏 + ℎ𝑑 + 𝑢𝑒∗ 𝑔𝑐 + ℎ𝑒 + 𝑢𝑓
ℎ∗𝑎 + 𝑗𝑏∗ + 𝑘𝑐∗ ℎ∗𝑏 + 𝑗𝑑 + 𝑘𝑒∗ ℎ∗𝑐 + 𝑗𝑒 + 𝑘𝑓
𝑢∗𝑎 + 𝑘∗𝑏∗ + 𝑙𝑐∗ 𝑢∗𝑏 + 𝑘∗𝑑 + 𝑙𝑒∗ 𝑢∗𝑐 + 𝑘∗𝑒 + 𝑙𝑓

) 

𝑀𝐿 − 𝐿𝑀 = 

(

𝑎𝑔 + 𝑏ℎ∗ + 𝑐𝑢 − 𝑔𝑎 − ℎ𝑏∗ − 𝑢𝑐∗ 𝑎ℎ + 𝑏𝑗 + 𝑐𝑘∗ − 𝑔𝑏 − ℎ𝑑 − 𝑢𝑒∗ 𝑎𝑖 + 𝑏𝑘 + 𝑐𝑙 − 𝑔𝑐 − ℎ𝑒 − 𝑢𝑓
𝑏∗𝑔 + 𝑑ℎ∗ + 𝑒𝑢∗ − ℎ∗𝑎 − 𝑗𝑏∗ − 𝑘𝑐∗ 𝑏∗ℎ + 𝑑𝑗 + 𝑒𝑘∗ − ℎ∗𝑏 − 𝑗𝑑 − 𝑘𝑒∗ 𝑏∗𝑢 + 𝑑𝑘 + 𝑒𝑙 − ℎ∗𝑐 − 𝑗𝑒 − 𝑘𝑓

𝑐∗𝑔 + 𝑒∗ℎ∗ + 𝑓𝑢∗ − 𝑢∗𝑎 − 𝑘∗𝑏∗ − 𝑙𝑐∗ 𝑐∗ℎ + 𝑒∗𝑗 + 𝑓𝑘∗ − 𝑢∗𝑏 − 𝑘∗𝑑 − 𝑙𝑒∗ 𝑐∗𝑢 + 𝑒∗𝑘 + 𝑓𝑙 − 𝑢∗𝑐 − 𝑘∗𝑒 − 𝑙𝑓
) 

… with some transformation work … 

(

𝑏ℎ∗ − ℎ𝑏∗ + 𝑐∗𝑢 − 𝑢𝑐∗ ℎ(𝑎 − 𝑑) + 𝑏(𝑗 − 𝑔) + 𝑐𝑘∗ − 𝑢𝑒∗ 𝑢(𝑎 − 𝑓) + 𝑐(𝑙 − 𝑔) + 𝑏𝑘 − ℎ𝑒

−ℎ∗(𝑎 − 𝑑) − 𝑏∗(𝑗 − 𝑔) − 𝑐∗𝑘 + 𝑢∗𝑒 𝑏∗ℎ − ℎ∗𝑏 + 𝑒𝑘∗ − 𝑘𝑒∗ 𝑒(𝑙 − 𝑗) + 𝑘(𝑑 − 𝑓) + 𝑏∗𝑢 − ℎ∗𝑐

−𝑢∗(𝑎 − 𝑓) − 𝑐∗(𝑙 − 𝑔) − 𝑏∗𝑘∗ + ℎ∗𝑒∗ 𝑒∗(𝑙 − 𝑗) − 𝑘∗(𝑑 − 𝑓) − 𝑏𝑢∗ + ℎ𝑐∗ 𝑐∗𝑢 − 𝑢∗𝑐 + 𝑒∗𝑘 − 𝑘∗𝑒

) 

The entries (1,1), (2,2), (3,3) are completely imaginary, because the differences 𝑏ℎ∗ − ℎ𝑏∗ etc. are 

imaginary and become thus become real if we multiplicate them by the imaginary unit 𝑖. 

We check this with 𝑧1 ≔ 𝑥 + 𝑖𝑦, 𝑧2 ≔ 𝑢 + 𝑖𝑣, 𝑥, 𝑦, 𝑢, 𝑣 are real numbers. 

𝑧1 ∙ 𝑧2
∗ − 𝑧1

∗ ∙ 𝑧2 = 

(𝑥 + 𝑖𝑦)(𝑢 − 𝑖𝑣) − (𝑥 − 𝑦)(𝑢 + 𝑖𝑣) = 

𝑥𝑢 − 𝑖𝑥𝑣 + 𝑖𝑦𝑢 + 𝑦𝑣 − (𝑥𝑢 + 𝑖𝑥𝑣 − 𝑖𝑦𝑢 + 𝑦𝑣) = 

𝑥𝑢 − 𝑖𝑥𝑣 + 𝑖𝑦𝑢 + 𝑦𝑣 − 𝑥𝑢 − 𝑖𝑥𝑣 + 𝑖𝑦𝑢 − 𝑦𝑣) = 

−2𝑖𝑥𝑣 + 2𝑖𝑦𝑢) = 

2𝑖(𝑦𝑢 − 𝑥𝑣) 

This is a complete imaginary number. 

We multiplicate the matrix with the imaginary unit 𝑖: 

(

𝑖(𝑏ℎ∗ − ℎ𝑏∗ + 𝑐𝑢 − 𝑢𝑐∗) 𝑖ℎ(𝑎 − 𝑑) + 𝑖𝑏(𝑗 − 𝑔) + 𝑖𝑐𝑘∗ − 𝑖𝑢𝑒∗ 𝑖𝑢(𝑎 − 𝑓) + 𝑖𝑐(𝑙 − 𝑔) + 𝑖𝑏𝑘 − 𝑖ℎ𝑒

−𝑖ℎ∗(𝑎 − 𝑑) − 𝑖𝑏∗(𝑗 − 𝑔) − 𝑖𝑐∗𝑘 + 𝑖𝑢∗𝑒 𝑖(𝑏∗ℎ − ℎ∗𝑏 + 𝑒𝑘∗ − 𝑘𝑒∗) 𝑖𝑒(𝑙 − 𝑗) + 𝑖𝑘(𝑑 − 𝑓) + 𝑖𝑏∗𝑢 − 𝑖ℎ∗𝑐

−𝑖𝑢∗(𝑎 − 𝑓) − 𝑖𝑐∗(𝑙 − 𝑔) − 𝑖𝑏∗𝑘∗ + 𝑖ℎ∗𝑒∗ 𝑖𝑒∗(𝑙 − 𝑗) − 𝑖𝑘∗(𝑑 − 𝑓) − 𝑖𝑏𝑢∗ + 𝑖ℎ𝑐∗ 𝑖(𝑐∗𝑢 − 𝑢∗𝑐 + 𝑒∗𝑘 − 𝑘∗𝑒)
) 
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Multiplication of the whole matrix with the imaginary unit makes the entries on the diagonal real. 

We have to show that the entries away from the diagonal (1,2), (2,1), (1,3), (3,1), (2,3), (3,2) fulfil 

the Hermitian criterion: (1,2)∗ = (2,1) etc. 

(1,2)∗ = (2,1): 

(1,2) = 𝑖ℎ(𝑎 − 𝑑) + 𝑖𝑏(𝑗 − 𝑔) + 𝑖𝑐𝑘∗ − 𝑖𝑢𝑒∗ 

Note that 𝑎, 𝑑, 𝑗, 𝑔 are real numbers. 

(1,2)∗ = −𝑖ℎ∗(𝑎 − 𝑑) − 𝑖𝑏∗(𝑗 − 𝑔) − 𝑖𝑐∗𝑘 + 𝑖𝑢∗𝑒 

We compare this with (2,1): 

(2,1) = −𝑖ℎ∗(𝑎 − 𝑑) − 𝑖𝑏∗(𝑗 − 𝑔) − 𝑖𝑐∗𝑘 + 𝑖𝑢∗𝑒 

This is correct. The same holds for (1,3)∗ = (3,1) and (2,3)∗ = (3,2). 
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Exercise 4.3 

With the definition of Poisson brackets and check that the identification in Eq. 4.21 is dimensionally 

consistent. Show that without the factor ℏ, it would not be.  

Eq. 4.21 

[𝐹, 𝐺] ↔ 𝑖ℏ{𝐹, 𝐺} 

[ℏ] = 𝐽 ∙ 𝑠 =
𝑘𝑔 ∙ 𝑚2

𝑠2
∙ 𝑠 

* * * * * * * * * * 

(not a proof, more a reflection about …) 

In Wikipedia we find 

𝑓̇ =
𝑑𝑓

𝑑𝑡
= ∑(

𝜕𝑓

𝜕𝑞𝑘

𝜕𝐻

𝜕𝑝𝑘
+
𝜕𝑓

𝜕𝑝𝑘

𝜕𝐻

𝜕𝑞𝑘
)

𝑠

𝑘=1

+
𝜕𝑓

𝜕𝑡
 

𝑓̇ =
𝑑𝑓

𝑑𝑡
= {𝑓, 𝐻} +

𝜕𝑓

𝜕𝑡
 

In “Classical Mechanics, The Theoretical Minimum” we find: 

�̇� =∑(
𝜕𝐹

𝜕𝑞𝑖

𝜕𝐻

𝜕𝑝𝑖
+
𝜕𝐹

𝜕𝑝𝑖

𝜕𝐻

𝜕𝑞𝑖
)

𝑖

 

�̇� = {𝐹, 𝐻} 

We can conclude that 𝐹 has no explicit time-dependency and in fact it is defined as 𝐹(𝑞, 𝑝) leading to 
𝜕𝐹

𝜕𝑡
= 0. 

Following calculus rules �̇� must be something like 
△𝐹

△𝑡
, so 

[𝐹]̇ ~
1

𝑠
 

and accordingly, the unit of {𝐹, 𝐻}. 

On the other hand, we find in “Quantum Mechanics” (4.19): 

�̇� =
𝑑𝐿

𝑑𝑡
= −

𝑖

ℏ
[𝐿, 𝐻] 

H is an energy, so the unit of 𝐻 is 
𝑘𝑔∙𝑚2

𝑠2
 (and I hope that the multiplication with L doesn’t change 

that). Divided by the unit of ℏ: 
𝑘𝑔∙𝑚2

𝑠
 this results in: 

[𝐻]

[ℏ]
=

𝑘𝑔 ∙ 𝑚2

𝑠2

𝑘𝑔 ∙ 𝑚2

𝑠

=
𝑘𝑔 ∙ 𝑚2 ∙ 𝑠

𝑘𝑔 ∙ 𝑚2 ∙ 𝑠2
=
1

𝑠
 

giving the correct dimension for 
𝑑𝐿

𝑑𝑡
= �̇�. 
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Exercise 4.4 

Verify the commutation relations: 

[𝜎𝑥, 𝜎𝑦] = 2𝑖𝜎𝑧 

[𝜎𝑦, 𝜎𝑧] = 2𝑖𝜎𝑥 

[𝜎𝑧, 𝜎𝑥] = 2𝑖𝜎𝑦 

𝜎𝑥 = (
0 1
1 0

) , 𝜎𝑦 = (
0 −𝑖
𝑖 0

) , 𝜎𝑧 = (
1 0
0 −1

) 

* * * * * * * * * * 

[𝜎𝑥, 𝜎𝑦] = 𝜎𝑥𝜎𝑦 − 𝜎𝑦𝜎𝑥 = 

(
0 1
1 0

) (
0 −𝑖
𝑖 0

) − (
0 −𝑖
𝑖 0

) (
0 1
1 0

) = 

(
𝑖 0
0 −𝑖

) − (
−𝑖 0
0 𝑖

) = 

(
2𝑖 0
0 −2𝑖

) = 2𝑖𝜎𝑧 

 

[𝜎𝑦, 𝜎𝑧] = 𝜎𝑦𝜎𝑧 − 𝜎𝑧𝜎𝑦 = 

(
0 −𝑖
𝑖 0

) (
1 0
0 −1

) − (
1 0
0 −1

)(
0 −𝑖
𝑖 0

) = 

(
0 𝑖
𝑖 0

) − (
0 −𝑖
−𝑖 0

) = 

(
0 2𝑖
2𝑖 0

) = 2𝑖𝜎𝑥 

 

[𝜎𝑧, 𝜎𝑥] = 𝜎𝑧𝜎𝑥 − 𝜎𝑥𝜎𝑧 = 

(
1 0
0 −1

)(
0 1
1 0

) − (
0 1
1 0

) (
1 0
0 −1

) = 

(
0 1
−1 0

) − (
0 −1
1 0

) = 

(
0 2
−2 0

) = 2𝑖𝜎𝑦 
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Exercise 4.5 

Take any unit 3-vector �⃗�  and form the operator 

𝐻 =
ℏ𝜔

2
𝜎 ∙ �⃗�  

Find the energy eigenvalues and eigenvectors by solving the time-independent Schrödinger equation. 

Recall 𝜎 ∙ �⃗�  in component form: 

𝜎𝑛 = 𝜎 ∙ �⃗� = (
𝑛𝑧 (𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑥 + 𝑖𝑛𝑦) −𝑛𝑧
) 

* * * * * * * * * * 

𝐻 =
ℏ𝜔

2
𝜎 ∙ �⃗� =

ℏ𝜔

2
(

𝑛𝑧 (𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑥 + 𝑖𝑛𝑦) −𝑛𝑧
) 

 

The time-independent Schrödinger equation (4.28) 

𝐻|𝐸𝑗⟩ = 𝐸𝑗|𝐸𝑗⟩ 

ℏ𝜔

2
(

𝑛𝑧 (𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑥 + 𝑖𝑛𝑦) −𝑛𝑧
) |𝐸𝑗⟩ = 𝐸𝑗|𝐸𝑗⟩ 

 

The characteristic polynomial of the matrix 𝜎𝑛 must be zero: 

|(
𝑛𝑧 − 𝜆 (𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑥 + 𝑖𝑛𝑦) −𝑛𝑧 − 𝜆
)| = 

(𝑛𝑧 − 𝜆)(−𝑛𝑧 − 𝜆) − (𝑛𝑥 + 𝑖𝑛𝑦)(𝑛𝑥 − 𝑖𝑛𝑦) = 

𝜆2 − (𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2) = 0 

𝜆2 = (𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2) 

𝜆 = ±√(𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2) 

Because n is a unit vector 𝜆 = ±1 

 

The eigenvectors we get out of the equation 

(
𝑛𝑧 − 𝜆 (𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑥 + 𝑖𝑛𝑦) −𝑛𝑧 − 𝜆
) (
𝑎
𝑏
) = (

0
0
) 
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eigenvalue 𝜆 = +1 

(
𝑛𝑧 − 1 (𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑥 + 𝑖𝑛𝑦) −𝑛𝑧 − 1
)(
𝑎
𝑏
) = (

0
0
) 

We get two independent equations: 

𝐼: (𝑛𝑧 − 1) ∙ 𝑎 + (𝑛𝑥 − 𝑖𝑛𝑦) ∙ 𝑏 = 0 

𝐼𝐼: (𝑛𝑥 + 𝑖𝑛𝑦) ∙ 𝑎 − (𝑛𝑧 + 1) ∙ 𝑏 = 0 

Upper line: 

(𝑛𝑧 − 1) ∙ 𝑎 = −(𝑛𝑥 − 𝑖𝑛𝑦) ∙ 𝑏 

−(𝑛𝑧 − 1) ∙ 𝑎 = (𝑛𝑥 − 𝑖𝑛𝑦) ∙ 𝑏 

(1 − 𝑛𝑧) ∙ 𝑎 = (𝑛𝑥 − 𝑖𝑛𝑦) ∙ 𝑏 

𝑎 =
(𝑛𝑥 − 𝑖𝑛𝑦)

(1 − 𝑛𝑧)
∙ 𝑏 

The result inserted in the lower line: 

(𝑛𝑥 + 𝑖𝑛𝑦) ∙
(𝑛𝑥 − 𝑖𝑛𝑦)

(1 − 𝑛𝑧)
∙ 𝑏 − (𝑛𝑧 + 1) ∙ 𝑏 = 0 

(𝑛𝑥 + 𝑖𝑛𝑦)(𝑛𝑥 − 𝑖𝑛𝑦)

(1 − 𝑛𝑧)
∙ 𝑏 − (𝑛𝑧 + 1) ∙ 𝑏 = 0 

𝑏(
(𝑛𝑥 + 𝑖𝑛𝑦)(𝑛𝑥 − 𝑖𝑛𝑦)

(1 − 𝑛𝑧)
− (𝑛𝑧 + 1)) = 0 

𝑏 (
(𝑛𝑥 + 𝑖𝑛𝑦)(𝑛𝑥 − 𝑖𝑛𝑦) − (𝑛𝑧 + 1)(1 − 𝑛𝑧)

(1 − 𝑛𝑧)
) = 0 

𝑏 ((𝑛𝑥 + 𝑖𝑛𝑦)(𝑛𝑥 − 𝑖𝑛𝑦) − (𝑛𝑧 + 1)(1 − 𝑛𝑧)) = 0 

𝑏(𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2 − 1) = 0 

𝑏 ∙ 0 = 0 

Valid for all b. Back to the upper line: 

𝑎 =
(𝑛𝑥 − 𝑖𝑛𝑦)

(1 − 𝑛𝑧)
∙ 𝑏 

This defines the first eigenvector |𝜆1⟩: 

|𝜆1⟩ = (
(𝑛𝑥 − 𝑖𝑛𝑦)

(1 − 𝑛𝑧)
1

) 
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eigenvalue 𝜆 = −1 

(
𝑛𝑧 + 1 (𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑥 + 𝑖𝑛𝑦) −𝑛𝑧 + 1
)(
𝑎
𝑏
) = (

0
0
) 

We get two independent equations: 

𝐼: (𝑛𝑧 + 1) ∙ 𝑎 + (𝑛𝑥 − 𝑖𝑛𝑦) ∙ 𝑏 = 0 

𝐼𝐼: (𝑛𝑥 + 𝑖𝑛𝑦) ∙ 𝑎 − (𝑛𝑧 − 1) ∙ 𝑏 = 0 

Upper line: 

(𝑛𝑧 + 1) ∙ 𝑎 = −(𝑛𝑥 − 𝑖𝑛𝑦) ∙ 𝑏 

𝑎 =
−(𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑧 + 1)
∙ 𝑏 

The result inserted in the lower line: 

(𝑛𝑥 + 𝑖𝑛𝑦) ∙
−(𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑧 + 1)
∙ 𝑏 − (𝑛𝑧 − 1) ∙ 𝑏 = 0 

−(𝑛𝑥 + 𝑖𝑛𝑦)(𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑧 + 1)
∙ 𝑏 − (𝑛𝑧 − 1) ∙ 𝑏 = 0 

𝑏 (
−(𝑛𝑥 + 𝑖𝑛𝑦)(𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑧 + 1)
− (𝑛𝑧 − 1)) = 0 

𝑏 (
−(𝑛𝑥 + 𝑖𝑛𝑦)(𝑛𝑥 − 𝑖𝑛𝑦) − (𝑛𝑧 − 1)(𝑛𝑧 + 1)

(𝑛𝑧 + 1)
) = 0 

𝑏 (−(𝑛𝑥 + 𝑖𝑛𝑦)(𝑛𝑥 − 𝑖𝑛𝑦) − (𝑛𝑧 − 1)(𝑛𝑧 + 1)) = 0 

𝑏(−𝑛𝑥
2 − 𝑛𝑦

2 − 𝑛𝑧
2 + 1) = 0 

𝑏 ∙ 0 = 0 

Valid for all b. Back to the upper line: 

𝑎 =
−(𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑧 + 1)
∙ 𝑏 

This defines the second eigenvector |𝜆2⟩: 

|𝜆2⟩ = (
−(𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑧 + 1)
1

) 
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Additional we check whether the eigenvectors are orthogonal. 

|𝜆1⟩ = (
(𝑛𝑥 − 𝑖𝑛𝑦)

(1 − 𝑛𝑧)
1

) 

|𝜆2⟩ = (
−(𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑧 + 1)
1

) = (
(𝑖𝑛𝑦 − 𝑛𝑥)

(𝑛𝑧 + 1)
1

) 

We need the bra ⟨𝜆1| and conjugate it: 

⟨𝜆1| = (
(𝑛𝑥 + 𝑖𝑛𝑦)

(1 − 𝑛𝑧)
1) 

|𝜆2⟩ =  (
(𝑖𝑛𝑦 − 𝑛𝑥)

(𝑛𝑧 + 1)
1

) 

The scalar product: 

⟨𝜆1|𝜆2⟩ = 

(
(𝑛𝑥 + 𝑖𝑛𝑦)

(1 − 𝑛𝑧)
1)(

(𝑖𝑛𝑦 − 𝑛𝑥)

(𝑛𝑧 + 1)
1

) = 

(𝑛𝑥 + 𝑖𝑛𝑦)(𝑖𝑛𝑦 − 𝑛𝑥)

(1 − 𝑛𝑧)(𝑛𝑧 + 1)
+ 1 = 

−𝑛𝑥
2 − 𝑛𝑦

2

1 − 𝑛𝑧
2
+ 1 = 

−𝑛𝑥
2 − 𝑛𝑦

2 + 1 − 𝑛𝑧
2

1 − 𝑛𝑧
2

= 

1 − (𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2)

1 − 𝑛𝑧
2

= 0 

Both vectors are orthogonal to each other. 
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Exercise 4.6 

Carry out the Schrödinger Ket recipe for a single spin.  

The Hamiltonian is 𝐻 =
ℏ𝜔

2
𝜎𝑧 and the final observable is 𝜎𝑥.  

The initial state is given as |𝑢⟩ (the state in which 𝜎𝑧 = ±1). 

After time t, an experiment is done to measure 𝜎𝑦.  

What are the possible outcomes and what are the probabilities for those outcomes? 

* * * * * * * * * * 

For easier calculation we omit the factor 
ℏ𝜔

2
 and work with 𝐻 = 𝜎𝑧 only. We will correct this in the 

end. 

Recipe step 1. Derive, look, guess, borrow or steal the Hamiltonian operator H 

The Hamiltonian is given:  

𝐻 = 𝜎𝑧 = (
1 0
0 −1

) 

Recipe step 2. Prepare an initial state |Ψ(0)⟩ 

The initial state is given: |𝑢⟩ or (
1
0
) 

Recipe step 3. Find the eigenvalues and eigenvectors of H by solving the time-independent 

Schrödinger equation: 

𝐻|𝐸𝑗⟩ = 𝐸𝑗|𝐸𝑗⟩ 

The characteristic polynomial of the matrix 𝜎𝑧 must be zero: 

|(
1 − 𝜆 0
0 −1 − 𝜆

)| = 

(1 − 𝜆)(−1 − 𝜆) − 0 = 

𝜆2 − 1 = 0 

𝜆2 = 1 

𝜆 = ±1 

The eigenvectors we get out of the equation 

(
1 − 𝜆 0
0 −1 − 𝜆

)(
𝑎
𝑏
) = (

0
0
) 

eigenvalue 𝜆1 = +1 

(
1 − 1 0
0 −1 − 1

) (
𝑎
𝑏
) = (

0
0
) 

We get two independent equations: 

𝐼: 0 ∙ 𝑎 + 0 ∙ 𝑏 = 0 

𝐼𝐼: 0 ∙ 𝑎 − 2 ∙ 𝑏 = 0 → 𝑏 = 0 
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This defines the first eigenvector |𝜆1⟩: 

|𝜆1⟩ = (
1
0
) 

eigenvalue 𝜆2 = −1 

(
1 + 1 0
0 −1 + 1

) (
𝑎
𝑏
) = (

0
0
) 

We get two independent equations: 

𝐼: 2 ∙ 𝑎 + 0 ∙ 𝑏 = 0 → 𝑎 = 0 

𝐼𝐼: 0 ∙ 𝑎 + 0 ∙ 𝑏 = 0 

This defines the second eigenvector |𝜆2⟩: 

|𝜆2⟩ = (
0
1
) 

Obviously both eigenvectors are orthogonal to each other: 

⟨𝜆1|𝜆2⟩ = (1 0) ∙ (
0
1
) = 0 

Recipe step 4. Use the initial state-vector |Ψ(0)⟩, along with the eigenvectors |𝐸𝑗⟩ from step 3, to 

calculate the initial coefficients 𝑎𝑗(0): 

𝑎𝑗(0) = ⟨𝐸𝑗|Ψ(0)⟩ 

As both eigenvectors are real, we can change |𝜆1⟩ to ⟨𝜆1| and |𝜆2⟩ to ⟨𝜆2|. 

𝑎1(0) for Eigenvector |𝜆1⟩ 

𝑎1(0) = ⟨𝐸1|Ψ(0)⟩ = ⟨𝜆1|u⟩ = 

(1 0) (
1
0
) = 1 

𝑎2(0) for Eigenvector |𝜆2⟩ 

𝑎2(0) = ⟨𝐸2|Ψ(0)⟩ = ⟨𝜆2|u⟩ = 

(0 1) (
1
0
) = 0 

Recipe step 5. Rewrite |Ψ(0)⟩ in terms of the eigenvectors |𝐸𝑗⟩ and the initial coefficients 𝑎𝑗(0): 

|Ψ(0)⟩ =∑𝑎𝑗(0)|𝐸𝑗⟩

𝑗

 

|Ψ(0)⟩ = 1 ∙ |𝜆1⟩ + 0 ∙ |𝜆2⟩ = (
1
0
) = |𝑢⟩ 

Recipe step 6. In the above equation, replace each 𝑎𝑗(0) with 𝑎𝑗(𝑡) to capture it’s time-dependence. 

As a result, |Ψ(0)⟩ becomes |Ψ(𝑡)⟩: 

|Ψ(𝑡)⟩ =∑𝑎𝑗(𝑡)|𝐸𝑗⟩

𝑗

 

|Ψ(𝑡)⟩ = 𝑎1(𝑡) ∙ |𝜆1⟩ + 𝑎2(𝑡) ∙ |𝜆2⟩ = 𝑎1(𝑡) (
1
0
) + 𝑎2(𝑡) (

0
1
) = 𝑎1(𝑡)|𝑢⟩ + 𝑎1(𝑡)|𝑑⟩ 
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Recipe step 7. Using Eq. 4.30, replace each 𝑎𝑗(𝑡) with 𝑎𝑗(0)𝑒
−
𝑖

ℏ
𝐸𝑗𝑡: 

|Ψ(𝑡)⟩ = 𝑎1(𝑡) ∙ |𝜆1⟩ + 𝑎2(𝑡) ∙ |𝜆2⟩ = 𝑎1(0)𝑒
−
𝑖
ℏ
𝐸1𝑡 (

1
0
) + 𝑎2(0)𝑒

−
𝑖
ℏ
𝐸2𝑡 (

0
1
) = 

1 ∙ 𝑒
−
𝑖
ℏ
𝑡
(
1
0
) + 0 ∙ 𝑒

−
𝑖
ℏ
𝑡
(
0
1
) = 𝑒

−
𝑖
ℏ
𝑡
(
1
0
) = 𝑒

−
𝑖
ℏ
𝑡
|𝑢⟩ 

Finally, we multiply the factor 
ℏ𝜔

2
 and get: 

|Ψ(𝑡)⟩ = 𝑒
−
𝑖ℏ𝜔
2ℏ
𝑡
|𝑢⟩ = 𝑒−

𝑖𝜔
2
𝑡|𝑢⟩ 

Question: After time t, an experiment is done to measure 𝜎𝑦. What are the possible outcomes and 

what are the probabilities for those outcomes? 

We omit the time-changing phase and follow “3.7 Reaping the Results” modified in a way that: 

𝑛𝑧 = 𝑐𝑜𝑠
𝜋

2
,  𝑛𝑦 = 𝑠𝑖𝑛

𝜋

2
,  𝑛𝑥 = 0 

This gives 

𝜎𝑛 = (
𝑐𝑜𝑠

𝜋

2
−𝑖 ∙ 𝑠𝑖𝑛

𝜋

2

𝑖 ∙ 𝑠𝑖𝑛
𝜋

2
−𝑐𝑜𝑠

𝜋

2

) = (
0 −𝑖
𝑖 0

) ≔ 𝜎𝑦 

Calculating the eigenvectors of 𝜎𝑦: 

(
0 −𝑖
𝑖 0

) (
𝑎
𝑏
) = 𝜆 (

𝑎
𝑏
) 

𝐼:−𝑖𝑏 = 𝜆𝑎 

𝐼𝐼: 𝑖𝑎 = 𝜆𝑏 

Solving this pair of equations leads to eigenvalues: 

𝜆 = ±1 

The corresponding eigenvectors are: 

𝜆 = +1: 

(
1
𝑖
) 

𝜆 = −1: 

(
1
−𝑖
) 

Normalization: 

|(
1
𝑖
)| = √2 

|(
1
−𝑖
)| = √2 

The normalized eigenvectors are: 
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1

√2
(
1
𝑖
) 

1

√2
(
1
−𝑖
) 

We calculate the probability of observing 𝜎𝑦 = +1: 

𝑃(+1) = |⟨𝑢|𝜆1⟩|
2 = |

1

√2
((1 0) (

1
𝑖
))|

2

= 

|
1

√2
∙ (1 + 0 ∙ 𝑖)|

2

= |
1

√2
|
2

=
1

2
 

Analog the probability of observing 𝜎𝑦 = −1: 

𝑃(−1) = |⟨𝑢|𝜆2⟩|
2 = |

1

√2
((1 0) (

1
−𝑖
))|

2

= 

|
1

√2
∙ (1 − 0 ∙ 𝑖)|

2

=
1

2
 

The possible outcomes of the measurement are ±1 with probability each 50%.  

We ignore the phase-factor 𝑒−
𝑖𝜔

2
𝑡. 
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Exercise 5.1 

Verify that any 2 × 2 Hermitian matrix L can be written as a sum of four terms, 

𝐿 = 𝑎𝜎𝑥 + 𝑏𝜎𝑦 + 𝑐𝜎𝑧 + 𝑑𝐼 

where a, b, c and d are real numbers. 

The four Pauli matrices: 

𝜎𝑥 = (
0 1
1 0

), 𝜎𝑦 = (
0 −𝑖
𝑖 0

), 𝜎𝑧 = (
1 0
0 −1

), I= (
1 0
0 1

) 

A general Hermitian matrix (𝑟, 𝑟′) are real numbers: 

(
𝑟 𝑤
𝑤∗ 𝑟′

) 

* * * * * * * * * * 

Verification: 

𝐿 = 𝑎𝜎𝑥 + 𝑏𝜎𝑦 + 𝑐𝜎𝑧 + 𝑑𝐼 = 

𝑎 (
0 1
1 0

) + 𝑏 (
0 −𝑖
𝑖 0

) + 𝑐 (
1 0
0 −1

) + 𝑑 (
1 0
0 1

) = 

(
0 𝑎
𝑎 0

) + (
0 −𝑖𝑏
𝑖𝑏 0

) + (
𝑐 0
0 −𝑐

) + (
𝑑 0
0 𝑑

) = 

(
𝑐 + 𝑑 𝑎 − 𝑖𝑏
𝑎 + 𝑖𝑏 𝑑 − 𝑐

) 

Obviously, it’s correct that 𝑤∗ and 𝑤 are complex conjugated: 𝑎 + 𝑖𝑏 and 𝑎 − 𝑖𝑏. Further 𝑟 and 𝑟′ are 

real numbers. As Hermitian matrices are not necessarily unitary, the coefficients a, b, c and d are free 

variables so we can express any 𝑟 and 𝑟′: 𝑟 = 𝑐 + 𝑑, 𝑟′ = 𝑑 − 𝑐. 
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Exercise 5.2 

1) Show that (△ 𝐴)2 = 〈�̅�2〉 and (△ 𝐵)2 = 〈�̅�2〉 

2) Show that [�̅�, �̅�] = [𝐴, 𝐵] 

3) Using these relations, show that △𝐴 △ 𝐵 ≥
1

2
|⟨Ψ|[𝐴, 𝐵]|Ψ⟩| 

The square of uncertainty (or standard deviation) of A, (△ 𝐴)2: 

(△ 𝐴)² =∑�̅�2𝑃(𝑎)

𝑎

=∑(𝑎 − 〈𝐴〉)2𝑃(𝐴)

𝑎

 

* * * * * * * * * * 

1) Show that (△ 𝐴)2 = 〈�̅�2〉  

First (△ 𝐴)2: 

(△ 𝐴)2 =∑(𝑎 − 〈𝐴〉)2𝑃(𝑎) =

𝑎

 

∑(𝑎2 − 2𝑎〈𝐴〉 + 〈𝐴〉2)𝑃(𝑎) =

𝑎

 

∑𝑎2𝑃(𝑎) − 2〈𝐴〉∑𝑎𝑃(𝑎) + 〈𝐴〉2∑𝑃(𝑎)

𝑎𝑎

=

𝑎

 

∑𝑎2𝑃(𝑎) − 2〈𝐴〉〈𝐴〉 + 〈𝐴〉2 =

𝑎

 

∑𝑎2𝑃(𝑎) − 〈𝐴〉2 =

𝑎

 

〈𝐴2〉 − 〈𝐴〉2 

We get (△ 𝐴)2 = 〈𝐴2〉 − 〈𝐴〉2.  

On the other hand: 

〈�̅�2〉  = 〈(𝐴 − 〈𝐴〉)2〉 = 

〈𝐴2 − 2𝐴〈𝐴〉 + 〈𝐴〉2〉 = 

〈𝐴2〉 − 2〈𝐴〉〈〈𝐴〉〉 + 〈〈𝐴〉〈𝐴〉〉 = 

〈𝐴2〉 − 2〈𝐴〉〈𝐴〉 + 〈𝐴〉〈𝐴〉 = 

〈𝐴2〉 − 2〈𝐴〉2 + 〈𝐴〉2 = 

〈𝐴2〉 − 〈𝐴〉2 

We get: 〈�̅�2〉 = 〈𝐴2〉 − 〈𝐴〉2. 

 

We can conclude (△ 𝐴)2 = 〈�̅�2〉. The same holds for (△ 𝐵)2 = 〈�̅�2〉. 
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2. Show that [�̅�, �̅�] = [𝐴, 𝐵] 

[�̅�, �̅�] = �̅��̅� − �̅��̅� = (𝐴 − 〈𝐴〉)(𝐵 − 〈𝐵〉) − (𝐵 − 〈𝐵〉)(𝐴 − 〈𝐴〉) = 

𝐴𝐵 − 𝐴〈𝐵〉 − 〈𝐴〉𝐵 + 〈𝐴〉〈𝐵〉 − (𝐵𝐴 − 𝐵〈𝐴〉 − 〈𝐵〉𝐴 + 〈𝐵〉〈𝐴〉) = 

𝐴𝐵 − 𝐴〈𝐵〉 − 〈𝐴〉𝐵 + 〈𝐴〉〈𝐵〉 + 𝐵〈𝐴〉 + 〈𝐵〉𝐴 − 〈𝐵〉〈𝐴〉 = 

𝐴𝐵 − 𝐵𝐴 − 𝐴〈𝐵〉 + 〈𝐵〉𝐴 − 〈𝐴〉𝐵 + 𝐵〈𝐴〉 + 〈𝐴〉〈𝐵〉 − 〈𝐵〉〈𝐴〉 = 

𝐴𝐵 − 𝐵𝐴 − 𝐴〈𝐵〉 + 𝐴〈𝐵〉 − 𝐵〈𝐴〉 + 𝐵〈𝐴〉 + 〈𝐴〉〈𝐵〉 − 〈𝐴〉〈𝐵〉 = 

𝐴𝐵 − 𝐵𝐴 = [𝐴, 𝐵] 

 

3. Using these relations, show that △𝐴△ 𝐵 ≥
1

2
|⟨Ψ|[𝐴, 𝐵]|Ψ⟩| 

The Cauchy-Schwarz inequality: 

2|𝑋||𝑌| ≥ |⟨𝑋|𝑌⟩ + ⟨𝑌|𝑋⟩| 

Let |Ψ⟩ be any ket and let 𝐴 and 𝐵 be any two observables (∈ ℝ). The associated variables �̅� and �̅� 

are built in a way that the expectation values of �̅� and �̅� are zero. We define |X⟩ and |Y⟩ as follows: 

|X⟩ = �̅�|Ψ⟩ 

⟨X| = ⟨Ψ|A̅∗ = ⟨Ψ|�̅� 

|Y⟩ = 𝑖�̅�|Ψ⟩ 

⟨Y| = ⟨Ψ|(−𝑖�̅�∗) 

Notice the 𝑖 in the definition of 𝑌.  

Now, substitute into the Cauchy-Schwarz inequality to get  

2√〈�̅�2〉〈�̅�2〉 ≥ |⟨Ψ|𝑖�̅��̅�|Ψ⟩ − ⟨Ψ|𝑖�̅��̅�|Ψ⟩| = 

2√〈�̅�2〉〈�̅�2〉 ≥ |𝑖(⟨Ψ|�̅��̅�|Ψ⟩ − ⟨Ψ|�̅��̅�|Ψ⟩)| = 

2√〈�̅�2〉〈�̅�2〉 ≥ |⟨Ψ|�̅��̅�|Ψ⟩ − ⟨Ψ|�̅��̅�|Ψ⟩| = 

The minus sign is due to the factor of 𝑖 in the definition of |Y⟩. Using the definition of a commutator, 

we find that 

2√〈�̅�2〉〈�̅�2〉 ≥ |⟨Ψ|[�̅�, �̅�]|Ψ⟩| 

We use (△ 𝐴)2 = 〈�̅�2〉 and (△ 𝐵)2 = 〈�̅�2〉 and replace the left side of the inequality: 

2√(△ 𝐴)2(△ 𝐵)2 ≥ |⟨Ψ|[�̅�, �̅�]|Ψ⟩| 

We use [�̅�, �̅�] = [𝐴, 𝐵] and replace the right side of the inequality: 

2√(△ 𝐴)2(△ 𝐵)2 ≥ |⟨Ψ|[𝐴, 𝐵]|Ψ⟩| 
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We simplify the left side: 

2(△ 𝐴)(△ 𝐵) ≥ |⟨Ψ|[𝐴, 𝐵]|Ψ⟩| 

We get the result: 

(△ 𝐴)(△ 𝐵) ≥
1

2
|⟨Ψ|[𝐴, 𝐵]|Ψ⟩| 
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Exercise 6.1 

Prove that if 𝑃(𝑎, 𝑏) factorizes: 𝑃(𝑎, 𝑏) = 𝑃𝐴(𝑎)𝑃𝑏(𝑏) 

 then the correlation between a and b is zero: 

〈𝜎𝐴𝜎𝐵〉 − 〈𝜎𝐴〉〈𝜎𝐵〉 = 0 

Average:  

〈𝜎𝐴〉 =∑𝑎𝑛𝑃(𝑎𝑛)

𝑛

 

〈𝜎𝐵〉 =∑𝑏𝑛𝑃(𝑏𝑛)

𝑛

 

〈𝜎𝐴𝜎𝐵〉 =∑∑𝑎𝑛𝑏𝑛𝑃(𝑎𝑛𝑏𝑛)

𝑛𝑛

 

* * * * * * * * * * 

Assuming we have n objects in A and b: 

〈𝜎𝐴〉〈𝜎𝐵〉 =∑𝑎𝑛𝑃(𝑎𝑛)

𝑛

∑𝑏𝑛𝑃(𝑏𝑛)

𝑛

= 

𝑎1𝑃(𝑎1)∑𝑏𝑛𝑃(𝑏𝑛)

𝑛

+ 𝑎2𝑃(𝑎2)∑𝑏𝑛𝑃(𝑏𝑛)

𝑛

+⋯+ 𝑎𝑛𝑃(𝑎𝑛)∑𝑏𝑛𝑃(𝑏𝑛)

𝑛

= 

𝑎1𝑃(𝑎1)𝑏1𝑃(𝑏1) + 𝑎1𝑃(𝑎1)𝑏2𝑃(𝑏2) + ⋯+ 𝑎1𝑃(𝑎1)𝑏𝑛𝑃(𝑏𝑛) + 

𝑎2𝑃(𝑎2)𝑏1𝑃(𝑏1) + 𝑎2𝑃(𝑎2)𝑏2𝑃(𝑏2) + ⋯+ 𝑎2𝑃(𝑎2)𝑏𝑛𝑃(𝑏𝑛) + 

⋮ 

𝑎𝑛𝑃(𝑎𝑛)𝑏1𝑃(𝑏1) + 𝑎𝑛𝑃(𝑎𝑛)𝑏2𝑃(𝑏2) + ⋯+ 𝑎𝑛𝑃(𝑎𝑛)𝑏𝑛𝑃(𝑏𝑛) = 

 

𝑎1𝑏1𝑃(𝑎1)𝑃(𝑏1) + 𝑎1𝑏2𝑃(𝑎1)𝑃(𝑏2) + ⋯+ 𝑎1𝑃𝑏𝑛𝑃(𝑎1)𝑃(𝑏𝑛) + 

𝑎2𝑏1𝑃(𝑎2)𝑃(𝑏1) + 𝑎2𝑏2𝑃(𝑎2)𝑃(𝑏2) + ⋯+ 𝑎2𝑏𝑛𝑃(𝑎2)𝑃(𝑏𝑛) + 

⋮ 

𝑎𝑛𝑏1𝑃(𝑎𝑛)𝑃(𝑏1) + 𝑎𝑛𝑏2𝑃(𝑎𝑛)𝑃(𝑏2) + ⋯+ 𝑎𝑛𝑏𝑛𝑃(𝑎𝑛)𝑃(𝑏𝑛) = 

 

𝑎1𝑏1𝑃(𝑎1𝑏1) + 𝑎1𝑏2𝑃(𝑎1𝑏2) + ⋯+ 𝑎1𝑏𝑛𝑃(𝑎1𝑏𝑛) + 

𝑎2𝑏1𝑃(𝑎2𝑏1) + 𝑎2𝑏2𝑃(𝑎2𝑏2) +⋯+ 𝑎2𝑏𝑛𝑃(𝑎2𝑏𝑛) + 

⋮ 

𝑎𝑛𝑏1𝑃(𝑎𝑛𝑏1) + 𝑎𝑛𝑏2𝑃(𝑎𝑛𝑏2) + ⋯+ 𝑎𝑛𝑏𝑛𝑃(𝑎𝑛𝑏𝑛) = 

∑∑𝑎𝑛
𝑛

𝑏𝑛𝑃(𝑎𝑛𝑏𝑛)

𝑛

= 〈𝜎𝐴𝜎𝐵〉 
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Exercise 6.2 

Show that if the two normalization conditions are satisfied: 

𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑 = 1 

𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑 = 1 

then the state-vector is automatically normalized as well: 

𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩ 

In other words, show that for this product state, normalizing the overall state-vector does not put 

any additional constraints on the 𝛼′𝑠 and 𝛽′𝑠. 

* * * * * * * * * * 

Normalization means that  

𝛼𝑢
∗𝛽𝑢

∗𝛼𝑢𝛽𝑢 + 𝛼𝑢
∗𝛽𝑑

∗𝛼𝑢𝛽𝑑 + 𝛼𝑑
∗𝛽𝑢

∗𝛼𝑑𝛽𝑢 + 𝛼𝑑
∗𝛽𝑑

∗𝛼𝑑𝛽𝑑 = 1 

 

From (6.4) we know that  

(𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑)(𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑) = 1 

 

We multiply the brackets: 

(𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑)(𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑) = 

𝛼𝑢
∗𝛼𝑢𝛽𝑢

∗𝛽𝑢 + 𝛼𝑢
∗𝛼𝑢𝛽𝑑

∗𝛽𝑑 + 𝛼𝑑
∗𝛼𝑑𝛽𝑢

∗𝛽𝑢 + 𝛼𝑑
∗𝛼𝑑𝛽𝑑

∗𝛽𝑑 = 

𝛼𝑢
∗𝛽𝑢

∗𝛼𝑢𝛽𝑢 + 𝛼𝑢
∗𝛽𝑑

∗𝛼𝑢𝛽𝑑 + 𝛼𝑑
∗𝛽𝑢

∗𝛼𝑑𝛽𝑢 + 𝛼𝑑
∗𝛽𝑑

∗𝛼𝑑𝛽𝑑 = 1 

 

This is exactly the normalization condition.  
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Exercise 6.3 

Prove that the state |𝑠𝑖𝑛𝑔⟩ cannot be written as a product state. 

|𝑠𝑖𝑛𝑔⟩ =
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩) 

The shape of a product state: 

𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩ 

* * * * * * * * * * 

If the singlet state can be composed out of a product state, the following equation should be valid: 

𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩ =
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩) 

It follows that 𝛼𝑢𝛽𝑢 = 0 and 𝛼𝑑𝛽𝑑 = 0, as the vectors |𝑢𝑢⟩ and |𝑑𝑑⟩ do not appear in the singlet 

state. 

𝛼𝑢𝛽𝑢 = 0 → 𝛼𝑢 = 0 𝑜𝑟 𝛽𝑢 = 0 or both. 

𝛼𝑑𝛽𝑑 = 0 → 𝛼𝑑 = 0 𝑜𝑟 𝛽𝑑 = 0 or both. 

 

From 𝛼𝑢𝛽𝑑 ≠ 0 it follows that 𝛼𝑢 ≠ 0 and 𝛽𝑑 ≠ 0, from 𝛼𝑑𝛽𝑢 ≠ 0 it follows that 𝛼𝑑 ≠ 0 and 𝛽𝑢 ≠

0. 

We get a contradiction and can conclude that it is not possible to combine the singlet state out of the 

parameters of a product state. 
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Exercise 6.4 

Use the matrix forms of 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 and the column vectors for |𝑢⟩  and |𝑑⟩ to verify: 

𝜎𝑧|𝑢⟩ = |𝑢⟩  and  𝜎𝑧|𝑑⟩ = −|𝑑⟩ 

𝜎𝑥|𝑢⟩ = |𝑑⟩  and  𝜎𝑥|𝑑⟩ = |𝑢⟩ 

𝜎𝑦|𝑢⟩ = 𝑖|𝑑⟩  and  𝜎𝑦|𝑑⟩ = −𝑖|𝑢⟩ 

Then, use: 

𝜏𝑧|𝑢⟩ = |𝑢⟩  and  𝜏𝑧|𝑑⟩ = −|𝑑⟩ 

𝜏𝑥|𝑢⟩ = |𝑑⟩  and  𝜏𝑥|𝑑⟩ = |𝑢⟩ 

𝜏𝑦|𝑢⟩ = 𝑖|𝑑⟩  and  𝜏𝑦|𝑑⟩ = −𝑖|𝑢⟩ 

to write the equations for all possible combinations of the tensor product states 𝜎𝑧|𝑢𝑢⟩ = |𝑢𝑢⟩ etc. 

* * * * * * * * * * 

Written as matrices and column vectors: 

𝜎𝑧 = (
1 0
0 −1

)  𝜎𝑦 = (
0 −𝑖
𝑖 0

)  𝜎𝑥 = (
0 1
1 0

) 

|𝑢⟩ = (
1
0
)  |𝑑⟩ = (

0
1
) 

 

𝜎𝑧|𝑢⟩ = (
1 0
0 −1

)(
1
0
) = (

1 ∙ 1 + 0 ∙ 0
0 ∙ 1 + (−1) ∙ 0

) = (
1
0
) = |𝑢⟩ 

𝜎𝑧|𝑑⟩ = (
1 0
0 −1

) (
0
1
) = (

1 ∙ 0 + 0 ∙ 1
0 ∙ 0 + (−1) ∙ 1

) = (
0
−1
) = −(

0
1
) = −|𝑑⟩ 

𝜎𝑥|𝑢⟩ = (
0 1
1 0

) (
1
0
) = (

0 ∙ 1 + 1 ∙ 0
1 ∙ 1 + 0 ∙ 0

) = (
0
1
) = |𝑑⟩ 

𝜎𝑥|𝑑⟩ = (
0 1
1 0

) (
0
1
) = (

0 ∙ 0 + 1 ∙ 1
1 ∙ 0 + 0 ∙ 1

) = (
1
0
) = |𝑢⟩ 

𝜎𝑦|𝑢⟩ = (
0 −𝑖
𝑖 0

) (
1
0
) = (

0 ∙ 1 + (−𝑖) ∙ 0
𝑖 ∙ 1 + 0 ∙ 0

) = (
0
𝑖
) = 𝑖 (

0
1
) = 𝑖|𝑑⟩ 

𝜎𝑦|𝑑⟩ = (
0 −𝑖
𝑖 0

) (
0
1
) = (

0 ∙ 0 + (−𝑖) ∙ 1
𝑖 ∙ 0 + 0 ∙ 1

) = (
−𝑖
0
) = −𝑖 (

1
0
) = −𝑖|𝑢⟩ 

The complete list of tensor product states: 

𝜎𝑧|𝑢𝑢⟩ = |𝑢𝑢⟩ 𝜎𝑧|𝑢𝑑⟩ = |𝑢𝑑⟩ 𝜎𝑧|𝑑𝑢⟩ = −|𝑑𝑢⟩ 𝜎𝑧|𝑑𝑑⟩ = −|𝑑𝑑⟩ 

𝜎𝑥|𝑢𝑢⟩ = |𝑑𝑢⟩ 𝜎𝑥|𝑢𝑑⟩ = |𝑑𝑑⟩ 𝜎𝑥|𝑑𝑢⟩ = |𝑢𝑢⟩ 𝜎𝑥|𝑑𝑑⟩ = |𝑢𝑑⟩ 

𝜎𝑦|𝑢𝑢⟩ = 𝑖|𝑑𝑢⟩ 𝜎𝑦|𝑢𝑑⟩ = 𝑖|𝑑𝑑⟩ 𝜎𝑦|𝑑𝑢⟩ = −𝑖|𝑢𝑢⟩ 𝜎𝑦|𝑑𝑑⟩ = −𝑖|𝑢𝑑⟩ 

𝜏𝑧|𝑢𝑢⟩ = |𝑢𝑢⟩ 𝜏𝑧|𝑢𝑑⟩ = −|𝑢𝑑⟩ 𝜏𝑧|𝑑𝑢⟩ = |𝑑𝑢⟩ 𝜏𝑧|𝑑𝑑⟩ = −|𝑑𝑑⟩ 

𝜏𝑥|𝑢𝑢⟩ = |𝑢𝑑⟩ 𝜏𝑥|𝑢𝑑⟩ = |𝑢𝑢⟩ 𝜏𝑥|𝑑𝑢⟩ = |𝑑𝑑⟩ 𝜏𝑥|𝑑𝑑⟩ = |𝑑𝑢⟩ 

𝜏𝑦|𝑢𝑢⟩ = 𝑖|𝑢𝑑⟩ 𝜏𝑦|𝑢𝑑⟩ = −𝑖|𝑢𝑢⟩ 𝜏𝑦|𝑑𝑢⟩ = 𝑖|𝑑𝑑⟩ 𝜏𝑦|𝑑𝑑⟩ = −𝑖|𝑑𝑢⟩  
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Exercise 6.5 

Prove the following theorem: 

When any one of Alice’s and Bob’s spin operators acts on a product state, the result is still a product 

state. 

Show that in a product state, the expectation value of any component of �̅� or �̅� is the same as it 

would be in the individual single-spin states. 

* * * * * * * * * * 

This proof only performed for 𝜎𝑧.  

Equation (6.5) tells us the shape of a product state: 

|𝑃⟩ ≔ 𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩ 

and 

⟨𝑃| ≔ ⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗ + ⟨𝑢𝑑|𝛼𝑢
∗𝛽𝑑

∗ + ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗ + ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗  

A single state has the shape: 

|𝐴⟩ ≔ 𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩ and ⟨𝐴| ≔ ⟨𝑢|𝛼𝑢
∗ + ⟨𝑑|𝛼𝑑

∗  

The operator 𝜎𝑧: 

𝜎𝑧 = (
1 0
0 −1

) 

We check the result of the expectation-value definition for both the generic product-state 𝑃 and the 

generic single state 𝐴. 

The single state: 

〈𝜎𝑧〉 = ⟨𝐴|𝜎𝑧|𝐴⟩ = 

⟨𝐴|𝜎𝑧|(𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩)⟩ = 

⟨𝐴|(𝛼𝑢|𝑢⟩ − 𝛼𝑑|𝑑⟩)⟩ = 

⟨(⟨𝑢|𝛼𝑢
∗ + ⟨𝑑|𝛼𝑑

∗ )|(𝛼𝑢|𝑢⟩ − 𝛼𝑑|𝑑⟩)⟩ = 

⟨𝑢|𝛼𝑢
∗𝛼𝑢|𝑢⟩ − ⟨𝑢|𝛼𝑢

∗𝛼𝑑|𝑑⟩ + ⟨𝑑|𝛼𝑑
∗𝛼𝑢|𝑢⟩ − ⟨𝑑|𝛼𝑑

∗𝛼𝑑|𝑑⟩ = 

𝛼𝑢
∗𝛼𝑢 − 0 + 0 − 𝛼𝑑

∗𝛼𝑑 

𝛼𝑢
∗𝛼𝑢 − 𝛼𝑑

∗𝛼𝑑 

The product state with the behavior that Alice’s operator only acts on her half of the product state: 

〈𝜎𝑧〉 = ⟨𝑃|𝜎𝑧|𝑃⟩ = 

⟨𝑃|𝜎𝑧|(𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩)⟩ = 

⟨𝑃|(𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ − 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ − 𝛼𝑑𝛽𝑑|𝑑𝑑⟩)⟩ = 

⟨⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗ + ⟨𝑢𝑑|𝛼𝑢
∗𝛽𝑑

∗ + ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗ + ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗|𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ − 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ − 𝛼𝑑𝛽𝑑|𝑑𝑑⟩⟩ = 

  

… boxes for better readability only … 
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⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + ⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗𝛼𝑢𝛽𝑑|𝑢𝑑⟩ − ⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗𝛼𝑑𝛽𝑢|𝑑𝑢⟩ − ⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗𝛼𝑑𝛽𝑑|𝑑𝑑⟩ + 

⟨𝑢𝑑|𝛼𝑢
∗𝛽

𝑑
∗𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + ⟨𝑢𝑑|𝛼𝑢

∗𝛽
𝑑
∗𝛼𝑢𝛽𝑑|𝑢𝑑⟩ − ⟨𝑢𝑑|𝛼𝑢

∗𝛽
𝑑
∗𝛼𝑑𝛽𝑢|𝑑𝑢⟩ − ⟨𝑢𝑑|𝛼𝑢

∗𝛽
𝑑
∗𝛼𝑑𝛽𝑑|𝑑𝑑⟩ + 

⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗𝛼𝑢𝛽𝑢|𝑢𝑢⟩+ ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗𝛼𝑢𝛽𝑑|𝑢𝑑⟩− ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗𝛼𝑑𝛽𝑢|𝑑𝑢⟩− ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗𝛼𝑑𝛽𝑑|𝑑𝑑⟩+ 

⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗𝛼𝑢𝛽𝑢|𝑢𝑢⟩+ ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗𝛼𝑢𝛽𝑑|𝑢𝑑⟩− ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗𝛼𝑑𝛽𝑢|𝑑𝑢⟩− ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗𝛼𝑑𝛽𝑑|𝑑𝑑⟩ = 

 

⟨𝑢𝑢|𝑢𝑢⟩𝛼𝑢
∗𝛽𝑢

∗𝛼𝑢𝛽𝑢 + ⟨𝑢𝑢|𝑢𝑑⟩𝛼𝑢
∗𝛽𝑢

∗𝛼𝑢𝛽𝑑 − ⟨𝑢𝑢|𝑑𝑢⟩𝛼𝑢
∗𝛽𝑢

∗𝛼𝑑𝛽𝑢 − ⟨𝑢𝑢|𝑑𝑑⟩𝛼𝑢
∗𝛽𝑢

∗𝛼𝑑𝛽𝑑 + 

⟨𝑢𝑑|𝑢𝑢⟩𝛼𝑢
∗𝛽𝑑

∗𝛼𝑢𝛽𝑢 + ⟨𝑢𝑑|𝑢𝑑⟩𝛼𝑢
∗𝛽𝑑

∗𝛼𝑢𝛽𝑑 − ⟨𝑢𝑑|𝑑𝑢⟩𝛼𝑢
∗𝛽𝑑

∗𝛼𝑑𝛽𝑢 − ⟨𝑢𝑑|𝑑𝑑⟩𝛼𝑢
∗𝛽𝑑

∗𝛼𝑑𝛽𝑑 + 

⟨𝑑𝑢|𝑢𝑢⟩𝛼𝑑
∗𝛽

𝑢
∗𝛼𝑢𝛽𝑢 + ⟨𝑑𝑢|𝑢𝑑⟩𝛼𝑑

∗𝛽
𝑢
∗𝛼𝑢𝛽𝑑 − ⟨𝑑𝑢|𝑑𝑢⟩𝛼𝑑

∗𝛽
𝑢
∗𝛼𝑑𝛽𝑢 − ⟨𝑑𝑢|𝑑𝑑⟩𝛼𝑑

∗𝛽
𝑢
∗𝛼𝑑𝛽𝑑 + 

⟨𝑑𝑑|𝑢𝑢⟩𝛼𝑑
∗𝛽

𝑑
∗𝛼𝑢𝛽𝑢 + ⟨𝑑𝑑|𝑢𝑑⟩𝛼𝑑

∗𝛽
𝑑
∗𝛼𝑢𝛽𝑑 − ⟨𝑑𝑑|𝑑𝑢⟩𝛼𝑑

∗𝛽
𝑑
∗𝛼𝑑𝛽𝑢 − ⟨𝑑𝑑|𝑑𝑑⟩𝛼𝑑

∗𝛽
𝑑
∗𝛼𝑑𝛽𝑑 = 

With orthogonality in ⟨𝑢𝑢|𝑢𝑑⟩ etc. we get 

𝛼𝑢
∗𝛽𝑢

∗𝛼𝑢𝛽𝑢 + 𝛼𝑢
∗𝛽𝑑

∗𝛼𝑢𝛽𝑑 − 𝛼𝑑
∗𝛽

𝑢
∗𝛼𝑑𝛽𝑢 − 𝛼𝑑

∗𝛽
𝑑
∗𝛼𝑑𝛽𝑑 = 

𝛼𝑢
∗𝛼𝑢𝛽𝑢

∗𝛽𝑢 + 𝛼𝑢
∗𝛼𝑢𝛽𝑑

∗𝛽𝑑 − 𝛼𝑑
∗𝛼𝑑𝛽𝑢

∗𝛽𝑢 − 𝛼𝑑
∗𝛼𝑑𝛽𝑑

∗𝛽𝑑 = 

𝛼𝑢
∗𝛼𝑢(𝛽𝑢

∗𝛽𝑢 + 𝛽𝑑
∗𝛽𝑑) − 𝛼𝑑

∗𝛼𝑑(𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑) = 

(𝛼𝑢
∗𝛼𝑢 − 𝛼𝑑

∗𝛼𝑑)(𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑) = 

(𝛼𝑢
∗𝛼𝑢 − 𝛼𝑑

∗𝛼𝑑) 

This is the same result as in Alice’s system. 

Reflections:  

|𝑢𝑢⟩ is not simply the stacked vector (

1
0
1
0

), but instead (

1
0
0
0

). It’s built out of the tensor product:  

(
1
0
)⨂(

1
0
) =  (

1 (
1
0
)

0 (
1
0
)
) = (

1
0
0
0

) 

The same holds for the other combinations. 

The operator 𝜎𝑧 = (
1 0
0 −1

) can’t act on a state-vector with four components. Instead we need the 

tensor product of both Alice’s and Bob’s operator 𝜏𝑧 = (
1 0
0 −1

): 𝜎𝑧⨂𝜏𝑧. 

We concentrate on Alice and let Bob alone, his operator will be the identity: 𝜏𝑧 = (
1 0
0 1

). 

𝜎𝑧𝑖 ≔ 𝜎𝑧⨂𝐼 = (
1 0
0 −1

)⨂(
1 0
0 1

) = 

(
1(
1 0
0 1

) 0 (
1 0
0 1

)

0 (
1 0
0 1

) −1(
1 0
0 1

)
) = 
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(

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

) 

We have the four state-vectors: 

|𝑢𝑢⟩ = (
1
0
)⨂(

1
0
) =  (

1 (
1
0
)

0 (
1
0
)
) = (

1
0
0
0

) 

|𝑢𝑑⟩ = (
1
0
)⨂(

0
1
) =  (

1 (
0
1
)

0 (
0
1
)
) = (

0
1
0
0

) 

|𝑑𝑢⟩ = (
0
1
)⨂(

1
0
) =  (

0 (
1
0
)

1 (
1
0
)
) = (

0
0
1
0

) 

|𝑑𝑑⟩ = (
0
1
)⨂(

0
1
) =  (

0 (
0
1
)

1 (
0
1
)
) = (

0
0
0
1

) 

Now we can check the effect of this new 𝜎𝑧𝑖 on the combined vectors |𝑢𝑢⟩ etc.  

𝜎𝑧𝑖|𝑢𝑢⟩ = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)(

1
0
0
0

) = (

1
0
0
0

) 

𝜎𝑧𝑖|𝑢𝑑⟩ = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)(

0
1
0
0

) = (

0
1
0
0

) 

𝜎𝑧𝑖|𝑑𝑢⟩ = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)(

0
0
1
0

) = (

0
0
−1
0

) = −(

0
0
1
0

) 

𝜎𝑧𝑖|𝑑𝑑⟩ = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)(

0
0
0
1

) = (

0
0
0
−1

) = −(

0
0
0
1

) 

The results are as expected.  

We will check one special case. As the operators 𝜎𝑧 and 𝜏𝑧 both change the sign of the “d”-

component, so 𝜎𝑧𝜏𝑧 ≔ 𝜎𝑧⨂𝜏𝑧 = (
1 0
0 −1

)⨂(
1 0
0 −1

) should leave |𝑑𝑑⟩ intact. 

𝜎𝑧𝜏𝑧 = (
1(
1 0
0 −1

) 0 (
1 0
0 1

)

0 (
1 0
0 1

) −1(
1 0
0 −1

)
) = 
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(

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

) 

We check: 

𝜎𝑧𝜏𝑧|𝑑𝑑⟩ = (

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

)(

0
0
0
1

) = (

0
0
0
1

) 

and get the correct result: 

𝜎𝑧𝜏𝑧|𝑑𝑑⟩ = |𝑑𝑑⟩ 

  



The exercises of „Quantum Mechanics, The Theoretical Minimum“ 

 page 58 of 106 

Exercise 6.6 

Assume Charlie has prepared the two spins in the singlet state. This time, Bob measures 𝜏𝑦 and Alice 

measures 𝜎𝑥. What is the expectation value of 𝜎𝑥𝜏𝑦? 

What does this say about the correlation between the two measurements? 

|𝑠𝑖𝑛𝑔⟩ =
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩) 

⟨𝑠𝑖𝑛𝑔| =
1

√2
(⟨𝑢𝑑| − ⟨𝑑𝑢|) 

* * * * * * * * * * 

〈𝜎𝑥𝜏𝑦〉 = ⟨𝑠𝑖𝑛𝑔|𝜎𝑥𝜏𝑦|𝑠𝑖𝑛𝑔⟩ = 

⟨𝑠𝑖𝑛𝑔|𝜎𝑥𝜏𝑦|
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩)⟩ = 

⟨𝑠𝑖𝑛𝑔|𝜎𝑥|
1

√2
(−𝑖|𝑢𝑢⟩ − 𝑖|𝑑𝑑⟩)⟩ = 

⟨𝑠𝑖𝑛𝑔|𝜎𝑥|
−𝑖

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩)⟩ = 

⟨𝑠𝑖𝑛𝑔|
−𝑖

√2
(|𝑑𝑢⟩ + |𝑢𝑑⟩)⟩ = 

|𝑠𝑖𝑛𝑔⟩ is not an eigenvector of 𝜎𝑥𝜏𝑦.  

⟨
1

√2
(⟨𝑢𝑑| − ⟨𝑑𝑢|)|

−𝑖

√2
(|𝑑𝑢⟩ + |𝑢𝑑⟩)⟩ = 

−𝑖

2
(⟨𝑢𝑑|𝑑𝑢⟩ + ⟨𝑢𝑑|𝑢𝑑⟩ − ⟨𝑑𝑢|𝑑𝑢⟩ − ⟨𝑑𝑢|𝑢𝑑⟩) = 

−𝑖

2
(0 + 1 − 1 − 0)) = 0 

The expectation value 〈𝜎𝑥𝜏𝑦〉 is 0. 

What does this say about the correlation between the two measurements? The two measurements 

are not correlated, the results of the measurements are independent.  

  



The exercises of „Quantum Mechanics, The Theoretical Minimum“ 

 page 59 of 106 

Exercise 6.7 

Next (after Charlie has had prepared the two spins in the singlet state), Charlie prepares the spins in a 

different state, called |𝑇1⟩, where 

|𝑇1⟩ =
1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩) 

T stands for triplet. The triplet states are completely different from the states in the coin and die 

examples. What are the expectation values of the operators 𝜎𝑧𝜏𝑧, 𝜎𝑥𝜏𝑥, and 𝜎𝑦𝜏𝑦? 

Notice what a difference a sign can make. 

* * * * * * * * * * 

⟨𝑇1| =
1

√2
(⟨𝑢𝑑| + ⟨𝑑𝑢|) 

The expectation value of 〈𝜎𝑧𝜏𝑧〉: 

〈𝜎𝑧𝜏𝑧〉 = ⟨𝑇1|𝜎𝑧𝜏𝑧|𝑇1⟩ = 

⟨𝑇1|𝜎𝑧𝜏𝑧|
1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩)⟩ = 

⟨𝑇1|𝜎𝑧|
1

√2
(−|𝑢𝑑⟩ + |𝑑𝑢⟩)⟩ = 

⟨𝑇1|
1

√2
(−|𝑢𝑑⟩ − |𝑑𝑢⟩)⟩ = 

|𝑇1⟩ is eigenvector of 𝜎𝑧𝜏𝑧 with eigenvalue of -1. 

⟨
1

√2
(⟨𝑢𝑑| + ⟨𝑑𝑢|)|

1

√2
(−|𝑢𝑑⟩ − |𝑑𝑢⟩)⟩ = 

1

2
(−⟨𝑢𝑑|𝑢𝑑⟩ − ⟨𝑢𝑑|𝑑𝑢⟩ − ⟨𝑑𝑢|𝑢𝑑⟩ − ⟨𝑑𝑢|𝑑𝑢⟩) = 

1

2
(−1 − 0 − 0 − 1)) = −1 

The expectation value 〈𝜎𝑧𝜏𝑧〉 is −1, correlation. 

 

The expectation value of 〈𝜎𝑥𝜏𝑥〉: 

〈𝜎𝑥𝜏𝑥〉 = ⟨𝑇1|𝜎𝑥𝜏𝑥|𝑇1⟩ = 

⟨𝑇1|𝜎𝑥𝜏𝑥|
1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩)⟩ = 

⟨𝑇1|𝜎𝑥|
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩)⟩ = 

⟨𝑇1|
1

√2
(|𝑑𝑢⟩ + |𝑢𝑑⟩)⟩ = 

|𝑇1⟩ is eigenvector of 𝜎𝑥𝜏𝑥 with eigenvalue 1. 
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⟨
1

√2
(⟨𝑢𝑑| + ⟨𝑑𝑢|)|

1

√2
(|𝑑𝑢⟩ + |𝑢𝑑⟩)⟩ = 

1

2
(⟨𝑢𝑑|𝑑𝑢⟩ + ⟨𝑢𝑑|𝑢𝑑⟩ + ⟨𝑑𝑢|𝑑𝑢⟩ + ⟨𝑑𝑢|𝑢𝑑⟩) = 

1

2
(0 + 1 + 1 + 0) = 1 

The expectation value 〈𝜎𝑥𝜏𝑥〉 is 1, correlation. 

 

The expectation value of 〈𝜎𝑦𝜏𝑦〉: 

〈𝜎𝑦𝜏𝑦〉 = ⟨𝑇1|𝜎𝑦𝜏𝑦|𝑇1⟩ = 

⟨𝑇1|𝜎𝑦𝜏𝑦|
1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩)⟩ = 

⟨𝑇1|𝜎𝑦|
𝑖

√2
(−|𝑢𝑢⟩ + |𝑑𝑑⟩)⟩ = 

⟨𝑇1|
𝑖

√2
(−𝑖|𝑑𝑢⟩ − 𝑖|𝑢𝑑⟩)⟩ = 

⟨𝑇1|
1

√2
(|𝑑𝑢⟩ + |𝑢𝑑⟩)⟩ = 

|𝑇1⟩ is eigenvector of 𝜎𝑦𝜏𝑦 with eigenvalue 1. 

⟨
1

√2
(⟨𝑢𝑑| + ⟨𝑑𝑢|)|

1

√2
(|𝑑𝑢⟩ + |𝑢𝑑⟩)⟩ = 

1

2
(⟨𝑢𝑑|𝑑𝑢⟩ + ⟨𝑢𝑑|𝑢𝑑⟩ + ⟨𝑑𝑢|𝑑𝑢⟩ + ⟨𝑑𝑢|𝑢𝑑⟩) = 

1

2
(0 + 1 + 1 + 0) = 1 

The expectation value 〈𝜎𝑦𝜏𝑦〉 is 1, correlation. 

 

What a difference a sign can make: if we change the singlet state to the triplet state, the behavior 

changes. With the singlet state, the correlation was always −1, now the expectation values changes: 

〈𝜎𝑧𝜏𝑧〉 would become −1, 〈𝜎𝑥𝜏𝑥〉 = 1 and 〈𝜎𝑦𝜏𝑦〉 = 1 . 
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Exercise 6.8 

Calculate the expectation values of the operators 𝜎𝑧𝜏𝑧, 𝜎𝑥𝜏𝑥, and 𝜎𝑦𝜏𝑦 for the other two entangled 

triplet states: 

|𝑇2⟩ =
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩) 

|𝑇3⟩ =
1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩) 

(Addendum: at the end of this exercise we check the expectation values for the singlet state too.) 

* * * * * * * * * * 

First |𝑇2⟩ =
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩) 

The expectation value of 〈𝜎𝑧𝜏𝑧〉: 

〈𝜎𝑧𝜏𝑧〉 = ⟨𝑇2|𝜎𝑧𝜏𝑧|𝑇2⟩ = 

⟨𝑇2|𝜎𝑧𝜏𝑧|
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩)⟩ = 

⟨𝑇2|𝜎𝑧|
1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩)⟩ = 

⟨𝑇2|
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩)⟩ = 

|𝑇2⟩ is eigenvector of 𝜎𝑧𝜏𝑧 with eigenvalue 1. 

⟨
1

√2
(⟨𝑢𝑢| + ⟨𝑑𝑑|)|

1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩)⟩ = 

1

2
(⟨𝑢𝑢|𝑢𝑢⟩ + ⟨𝑢𝑢|𝑑𝑑⟩ + ⟨𝑑𝑑|𝑢𝑢⟩ + ⟨𝑑𝑑|𝑑𝑑⟩) = 

1

2
(1 + 0 + 0 + 1)) = 1 

The expectation value 〈𝜎𝑧𝜏𝑧〉 is 1, correlation. 

 

The expectation value of 〈𝜎𝑥𝜏𝑥〉: 

〈𝜎𝑥𝜏𝑥〉 = ⟨𝑇2|𝜎𝑥𝜏𝑥|𝑇2⟩ = 

⟨𝑇2|𝜎𝑥𝜏𝑥|
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩)⟩ = 

⟨𝑇2|𝜎𝑥|
1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩)⟩ = 

⟨𝑇2|
1

√2
(|𝑑𝑑⟩ + |𝑢𝑢⟩)⟩ = 

|𝑇2⟩ is eigenvector of 𝜎𝑥𝜏𝑥. 
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⟨
1

√2
(⟨𝑢𝑢| + ⟨𝑑𝑑|)|

1

√2
(|𝑑𝑑⟩ + |𝑢𝑢⟩)⟩ = 

1

2
(⟨𝑢𝑢|𝑑𝑑⟩ + ⟨𝑢𝑢|𝑢𝑢⟩ + ⟨𝑑𝑑|𝑑𝑑⟩ + ⟨𝑑𝑑|𝑢𝑢⟩) = 

1

2
(0 + 1 + 1 + 0) = 1 

The expectation value 〈𝜎𝑥𝜏𝑥〉 is 1, correlation. 

 

The expectation value of 〈𝜎𝑦𝜏𝑦〉: 

〈𝜎𝑦𝜏𝑦〉 = ⟨𝑇2|𝜎𝑦𝜏𝑦|𝑇2⟩ = 

⟨𝑇2|𝜎𝑦𝜏𝑦|
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩)⟩ = 

⟨𝑇2|𝜎𝑦|
𝑖

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩)⟩ = 

⟨𝑇2|
𝑖

√2
(𝑖|𝑑𝑑⟩ + 𝑖|𝑢𝑢⟩)⟩ = 

⟨𝑇2|
1

√2
(−|𝑑𝑑⟩ − |𝑢𝑢⟩)⟩ = 

|𝑇2⟩ is eigenvector of 𝜎𝑦𝜏𝑦 with eigenvalue −1. 

⟨
1

√2
(⟨𝑢𝑢| + ⟨𝑑𝑑|)|

1

√2
(−|𝑑𝑑⟩ − |𝑢𝑢⟩)⟩ = 

1

2
(−⟨𝑢𝑢|𝑑𝑑⟩ − ⟨𝑢𝑢|𝑢𝑢⟩ − ⟨𝑑𝑑|𝑑𝑑⟩ − ⟨𝑑𝑑|𝑢𝑢⟩) = 

1

2
(−0 − 1 − 1 − 0) = −1 

The expectation value 〈𝜎𝑦𝜏𝑦〉 is −1, correlation. 
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Second |𝑇3⟩ =
1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩) 

The expectation value of 〈𝜎𝑧𝜏𝑧〉: 

〈𝜎𝑧𝜏𝑧〉 = ⟨𝑇3|𝜎𝑧𝜏𝑧|𝑇3⟩ = 

⟨𝑇3|𝜎𝑧𝜏𝑧|
1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩)⟩ = 

⟨𝑇3|𝜎𝑧|
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩)⟩ = 

⟨𝑇3|
1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩)⟩ = 

|𝑇3⟩ is eigenvector of 𝜎𝑧𝜏𝑧 with eigenvalue 1. 

⟨
1

√2
(⟨𝑢𝑢| − ⟨𝑑𝑑|)|

1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩)⟩ = 

1

2
(⟨𝑢𝑢|𝑢𝑢⟩ − ⟨𝑢𝑢|𝑑𝑑⟩ − ⟨𝑑𝑑|𝑢𝑢⟩ + ⟨𝑑𝑑|𝑑𝑑⟩) = 

1

2
(1 − 0 − 0 + 1)) = 1 

The expectation value 〈𝜎𝑧𝜏𝑧〉 is 1, correlation. 

 

The expectation value of 〈𝜎𝑥𝜏𝑥〉: 

〈𝜎𝑥𝜏𝑥〉 = ⟨𝑇3|𝜎𝑥𝜏𝑥|𝑇3⟩ = 

⟨𝑇3|𝜎𝑥𝜏𝑥|
1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩)⟩ = 

⟨𝑇3|𝜎𝑥|
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩)⟩ = 

⟨𝑇3|
1

√2
(|𝑑𝑑⟩ − |𝑢𝑢⟩)⟩ = 

|𝑇3⟩ is eigenvector of 𝜎𝑥𝜏𝑥 with eigenvalue −1. 

⟨
1

√2
(⟨𝑢𝑢| − ⟨𝑑𝑑|)|

1

√2
(|𝑑𝑑⟩ − |𝑢𝑢⟩)⟩ = 

1

2
(⟨𝑢𝑢|𝑑𝑑⟩ − ⟨𝑢𝑢|𝑢𝑢⟩ − ⟨𝑑𝑑|𝑑𝑑⟩ + ⟨𝑑𝑑|𝑢𝑢⟩) = 

1

2
(0 − 1 − 1 + 0) = −1 

The expectation value 〈𝜎𝑥𝜏𝑥〉 is −1, correlation. 
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The expectation value of 〈𝜎𝑦𝜏𝑦〉: 

〈𝜎𝑦𝜏𝑦〉 = ⟨𝑇3|𝜎𝑦𝜏𝑦|𝑇3⟩ = 

⟨𝑇3|𝜎𝑦𝜏𝑦|
1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩)⟩ = 

⟨𝑇3|𝜎𝑦|
𝑖

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩)⟩ = 

⟨𝑇3|
𝑖

√2
(𝑖|𝑑𝑑⟩ − 𝑖|𝑢𝑢⟩)⟩ = 

⟨𝑇3|
1

√2
(−|𝑑𝑑⟩ + |𝑢𝑢⟩)⟩ = 

|𝑇3⟩ is eigenvector of 𝜎𝑦𝜏𝑦 with eigenvalue 1. 

⟨
1

√2
(⟨𝑢𝑢| − ⟨𝑑𝑑|)|

1

√2
(−|𝑑𝑑⟩ + |𝑢𝑢⟩)⟩ = 

1

2
(−⟨𝑢𝑢|𝑑𝑑⟩ + ⟨𝑢𝑢|𝑢𝑢⟩ + ⟨𝑑𝑑|𝑑𝑑⟩ − ⟨𝑑𝑑|𝑢𝑢⟩) = 

1

2
(−0 + 1 + 1 − 0) = 1 

The expectation value 〈𝜎𝑦𝜏𝑦〉 is 1, correlation. 

 

Addendum: for the singlet state we check these expectation values too. 

Assume Charlie has prepared the two spins in the singlet state. What are the expectation values of 

operators σzτz, σxτx, and σyτy? 

|𝑠𝑖𝑛𝑔⟩ =
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩) 

⟨𝑠𝑖𝑛𝑔| =
1

√2
(⟨𝑢𝑑| − ⟨𝑑𝑢|) 

 

〈𝜎𝑥𝜏𝑥〉 = ⟨𝑠𝑖𝑛𝑔|𝜎𝑥𝜏𝑥|𝑠𝑖𝑛𝑔⟩ = 

⟨𝑠𝑖𝑛𝑔|𝜎𝑥𝜏𝑥|
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩)⟩ = 

⟨𝑠𝑖𝑛𝑔|𝜎𝑥|
1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩)⟩ = 

⟨𝑠𝑖𝑛𝑔|
1

√2
(|𝑑𝑢⟩ − |𝑢𝑑⟩)⟩ = 

|𝑠𝑖𝑛𝑔⟩ is eigenvector of 𝜎𝑥𝜏𝑥 with eigenvalue -1, the expectation value of 〈𝜎𝑥𝜏𝑥〉 is -1. 
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〈𝜎𝑦𝜏𝑦〉 = ⟨𝑠𝑖𝑛𝑔|𝜎𝑦𝜏𝑦|𝑠𝑖𝑛𝑔⟩ = 

⟨𝑠𝑖𝑛𝑔|𝜎𝑦𝜏𝑦|
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩)⟩ = 

⟨𝑠𝑖𝑛𝑔|𝜎𝑦|
𝑖

√2
(−|𝑢𝑢⟩ − |𝑑𝑑⟩)⟩ = 

⟨𝑠𝑖𝑛𝑔|
𝑖

√2
(−𝑖|𝑑𝑢⟩ + 𝑖|𝑢𝑑⟩)⟩ = 

⟨𝑠𝑖𝑛𝑔|
1

√2
(|𝑑𝑢⟩ − |𝑢𝑑⟩)⟩ = 

|𝑠𝑖𝑛𝑔⟩ is eigenvector of 𝜎𝑦𝜏𝑦 with eigenvalue -1, the expectation value of 〈𝜎𝑥𝜏𝑥〉 is -1. 

 

〈𝜎𝑧𝜏𝑧〉 = ⟨𝑠𝑖𝑛𝑔|𝜎𝑧𝜏𝑧|𝑠𝑖𝑛𝑔⟩ = 

⟨𝑠𝑖𝑛𝑔|𝜎𝑧𝜏𝑧|
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩)⟩ = 

⟨𝑠𝑖𝑛𝑔|𝜎𝑧|
1

√2
(−|𝑢𝑑⟩ − |𝑑𝑢⟩)⟩ = 

⟨𝑠𝑖𝑛𝑔|
1

√2
(−|𝑢𝑑⟩ + |𝑑𝑢⟩)⟩ = 

|𝑠𝑖𝑛𝑔⟩ is eigenvector of 𝜎𝑧𝜏𝑧 with eigenvalue -1, the expectation value of 〈𝜎𝑥𝜏𝑥〉 is -1. 

 

We get the following matrix: 

〈 〉 𝑧𝑧 𝑥𝑥 𝑦𝑦
𝑇1 −1 1 1
𝑇2 1 1 −1
𝑇3 1 −1 1
𝑠𝑖𝑛𝑔 −1 −1 −1
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Exercise 6.9 

Prove that the four vectors |𝑠𝑖𝑛𝑔⟩, |𝑇1⟩, |𝑇2⟩, |𝑇3⟩ are eigenvectors of 𝜎 ∙ 𝜏 : 

𝜎 ∙ 𝜏 = 𝜎𝑥𝜏𝑥 + 𝜎𝑦𝜏𝑦 + 𝜎𝑧𝜏𝑧 

What are their eigenvalues? 

|𝑠𝑖𝑛𝑔⟩ =
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩)  

|𝑇1⟩ =
1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩) |𝑇2⟩ =

1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩) |𝑇3⟩ =

1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩) 

* * * * * * * * * * 

The complete list of tensor product states: 

𝜎𝑧|𝑢𝑢⟩ = |𝑢𝑢⟩ 𝜎𝑧|𝑢𝑑⟩ = |𝑢𝑑⟩ 𝜎𝑧|𝑑𝑢⟩ = −|𝑑𝑢⟩ 𝜎𝑧|𝑑𝑑⟩ = −|𝑑𝑑⟩ 

𝜎𝑥|𝑢𝑢⟩ = |𝑑𝑢⟩ 𝜎𝑥|𝑢𝑑⟩ = |𝑑𝑑⟩ 𝜎𝑥|𝑑𝑢⟩ = |𝑢𝑢⟩ 𝜎𝑥|𝑑𝑑⟩ = |𝑢𝑑⟩ 

𝜎𝑦|𝑢𝑢⟩ = 𝑖|𝑑𝑢⟩ 𝜎𝑦|𝑢𝑑⟩ = 𝑖|𝑑𝑑⟩ 𝜎𝑦|𝑑𝑢⟩ = −𝑖|𝑢𝑢⟩ 𝜎𝑦|𝑑𝑑⟩ = −𝑖|𝑢𝑑⟩ 

𝜏𝑧|𝑢𝑢⟩ = |𝑢𝑢⟩ 𝜏𝑧|𝑢𝑑⟩ = −|𝑢𝑑⟩ 𝜏𝑧|𝑑𝑢⟩ = |𝑑𝑢⟩ 𝜏𝑧|𝑑𝑑⟩ = −|𝑑𝑑⟩ 

𝜏𝑥|𝑢𝑢⟩ = |𝑢𝑑⟩ 𝜏𝑥|𝑢𝑑⟩ = |𝑢𝑢⟩ 𝜏𝑥|𝑑𝑢⟩ = |𝑑𝑑⟩ 𝜏𝑥|𝑑𝑑⟩ = |𝑑𝑢⟩ 

𝜏𝑦|𝑢𝑢⟩ = 𝑖|𝑢𝑑⟩ 𝜏𝑦|𝑢𝑑⟩ = −𝑖|𝑢𝑢⟩ 𝜏𝑦|𝑑𝑢⟩ = 𝑖|𝑑𝑑⟩ 𝜏𝑦|𝑑𝑑⟩ = −𝑖|𝑑𝑢⟩ 

Applied to |𝑠𝑖𝑛𝑔⟩: 

𝜎𝑥𝜏𝑥|𝑠𝑖𝑛𝑔⟩ = 𝜎𝑥𝜏𝑥
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩) = 𝜎𝑥

1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩) =

1

√2
(|𝑑𝑢⟩ − |𝑢𝑑⟩) = −|𝑠𝑖𝑛𝑔⟩ 

𝜎𝑦𝜏𝑦|𝑠𝑖𝑛𝑔⟩ = 𝜎𝑦𝜏𝑦
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩) = 𝜎𝑦

1

√2
(−𝑖|𝑢𝑢⟩ − 𝑖|𝑑𝑑⟩) =

1

√2
(|𝑑𝑢⟩ − |𝑢𝑑⟩) = −|𝑠𝑖𝑛𝑔⟩ 

𝜎𝑧𝜏𝑧|𝑠𝑖𝑛𝑔⟩ = 𝜎𝑧𝜏𝑧
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩) = 𝜎𝑧

1

√2
(−|𝑢𝑑⟩ − |𝑑𝑢⟩) =

1

√2
(−|𝑢𝑑⟩ + |𝑑𝑢⟩) = −|𝑠𝑖𝑛𝑔⟩ 

Result: 𝜎 ∙ 𝜏 |𝑠𝑖𝑛𝑔⟩ = −3|𝑠𝑖𝑛𝑔⟩ 

|𝑠𝑖𝑛𝑔⟩ is eigenvector of 𝜎 ∙ 𝜏  with eigenvalue -3. 

 

𝜎 ∙ 𝜏  applied to |𝑇1⟩ gives: 

𝜎𝑥𝜏𝑥|𝑇1⟩ = 𝜎𝑥𝜏𝑥
1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩) = 𝜎𝑥

1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩) =

1

√2
(|𝑑𝑢⟩ + |𝑢𝑑⟩) = |𝑇1⟩ 

𝜎𝑦𝜏𝑦|𝑇1⟩ = 𝜎𝑦𝜏𝑦
1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩) = 𝜎𝑦

1

√2
(−𝑖|𝑢𝑢⟩ + 𝑖|𝑑𝑑⟩) =

1

√2
(|𝑑𝑢⟩ + |𝑢𝑑⟩) = |𝑇1⟩ 

𝜎𝑧𝜏𝑧|𝑇1⟩ = 𝜎𝑧𝜏𝑧
1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩) = 𝜎𝑧

1

√2
(−|𝑢𝑑⟩ + |𝑑𝑢⟩) =

1

√2
(−|𝑢𝑑⟩ − |𝑑𝑢⟩) = −|𝑇1⟩ 

Result: 𝜎 ∙ 𝜏 |𝑇1⟩ = |𝑇1⟩ 

|𝑇1⟩ is eigenvector of 𝜎 ∙ 𝜏  with eigenvalue 1. 
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𝜎 ∙ 𝜏  applied to |𝑇2⟩ gives: 

𝜎𝑥𝜏𝑥|𝑇2⟩ = 𝜎𝑥𝜏𝑥
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩) = 𝜎𝑥

1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩) =

1

√2
(|𝑑𝑑⟩ + |𝑢𝑢⟩) = |𝑇2⟩ 

𝜎𝑦𝜏𝑦|𝑇2⟩ = 𝜎𝑦𝜏𝑦
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩) = 𝜎𝑦

1

√2
(𝑖|𝑢𝑑⟩ − 𝑖|𝑑𝑢⟩) =

1

√2
(−|𝑑𝑑⟩ − |𝑢𝑢⟩) = −|𝑇2⟩ 

𝜎𝑧𝜏𝑧|𝑇2⟩ = 𝜎𝑧𝜏𝑧
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩) = 𝜎𝑧

1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩) =

1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩) = |𝑇2⟩ 

Result: 𝜎 ∙ 𝜏 |𝑇2⟩ = |𝑇2⟩ 

|𝑇2⟩ is eigenvector of 𝜎 ∙ 𝜏  with eigenvalue 1. 

 

𝜎 ∙ 𝜏  applied to |𝑇3⟩ gives: 

𝜎𝑥𝜏𝑥|𝑇3⟩ = 𝜎𝑥𝜏𝑥
1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩) = 𝜎𝑥

1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩) =

1

√2
(|𝑑𝑑⟩ − |𝑢𝑢⟩) = −|𝑇3⟩ 

𝜎𝑦𝜏𝑦|𝑇3⟩ = 𝜎𝑦𝜏𝑦
1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩) = 𝜎𝑦

1

√2
(𝑖|𝑢𝑑⟩ + 𝑖|𝑑𝑢⟩) =

1

√2
(−|𝑑𝑑⟩ + |𝑢𝑢⟩) = |𝑇3⟩ 

𝜎𝑧𝜏𝑧|𝑇3⟩ = 𝜎𝑧𝜏𝑧
1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩) = 𝜎𝑧

1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩) =

1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩) = |𝑇3⟩ 

Result: 𝜎 ∙ 𝜏 |𝑇3⟩ = |𝑇3⟩ 

|𝑇3⟩ is eigenvector of 𝜎 ∙ 𝜏  with eigenvalue 1. 

 

|𝑠𝑖𝑛𝑔⟩ is eigenvector with eigenvalue -3, 

|𝑇1⟩, |𝑇2⟩ und |𝑇3⟩ are eigenvectors with eigenvalue 1, they are degenerated. 
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Exercise 6.10 

A system of two spins has the Hamiltonian: 

ℋ =
𝜔ℏ

2
𝜎 ∙ 𝜏  

Question 1) 

What are the possible energies of the system, and what are the eigenvectors of the Hamiltonian? 

Question 2) 

Suppose the system starts in the state |𝑢𝑢⟩.  

What is the state at any later time?  

Answer the same question for initial states of |𝑢𝑑⟩, |𝑑𝑢⟩, |𝑑𝑑. 

* * * * * * * * * * 

Question 1) 

The Hamilton-operator for the 2-spin-system: 

ℋ =
𝜔ℏ

2
𝜎 ∙ 𝜏  

From exercise 6.9 we know the eigenvectors and eigenvalues:  

|𝑠𝑖𝑛𝑔⟩ with eigenvalue -3, |𝑇1⟩, |𝑇2⟩ und |𝑇3⟩ with eigenvalue 1. 

This gives the energies to −
3𝜔ℏ

2
 for |𝑠𝑖𝑛𝑔⟩ and each 

𝜔ℏ

2
 for |𝑇1⟩, |𝑇2⟩ and |𝑇3⟩. 

Question 2) 

ℋ|𝑢𝑢⟩ =
𝜔ℏ

2
𝜎 ∙ 𝜏 |𝑢𝑢⟩ 

We use 𝜎 ∙ 𝜏 = 𝜎𝑥𝜏𝑥 + 𝜎𝑦𝜏𝑦 + 𝜎𝑧𝜏𝑧 and apply this to |𝑢𝑢⟩ (we omit the factor 
𝜔ℏ

2
 and add it in the 

end): 

𝜎𝑥𝜏𝑥|𝑢𝑢⟩ = 𝜎𝑥|𝑢𝑑⟩ = |𝑑𝑑⟩,   gives  
𝜔ℏ

2
𝜎𝑥𝜏𝑥|𝑢𝑢⟩ =

𝜔ℏ

2
|𝑑𝑑⟩ 

𝜎𝑦𝜏𝑦|𝑢𝑢⟩ = 𝜎𝑦𝑖|𝑢𝑑⟩ = −|𝑑𝑑⟩,   gives  
𝜔ℏ

2
𝜎𝑦𝜏𝑦|𝑢𝑢⟩ = −

𝜔ℏ

2
|𝑑𝑑⟩ 

𝜎𝑧𝜏𝑧|𝑢𝑢⟩ = 𝜎𝑧|𝑢𝑢⟩ = |𝑢𝑢⟩,   gives  
𝜔ℏ

2
𝜎𝑧𝜏𝑧|𝑢𝑢⟩ =

𝜔ℏ

2
|𝑢𝑢⟩ 

Building the sum, we get:  

ℋ|𝑢𝑢⟩ =
𝜔ℏ

2
|𝑢𝑢⟩ 

The other combinations analog: 

ℋ|𝑢𝑑⟩ =
𝜔ℏ

2
𝜎 ∙ 𝜏 |𝑢𝑑⟩ 

𝜎𝑥𝜏𝑥|𝑢𝑑⟩ = 𝜎𝑥|𝑢𝑢⟩ = |𝑑𝑢⟩,   gives  
𝜔ℏ

2
𝜎𝑥𝜏𝑥|𝑢𝑑⟩ =

𝜔ℏ

2
|𝑑𝑢⟩ 
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𝜎𝑦𝜏𝑦|𝑢𝑑⟩ = 𝜎𝑦 − 𝑖|𝑢𝑢⟩ = |𝑑𝑢⟩,  gives  
𝜔ℏ

2
𝜎𝑦𝜏𝑦|𝑢𝑑⟩ =

𝜔ℏ

2
|𝑑𝑢⟩ 

𝜎𝑧𝜏𝑧|𝑢𝑑⟩ = 𝜎𝑧 − |𝑢𝑑⟩ = −|𝑢𝑑⟩,  gives  
𝜔ℏ

2
𝜎𝑧𝜏𝑧|𝑢𝑑⟩ = −

𝜔ℏ

2
|𝑢𝑑⟩ 

Building the sum, we get:  

ℋ|𝑢𝑑⟩ = 𝜔ℏ|𝑑𝑢⟩ −
𝜔ℏ

2
|𝑢𝑑⟩ 

 

ℋ|𝑑𝑢⟩ =
𝜔ℏ

2
𝜎 ∙ 𝜏 |𝑑𝑢⟩ 

𝜎𝑥𝜏𝑥|𝑑𝑢⟩ = 𝜎𝑥|𝑑𝑑⟩ = |𝑢𝑑⟩,   gives  
𝜔ℏ

2
𝜎𝑥𝜏𝑥|𝑑𝑢⟩ =

𝜔ℏ

2
|𝑢𝑑⟩ 

𝜎𝑦𝜏𝑦|𝑑𝑢⟩ = 𝜎𝑦𝑖|𝑑𝑑⟩ = |𝑢𝑑⟩,   gives  
𝜔ℏ

2
𝜎𝑦𝜏𝑦|𝑑𝑢⟩ =

𝜔ℏ

2
|𝑢𝑑⟩ 

𝜎𝑧𝜏𝑧|𝑑𝑢⟩ = 𝜎𝑧|𝑑𝑢⟩ = −|𝑑𝑢⟩,   gives  
𝜔ℏ

2
𝜎𝑧𝜏𝑧|𝑑𝑢⟩ = −

𝜔ℏ

2
|𝑑𝑢⟩ 

Building the sum, we get:  

ℋ|𝑑𝑢⟩ = 𝜔ℏ|𝑢𝑑⟩ −
𝜔ℏ

2
|𝑑𝑢⟩ 

 

ℋ|𝑑𝑑⟩ =
𝜔ℏ

2
𝜎 ∙ 𝜏 |𝑑𝑑⟩ 

𝜎𝑥𝜏𝑥|𝑑𝑑⟩ = 𝜎𝑥|𝑑𝑢⟩ = |𝑢𝑢⟩,   gives  
𝜔ℏ

2
𝜎𝑥𝜏𝑥|𝑑𝑑⟩ =

𝜔ℏ

2
|𝑢𝑢⟩ 

𝜎𝑦𝜏𝑦|𝑑𝑑⟩ = 𝜎𝑦 − 𝑖|𝑑𝑢⟩ = |𝑢𝑢⟩,  gives  
𝜔ℏ

2
𝜎𝑦𝜏𝑦|𝑑𝑑⟩ =

𝜔ℏ

2
|𝑢𝑢⟩ 

𝜎𝑧𝜏𝑧|𝑑𝑑⟩ = 𝜎𝑧 − |𝑑𝑑⟩ = |𝑑𝑑⟩,   gives  
𝜔ℏ

2
𝜎𝑧𝜏𝑧|𝑑𝑑⟩ =

𝜔ℏ

2
|𝑑𝑑⟩ 

Building the sum, we get:  

ℋ|𝑑𝑑⟩ = 𝜔ℏ|𝑢𝑑⟩ +
𝜔ℏ

2
|𝑑𝑑⟩ 
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Question 2 targets to chapter 4 with the aim of developing the time depend Schrödinger-equation. 

We use “4.13 Recipe for a Schrödinger Ket” to perform this. 

Recipe: 

1. The Hamilton-operator:  

ℋ =
𝜔ℏ

2
𝜎 ∙ 𝜏  

2. We prepare an initial state |𝜓(0)⟩: 

|𝜓(0)⟩ = |𝑢𝑢⟩ 

3. We calculate eigenvectors and eigenvalues of H:  

𝐸1 ≔ |𝑠𝑖𝑛𝑔⟩ =
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩)  with eigenvalue -3 

𝐸2 ≔ |𝑇1⟩ =
1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩)   with eigenvalue 1 

𝐸3 ≔ |𝑇2⟩ =
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩)   with eigenvalue 1 

𝐸4 ≔ |𝑇3⟩ =
1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩)   with eigenvalue 1 

4. We calculate the initial coefficients 𝛼𝑗(0) = ⟨𝐸𝑗|𝜓(0)⟩ 

𝛼1(0) = 0: 

𝛼1(0) = ⟨𝐸1|𝜓(0)⟩ = ⟨𝑠𝑖𝑛𝑔|𝑢𝑢⟩ =
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩)|𝑢𝑢⟩ = 

=
1

√2
(⟨𝑢𝑑 − ⟨𝑑𝑢)|𝑢𝑢⟩ =

1

√2
(⟨𝑢𝑑|𝑢𝑢⟩ − ⟨𝑑𝑢|𝑢𝑢⟩) =

1

√2
(0 − 0) = 0 

 

𝛼2(0) = 0: 

𝛼2(0) = ⟨𝐸2|𝜓(0)⟩ = ⟨𝑇1|𝑢𝑢⟩ =
1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩)|𝑢𝑢⟩ = 

=
1

√2
(⟨𝑢𝑑 + ⟨𝑑𝑢)|𝑢𝑢⟩ =

1

√2
(⟨𝑢𝑑|𝑢𝑢⟩ + ⟨𝑑𝑢|𝑢𝑢⟩) =

1

√2
(0 + 0) = 0 

 

𝛼3(0) =
1

√2
: 

𝛼3(0) = ⟨𝐸3|𝜓(0)⟩ = ⟨𝑇2|𝑢𝑢⟩ =
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩)|𝑢𝑢⟩ = 

=
1

√2
(⟨𝑢𝑢 + ⟨𝑑𝑑)|𝑢𝑢⟩ =

1

√2
(⟨𝑢𝑢|𝑢𝑢⟩ + ⟨𝑑𝑑|𝑢𝑢⟩) =

1

√2
(1 + 0) =

1

√2
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𝛼4(0) =
1

√2
: 

𝛼4(0) = ⟨𝐸4|𝜓(0)⟩ = ⟨𝑇3|𝑢𝑢⟩ = 

=
1

√2
(⟨𝑢𝑢| − ⟨𝑑𝑑)|𝑢𝑢⟩ =

1

√2
(⟨𝑢𝑢|𝑢𝑢⟩ − ⟨𝑑𝑑|𝑢𝑢⟩) =

1

√2
(1 − 0) =

1

√2
 

 

5. We rewrite |𝜓(0)⟩ in terms of the eigenvectors |𝐸𝑗⟩ and the initial coefficients 𝛼𝑗(0): 

|𝜓(0)⟩ =∑𝛼𝑗(0)|

4

𝑗=1

𝐸𝑗⟩ = 0|𝑠𝑖𝑛𝑔⟩ + 0|𝑇1⟩ +
1

√2
|𝑇2⟩ +

1

√2
|𝑇3⟩ 

 

6. We replace each 𝛼𝑗(0) with 𝛼𝑗(𝑡), as a result |𝜓(0)⟩ becomes |𝜓(𝑡)⟩.  

|𝜓(𝑡)⟩ =∑𝛼𝑗(𝑡)|

4

𝑗=1

𝐸𝑗⟩ 

7. We use equation 4.30: 𝛼𝑗(𝑡) = 𝛼𝑗(0)𝑒
−
𝑖

ℏ
𝐸𝑗(𝑡) and replace each 𝛼𝑗(𝑡) with equation 4.30, using the 

basic vectors (eigenvectors): 

|𝜓(𝑡)⟩ =∑𝛼𝑗(0)𝑒
−
𝑖
ℏ
𝐸𝑗(𝑡)|

4

𝑗=1

𝐸𝑗⟩ 

We use: 𝛼1(0) = 𝛼2(0) = 0, 𝛼3(0) = 𝛼4(0) =
1

√2
, 𝐸1 = −3, 𝐸2, 𝐸3, 𝐸4 = 1 

|𝜓(𝑡)⟩ = 0|𝑠𝑖𝑛𝑔⟩ + 0|𝑇1⟩ +
1

√2
𝑒−

𝑖
ℏ
𝑡|𝑇2⟩ +

1

√2
𝑒−

𝑖
ℏ
𝑡|𝑇3⟩ = 

=
1

√2
𝑒−

𝑖
ℏ
𝑡|𝑇2⟩ +

1

√2
𝑒−

𝑖
ℏ
𝑡|𝑇3⟩ = 

=
1

2
𝑒−

𝑖
ℏ
𝑡(|𝑢𝑢⟩ + |𝑑𝑑⟩ + |𝑢𝑢⟩ − |𝑑𝑑⟩) = 

=
2

2
𝑒−

𝑖
ℏ
𝑡(|𝑢𝑢⟩) 

Summed up:  

|𝜓(𝑡)⟩ = 𝑒−
𝑖
ℏ
𝑡(|𝑢𝑢⟩) 

 

In the same way we calculate the other initial states |𝑢𝑑⟩, |𝑑𝑢⟩ 𝑢𝑛𝑑 |𝑑𝑑⟩. 

Initial state |𝒖𝒅⟩:  

𝛼1(0) =
1

√2
= 𝛼2(0) and 𝛼3(0) = 0 = 𝛼4(0), because of the products (⟨𝑢𝑢| − ⟨𝑑𝑑|)|𝑢𝑑⟩ etc. 

vanishing resp. resulting in 1. 
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|𝜓(𝑡)⟩ =
1

√2
𝑒
−
3𝑖
ℏ
𝑡
|𝑠𝑖𝑛𝑔⟩ +

1

√2
𝑒
−
𝑖
ℏ
𝑡
| 𝑇1⟩ + 0|𝑇2⟩ + 0|𝑇3⟩ = 

=
1

2
𝑒−
3𝑖
ℏ
𝑡
|𝑠𝑖𝑛𝑔⟩ +

1

2
𝑒−

𝑖
ℏ
𝑡
| 𝑇1⟩ = 

=
1

2
(𝑒

−
3𝑖
ℏ
𝑡(|𝑢𝑑⟩ − |𝑑𝑢⟩) + 𝑒

−
𝑖
ℏ
𝑡(|𝑢𝑑⟩ + |𝑑𝑢⟩)) = 

=
1

2
𝑒
−
𝑖
ℏ
𝑡
(𝑒

−
2𝑖
ℏ
𝑡(|𝑢𝑑⟩ − |𝑑𝑢⟩) + (|𝑢𝑑⟩ + |𝑑𝑢⟩)) 

Initial state |𝒅𝒖⟩:  

𝛼1(0) = −
1

√2
, 𝛼2(0) =

1

√2
 and 𝛼3(0) = 0 = 𝛼4(0), because of the products (⟨𝑢𝑢| − ⟨𝑑𝑑|)|𝑑𝑢⟩ etc. 

vanishing resp. resulting in 1. 

|𝜓(𝑡)⟩ = −
1

√2
𝑒
−
3𝑖
ℏ
𝑡
|𝑠𝑖𝑛𝑔⟩ +

1

√2
𝑒
−
𝑖
ℏ
𝑡
| 𝑇1⟩ + 0|𝑇2⟩ + 0|𝑇3⟩ = 

= −
1

2
𝑒−
3𝑖
ℏ
𝑡
|𝑠𝑖𝑛𝑔⟩ +

1

2
𝑒−

𝑖
ℏ
𝑡
| 𝑇1⟩ = 

=
1

2
(𝑒

−
3𝑖
ℏ
𝑡(−|𝑢𝑑⟩ + |𝑑𝑢⟩) + 𝑒

−
𝑖
ℏ
𝑡(|𝑢𝑑⟩ + |𝑑𝑢⟩)) = 

=
1

2
𝑒−

𝑖
ℏ
𝑡
(𝑒

−
2𝑖
ℏ
𝑡(−|𝑢𝑑⟩ + |𝑑𝑢⟩) + (|𝑢𝑑⟩ + |𝑑𝑢⟩)) 

Initial state |𝒅𝒅⟩: 

𝛼3(0) =
1

√2
, 𝛼4(0) = −

1

√2
 und 𝛼1(0) = 0 = 𝛼2(0), because of the products (⟨𝑢𝑢| − ⟨𝑑𝑑|)|𝑑𝑑⟩ etc. 

vanishing resp. resulting in 1. 

|𝜓(𝑡)⟩ = 0|𝑠𝑖𝑛𝑔⟩ + 0|𝑇1⟩ +
1

√2
𝑒
−
𝑖
ℏ
𝑡
|𝑇2⟩ −

1

√2
𝑒
−
𝑖
ℏ
𝑡
|𝑇3⟩ = 

=
1

√2
𝑒−

𝑖
ℏ
𝑡|𝑇2⟩ −

1

√2
𝑒−

𝑖
ℏ
𝑡|𝑇3⟩ = 

=
1

2
𝑒−

𝑖
ℏ
𝑡(|𝑢𝑢⟩ + |𝑑𝑑⟩ − |𝑢𝑢⟩ + |𝑑𝑑⟩) = 

= 𝑒−
𝑖
ℏ
𝑡(|𝑑𝑑⟩) 

Note: for the states |uu⟩ and |dd⟩  𝑒−
𝑖

ℏ
𝑡 will give them the shape of a 

wave: 𝑒−
𝑖

ℏ
𝑡(|𝑢𝑢⟩) → 𝑅𝑒 (𝑒−

𝑖

ℏ
𝑡) (|𝑢𝑢⟩)~cos (𝑡)|𝑢𝑢⟩.  

For the states (|𝑢𝑑⟩) and (|𝑑𝑢⟩) we get another behavior.  

1

2
𝑒−

𝑖
ℏ
𝑡
(𝑒

−
2𝑖
ℏ
𝑡(|𝑢𝑑⟩ − |𝑑𝑢⟩) + (|𝑢𝑑⟩ + |𝑑𝑢⟩)) 

starts at time 𝑡 = 0 in the state |𝑢𝑑⟩ but then begins oscillating between |𝑢𝑑⟩ and |𝑑𝑢⟩. The picture 

might illustrate this.  
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Exercise 7.1 

Write the tensor product 𝐼 ⨂ 𝜏𝑥 as a matrix, and apply that matrix to each of the |𝑢𝑢⟩, |𝑢𝑑⟩, |𝑑𝑢⟩ 

and |𝑑𝑑⟩ column vectors. Show that Alice’s half of the state-vector is unchanged in each case. Recall 

that 𝐼 is the 2 × 2 unit matrix. 

* * * * * * * * * * 

I ⊗ 𝜏𝑥 = (
1 0
0 1

)⊗ (
0 1
1 0

) = (
1(
0 1
1 0

) 0 (
0 1
1 0

)

0 (
0 1
1 0

) 1 (
0 1
1 0

)
) = (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) 

applied to: |𝑢𝑢⟩ = (

1
0
0
0

) 

(I ⊗ 𝜏𝑥)|𝑢𝑢⟩ = (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)(

1
0
0
0

) = (

0
1
0
0

) = |𝑢𝑑⟩ 

applied to: |𝑢𝑑⟩ = (

0
1
0
0

) 

(I ⊗ 𝜏𝑥)|𝑢𝑑⟩ = (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)(

0
1
0
0

) = (

1
0
0
0

) = |𝑢𝑢⟩ 

applied to: |𝑑𝑢⟩ = (

0
0
1
0

) 

(I ⊗ 𝜏𝑥)|𝑑𝑢⟩ = (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)(

0
0
1
0

) = (

0
0
0
1

) = |𝑑𝑑⟩ 

applied to: |𝑑𝑑⟩ = (

0
0
0
1

) 

(I ⊗ 𝜏𝑥)|𝑑𝑑⟩ = (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)(

0
0
0
1

) = (

0
0
1
0

) = |𝑑𝑢⟩ 
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Exercise 7.2 

Calculate the matrix elements of 𝜎𝑧 ⨂ 𝜏𝑥 by forming the inner product analog to: 

𝜎𝑧 ⨂ 𝐼 = (

⟨𝑢𝑢|𝜎𝑧𝐼|𝑢𝑢⟩ ⟨𝑢𝑢|𝜎𝑧𝐼|𝑢𝑑⟩ ⟨𝑢𝑢|𝜎𝑧𝐼|𝑑𝑢⟩ ⟨𝑢𝑢|𝜎𝑧𝐼|𝑑𝑑⟩

⟨𝑢𝑑|𝜎𝑧𝐼|𝑢𝑢⟩ ⟨𝑢𝑑|𝜎𝑧𝐼|𝑢𝑑⟩ ⟨𝑢𝑑|𝜎𝑧𝐼|𝑑𝑢⟩ ⟨𝑢𝑑|𝜎𝑧𝐼|𝑑𝑑⟩

⟨𝑑𝑢|𝜎𝑧𝐼|𝑢𝑢⟩ ⟨𝑑𝑢|𝜎𝑧𝐼|𝑢𝑑⟩ ⟨𝑑𝑢|𝜎𝑧𝐼|𝑑𝑢⟩ ⟨𝑑𝑢|𝜎𝑧𝐼|𝑑𝑑⟩

⟨𝑑𝑑|𝜎𝑧𝐼|𝑢𝑢⟩ ⟨𝑑𝑑|𝜎𝑧𝐼|𝑢𝑑⟩ ⟨𝑑𝑑|𝜎𝑧𝐼|𝑑𝑢⟩ ⟨𝑑𝑑|𝜎𝑧𝐼|𝑑𝑑⟩

) 

𝜎𝑧 operates to the left, 𝐼 to the right. 

* * * * * * * * * * 

𝜎𝑧⊗ 𝜏𝑥 according to the rules of the tensor product: 

𝜎𝑧⊗ 𝜏𝑥 = (
1 0
0 −1

)⊗ (
0 1
1 0

) = (
1(
0 1
1 0

) 0 (
0 1
1 0

)

0 (
0 1
1 0

) −1 (
0 1
1 0

)
) = (

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

) 

𝜎𝑧⊗ 𝜏𝑥: 

(𝜎𝑧⊗𝜏𝑥) =

(

 

⟨𝑢𝑢|𝜎𝑧𝜏𝑥|𝑢𝑢⟩ ⟨𝑢𝑢|𝜎𝑧𝜏𝑥|𝑢𝑑⟩ ⟨𝑢𝑢|𝜎𝑧𝜏𝑥|𝑑𝑢⟩ ⟨𝑢𝑢|𝜎𝑧𝜏𝑥|𝑑𝑑⟩

⟨𝑢𝑑|𝜎𝑧𝜏𝑥|𝑢𝑢⟩ ⟨𝑢𝑑|𝜎𝑧𝜏𝑥|𝑢𝑑⟩ ⟨𝑢𝑑|𝜎𝑧𝜏𝑥|𝑑𝑢⟩ ⟨𝑢𝑑|𝜎𝑧𝜏𝑥|𝑑𝑑⟩

⟨𝑑𝑢|𝜎𝑧𝜏𝑥|𝑢𝑢⟩ ⟨𝑑𝑢|𝜎𝑧𝜏𝑥|𝑢𝑑⟩ ⟨𝑑𝑢|𝜎𝑧𝜏𝑥|𝑑𝑢⟩ ⟨𝑑𝑢|𝜎𝑧𝜏𝑥|𝑑𝑑⟩

⟨𝑑𝑑|𝜎𝑧𝜏𝑥|𝑢𝑢⟩ ⟨𝑑𝑑|𝜎𝑧𝜏𝑥|𝑢𝑑⟩ ⟨𝑑𝑑|𝜎𝑧𝜏𝑥|𝑑𝑢⟩ ⟨𝑑𝑑|𝜎𝑧𝜏𝑥|𝑑𝑑⟩)

 = 

𝜎𝑧 applied to the left, 𝜏𝑥 applied to the right: 

= (

⟨𝑢𝑢|𝑢𝑑⟩ ⟨𝑢𝑢|𝑢𝑢⟩ ⟨𝑢𝑢|𝑑𝑑⟩ ⟨𝑢𝑢|𝑑𝑢⟩
⟨𝑢𝑑|𝑢𝑑⟩ ⟨𝑢𝑑|𝑢𝑢⟩ ⟨𝑢𝑑|𝑑𝑑⟩ ⟨𝑢𝑑|𝑑𝑢⟩
⟨−𝑑𝑢|𝑢𝑑⟩ ⟨−𝑑𝑢|𝑢𝑢⟩ ⟨−𝑑𝑢|𝑑𝑑⟩ ⟨−𝑑𝑢|𝑑𝑢⟩
⟨−𝑑𝑑|𝑢𝑑⟩ ⟨−𝑑𝑑|𝑢𝑢⟩ ⟨−𝑑𝑑|𝑑𝑑⟩ ⟨−𝑑𝑑|𝑑𝑢⟩

) 

Because of u and d being orthonormal vectors, this condenses to: 

(

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

) 

This gives the same matrix as the tensor-product above.  
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Exercise 7.3 

Consider the equation: 

(𝐴 ⨂ 𝐵)(𝑎 ⨂ 𝑏) = (𝐴𝑎 ⨂ 𝐵𝑏) 

𝐴 and 𝐵 represent 2 × 2 matrices (or operators), and 𝐴 and 𝑏 represent 2 × 1 column vectors. 

a) Rewrite the equation 

(𝐴 ⨂ 𝐵)(𝑎 ⨂ 𝑏) = (𝐴𝑎 ⨂ 𝐵𝑏) 

in component form, replacing the symbols 𝐴, 𝐵, 𝑎, 𝑏 with the following matrices and column vectors: 

𝐴 ⨂ 𝐵 = (

𝐴11𝐵11 𝐴11𝐵12 𝐴12𝐵11 𝐴12𝐵12
𝐴11𝐵21 𝐴11𝐵22 𝐴12𝐵21 𝐴12𝐵22
𝐴21𝐵11 𝐴21𝐵12 𝐴22𝐵11 𝐴22𝐵12
𝐴21𝐵21 𝐴21𝐵22 𝐴22𝐵21 𝐴22𝐵22

) 

(
𝑎11
𝑎21
)⨂(

𝑏11
𝑏21
) = (

𝑎11𝑏11
𝑎11𝑏21
𝑎21𝑏11
𝑎21𝑏21

) 

b) Perform the matrix multiplication 𝐴𝑎 and 𝐵𝑏 on the right-hand side. Verify that each result is a 

4 × 1 matrix. 

c) Expand all three Kronecker products. 

d) Verify the row and column sizes of each Kronecker product: 

• 𝐴⨂𝐵 : 4 × 4 

• 𝑎⨂𝑏 : 4 × 1 

• 𝐴𝑎⨂𝐵𝑏 : 4 × 1 

e) Perform the matrix multiplication on the left-hand side, resulting in a 4 × 1 column vector. Each 

row should be the sum of four separate terms 

f) Finally, verify that the resulting column vectors on the left and right sides are identical. 

* * * * * * * * * * 

a) Rewrite (A⊗ B)(𝑎 ⊗ b) = (Aa⊗ Bb) in component form: 

𝐴⊗ B = (
𝐴11 𝐴12
𝐴21 𝐴22

)⊗ (
𝐵11 𝐵12
𝐵21 𝐵22

) = (
𝐴11 (

𝐵11 𝐵12
𝐵21 𝐵22

) 𝐴12 (
𝐵11 𝐵12
𝐵21 𝐵22

)

𝐴21 (
𝐵11 𝐵12
𝐵21 𝐵22

) 𝐴22 (
𝐵11 𝐵12
𝐵21 𝐵22

)
) = 

= (

𝐴11𝐵11 𝐴11𝐵12 𝐴12𝐵11 𝐴12𝐵12
𝐴11𝐵21 𝐴11𝐵22 𝐴12𝐵21 𝐴12𝐵22
𝐴21𝐵11 𝐴21𝐵12 𝐴22𝐵11 𝐴22𝐵12
𝐴21𝐵21 𝐴21𝐵22 𝐴22𝐵21 𝐴22𝐵22

) 

(𝑎 ⊗ b) = (
𝑎11
𝑎21
)⊗ (

𝑏11
𝑏21
) = (

𝑎11𝑏11
𝑎11𝑏21
𝑎21𝑏11
𝑎21𝑏21

) 
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b) Perform the matrix multiplication: 

Aa = (
𝐴11 𝐴12
𝐴21 𝐴22

) (
𝑎11
𝑎21
) = (

𝐴11𝑎11 + 𝐴12𝑎21
𝐴21𝑎11 + 𝐴22𝑎21

) 

Bb = (
𝐵11 𝐵12
𝐵21 𝐵22

) (
𝑏11
𝑏21
) = (

𝐵11𝑏11 + 𝐵12𝑏21
𝐵21𝑏11 + 𝐵22𝑏21

) 

(Aa⊗ Bb) =

(

 

(𝐴11𝑎11 + 𝐴12𝑎21)(𝐵11𝑏11 + 𝐵12𝑏21)

(𝐴11𝑎11 + 𝐴12𝑎21)(𝐵21𝑏11 + 𝐵22𝑏21)

(𝐴21𝑎11 + 𝐴22𝑎21)(𝐵11𝑏11 + 𝐵12𝑏21)

(𝐴21𝑎11 + 𝐴22𝑎21)(𝐵21𝑏11 + 𝐵22𝑏21))

 = 

= (

𝐴11𝑎11𝐵11𝑏11 + 𝐴11𝑎11𝐵12𝑏21 + 𝐴12𝑎21𝐵11𝑏11 + 𝐴12𝑎21𝐵12𝑏21
𝐴11𝑎11𝐵21𝑏11 + 𝐴11𝑎11𝐵22𝑏21 + 𝐴12𝑎21𝐵21𝑏11 + 𝐴12𝑎21𝐵22𝑏21
𝐴21𝑎11𝐵11𝑏11 + 𝐴21𝑎11𝐵12𝑏21 + 𝐴22𝑎21𝐵11𝑏11 + 𝐴22𝑎21𝐵12𝑏21
𝐴21𝑎11𝐵21𝑏11 + 𝐴21𝑎11𝐵22𝑏21 + 𝐴22𝑎21𝐵21𝑏11 + 𝐴22𝑎21𝐵22𝑏21

) 

c) Expand all three Kronecker products: (A⊗ B), (𝑎 ⊗ b) 𝑎𝑛𝑑 (Aa⊗ Bb) 

… already done … 

d) Verify:  

𝐴⊗ B = 4 x 4, (𝑎 ⊗ b) = 4 x 1, (Aa⊗ Bb) = 4 x 1 

e) Perform the matrix multiplication (A⊗ B)(𝑎 ⊗ b): 

= (

𝐴11𝐵11 𝐴11𝐵12 𝐴12𝐵11 𝐴12𝐵12
𝐴11𝐵21 𝐴11𝐵22 𝐴12𝐵21 𝐴12𝐵22
𝐴21𝐵11 𝐴21𝐵12 𝐴22𝐵11 𝐴22𝐵12
𝐴21𝐵21 𝐴21𝐵22 𝐴22𝐵21 𝐴22𝐵22

)(

𝑎11𝑏11
𝑎11𝑏21
𝑎21𝑏11
𝑎21𝑏21

) = 

= (

𝐴11𝐵11𝑎11𝑏11 + 𝐴11𝐵12𝑎11𝑏21 + 𝐴12𝐵11𝑎21𝑏11 + 𝐴12𝐵12𝑎21𝑏21
𝐴11𝐵21𝑎11𝑏11 + 𝐴11𝐵22𝑎11𝑏21 + 𝐴12𝐵21𝑎21𝑏11 + 𝐴12𝐵22𝑎21𝑏21
𝐴21𝐵11𝑎11𝑏11 + 𝐴21𝐵12𝑎11𝑏21 + 𝐴22𝐵11𝑎21𝑏11 + 𝐴22𝐵12𝑎21𝑏21
𝐴21𝐵21𝑎11𝑏11 + 𝐴21𝐵22𝑎11𝑏21 + 𝐴22𝐵21𝑎21𝑏11 + 𝐴22𝐵22𝑎21𝑏21

) 

f) Finally, verify the identity: 

Left side:  

= (

𝐴11𝑎11𝐵11𝑏11 + 𝐴11𝑎11𝐵12𝑏21 + 𝐴12𝑎21𝐵11𝑏11 + 𝐴12𝑎21𝐵12𝑏21
𝐴11𝑎11𝐵21𝑏11 + 𝐴11𝑎11𝐵22𝑏21 + 𝐴12𝑎21𝐵21𝑏11 + 𝐴12𝑎21𝐵22𝑏21
𝐴21𝑎11𝐵11𝑏11 + 𝐴21𝑎11𝐵12𝑏21 + 𝐴22𝑎21𝐵11𝑏11 + 𝐴22𝑎21𝐵12𝑏21
𝐴21𝑎11𝐵21𝑏11 + 𝐴21𝑎11𝐵22𝑏21 + 𝐴22𝑎21𝐵21𝑏11 + 𝐴22𝑎21𝐵22𝑏21

) 

Right side:  

= (

𝐴11𝐵11𝑎11𝑏11 + 𝐴11𝐵12𝑎11𝑏21 + 𝐴12𝐵11𝑎21𝑏11 + 𝐴12𝐵12𝑎21𝑏21
𝐴11𝐵21𝑎11𝑏11 + 𝐴11𝐵22𝑎11𝑏21 + 𝐴12𝐵21𝑎21𝑏11 + 𝐴12𝐵22𝑎21𝑏21
𝐴21𝐵11𝑎11𝑏11 + 𝐴21𝐵12𝑎11𝑏21 + 𝐴22𝐵11𝑎21𝑏11 + 𝐴22𝐵12𝑎21𝑏21
𝐴21𝐵21𝑎11𝑏11 + 𝐴21𝐵22𝑎11𝑏21 + 𝐴22𝐵21𝑎21𝑏11 + 𝐴22𝐵22𝑎21𝑏21

) 
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Exercise 7.4 

Calculate the density matrix for |Ψ⟩ = 𝛼|𝑢𝑢⟩ + 𝛽|𝑢𝑢⟩. 

Answer: 

𝜓(𝑢) = 𝛼; 𝜓∗(𝑢) = 𝛼∗ 

𝜓(𝑑) = 𝛽; 𝜓∗(𝑑) = 𝛽∗ 

𝜌𝑎′𝑎 = (
𝛼∗𝛼 𝛼∗𝛽
𝛽∗𝛼 𝛽∗𝛽

) 

Now try plugging some numbers for 𝛼 and 𝛽.  

Make sure they are normalized to 1. For example, 𝛼 =
1

√2
, 𝛽 =

1

√2
 

* * * * * * * * * * 

The density matrix is defined as 

𝜌𝑎𝑎′ = ⟨𝑎|Ψ⟩⟨Ψ|𝑎′⟩ 

with the values of a and a’ being u and d (4 possible combinations). 

We calculate the density matrix for: 

|Ψ⟩ = 𝛼|𝑢⟩ + 𝛽|𝑑⟩ 

We need the bra too: 

⟨Ψ|= ⟨𝑢|𝛼∗ + ⟨𝑢|𝛽∗ 

Then we calculate the elements of the density matrix.  

𝜌𝑢𝑢 

𝜌𝑢𝑢 = ⟨𝑢|Ψ⟩⟨Ψ|𝑢⟩ = 

𝜌𝑢𝑢 = ⟨𝑢(𝛼|𝑢⟩ + 𝛽|𝑑⟩)⟩⟨(⟨𝑢|𝛼
∗ + ⟨𝑑|𝛽∗)|𝑢⟩ = 

(𝛼⟨𝑢|𝑢⟩ + 𝛽⟨𝑢|𝑑⟩)(⟨𝑢|𝑢⟩𝛼∗ + ⟨𝑑|𝑢⟩𝛽∗) = 

(𝛼 + 0)(𝛼∗ + 0) = 𝛼𝛼∗ 

𝜌𝑢𝑑 

𝜌𝑢𝑑 = ⟨𝑢|Ψ⟩⟨Ψ|𝑑⟩ = 

𝜌𝑢𝑑 = ⟨𝑢(𝛼|𝑢⟩ + 𝛽|𝑑⟩)⟩⟨(⟨𝑢|𝛼
∗ + ⟨𝑑|𝛽∗)|𝑑⟩ = 

(𝛼⟨𝑢|𝑢⟩ + 𝛽⟨𝑢|𝑑⟩)(⟨𝑢|𝑑⟩𝛼∗ + ⟨𝑑|𝑑⟩𝛽∗) = 

(𝛼 + 0)(0 + 𝛽∗) = 𝛼𝛽∗ 
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𝜌𝑑𝑢 

𝜌𝑑𝑢 = ⟨𝑑|Ψ⟩⟨Ψ|𝑢⟩ = 

𝜌𝑑𝑢 = ⟨𝑑(𝛼|𝑢⟩ + 𝛽|𝑑⟩)⟩⟨(⟨𝑢|𝛼
∗ + ⟨𝑑|𝛽∗)|𝑢⟩ = 

(𝛼⟨𝑑|𝑢⟩ + 𝛽⟨𝑑|𝑑⟩)(⟨𝑢|𝑢⟩𝛼∗ + ⟨𝑑|𝑢⟩𝛽∗) = 

(0 + 𝛽)(𝛼∗ + 0) = 𝛽𝛼∗ 

𝜌𝑑𝑑 

𝜌𝑑𝑑 = ⟨𝑑|Ψ⟩⟨Ψ|𝑑⟩ = 

𝜌𝑑𝑑 = ⟨𝑑(𝛼|𝑢⟩ + 𝛽|𝑑⟩)⟩⟨(⟨𝑢|𝛼
∗ + ⟨𝑑|𝛽∗)|𝑑⟩ = 

(𝛼⟨𝑑|𝑢⟩ + 𝛽⟨𝑑|𝑑⟩)(⟨𝑢|𝑑⟩𝛼∗ + ⟨𝑑|𝑑⟩𝛽∗) = 

(0 + 𝛽)(0 + 𝛽∗) = 𝛽𝛽∗ 

The density matrix goes like this: 

𝜌𝑎𝑎′ = (
𝛼𝛼∗ 𝛼𝛽∗

𝛽𝛼∗ 𝛽𝛽∗
) 

We plug in the example 𝛼 =
1

√2
 and 𝛽 =

1

√2
 and get: 

𝜌𝑎𝑎′ =

(

 
 

1

√2

1

√2

1

√2

1

√2
1

√2

1

√2

1

√2

1

√2)

 
 
= (

1

2

1

2
1

2

1

2

) 

Choosing the values 𝛼 =
1

8
 and 𝛽 =

√63

8
 (designed to fit 𝛼2 + 𝛽2 = 1): 

𝜌𝑎𝑎′ =

(

 
 
1

8

1

8

1

8

√63

8

√63

8

1

8

√63

8

√63

8 )

 
 
=

(

 
 
1

64

√63

64

√63

64

63

64 )
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Exercise 7.5 

a) Show: 

(
𝑎 0
0 𝑏

)
2

= (𝑎
2 0
0 𝑏2

) 

b) Now, suppose: 

𝜌 = (
1
3⁄ 0

0 2
3⁄
) 

Calculate: 

𝜌2, 𝑇𝑟(𝜌), 𝑇𝑟(𝜌2) 

c) If 𝜌 is a density matrix, does it represent a pure state or a mixed state? 

* * * * * * * * * * 

a) Show that: 

(
𝑎 0
0 𝑏

)
2

= (𝑎
2 0
0 𝑏2

) 

(
𝑎 0
0 𝑏

)
2

= (
𝑎 0
0 𝑏

) (
𝑎 0
0 𝑏

) = (
𝑎 ∙ 𝑎 + 0 ∙ 0 𝑎 ∙ 0 + 0 ∙ 𝑏
0 ∙ 𝑎 + 𝑏 ∙ 𝑎 0 ∙ 0 + 𝑏 ∙ 𝑏

) = (𝑎
2 0
0 𝑏2

) 

b) Now, suppose  

𝜌 = (

1

3
0

0
2

3

) 

Calculate 𝜌2, 𝑇𝑟(𝜌), 𝑇𝑟(𝜌2) 

𝜌2 = 𝜌 ∙ 𝜌 = (

1

3
0

0
2

3

) ∙ (

1

3
0

0
2

3

) = (

1

9
0

0
4

9

) 

𝑇𝑟(𝜌) = 𝑇𝑟(

1

3
0

0
2

3

) =
1

3
+
2

3
=
3

3
= 1 

𝑇𝑟(𝜌2) = 𝑇𝑟(

1

9
0

0
4

9

) =
1

9
+
4

9
=
5

9
≠ 1 

c) If 𝜌 ist a density matrix, does it represent a pure stat or a mixed state? 

A pure state is defined as a state in which 𝜌 is nonzero at only one point. This corresponds to a matrix 

where only one entry on the diagonal is nonzero. As the sum of the diagonals need to be one for the 

matrix to be a density matrix, this one entry must have the value 1 with the rest of all entries being 

zero. So, the matrix 𝜌 presents a mixed state.   
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Exercise 7.6 

By the standard rules of probability, the probability for a: 

𝑃(𝑎) =∑𝜓∗(𝑎, 𝑏)𝜓(𝑎, 𝑏)

𝑏

 

This is just a diagonal entry in the density matrix: 

𝑃(𝑎) = 𝜌𝑎𝑎 

Use 𝑃(𝑎) = 𝜌𝑎𝑎 to show that if 𝜌 is a density matrix, then: 

𝑇𝑟(𝜌) = 1 

* * * * * * * * * * 

Say that Alice’s system has more than one state but the states 𝑎1, 𝑎2, … , 𝑎𝑛. The probability for each 

one calculated according to 𝑃(𝑎) = 𝜌𝑎𝑎 is  

𝑃(𝑎𝑖) =∑𝜓∗(𝑎𝑖 , 𝑏)𝜓(𝑎𝑖, 𝑏)

𝑏

 

As Alice’s system must have a state (it couldn’t vanish), the sum over all possible states must be 1: 

∑𝑃(𝑎𝑖)

𝑖

= 1 

Every probability 𝑃(𝑎𝑖) corresponds to a diagonal entry 𝜌𝑎𝑖𝑎𝑖, so the sum over all diagonal elements 

in the matrix must be 1. For a pure state with only one entry 𝜌𝑎𝑖𝑎𝑖 ≠ 0 this means that this entry 

must be 1 too.  
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Exercise 7.7 

We have the density matrix: 

𝜌 = (
1
2⁄ 0

0 1
2⁄
) 

Calculate 𝜌2. How does this result confirm that 𝜌 represents an entangled state? 

* * * * * * * * * * 

𝜌2 = (

1

2
0

0
1

2

)

2

= (

1

2
0

0
1

2

) ∙ (

1

2
0

0
1

2

) =

(

 
 (
1

2
)
2

0

0 (
1

2
)
2

)

 
 
= (

1

4
0

0
1

4

) 

In a mixed state more than one entry on the diagonal will be nonzero with the sum giving 1. 

Only for pure states the equation 𝜌2 = 𝜌 holds, because the one and only “1” replicates itself. 
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Exercise 7.8 

Consider the following states: 

|𝜓1⟩ =
1

2
(|𝑢𝑢⟩ + |𝑢𝑑⟩ + |𝑑𝑢⟩ + |𝑑𝑑⟩) 

|𝜓2⟩ =
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩) 

|𝜓3⟩ =
1

5
(3|𝑢𝑢⟩ + 4|𝑑𝑑⟩) 

For each one, calculate Alice’s density matrix and Bob’s density matrix. Check their properties. 

* * * * * * * * * * 

Alice’s density matrix: calculate the sum 𝜌𝑎′𝑎 = ∑ 𝜓∗(𝑎, 𝑏)𝜓(𝑎′, 𝑏)𝑏     (7.23) 

First, we expand the states |𝜓2⟩ and |𝜓3⟩ to the full set and get: 

|𝜓1⟩ =
1

2
|𝑢𝑢⟩ +

1

2
|𝑢𝑑⟩ +

1

2
|𝑑𝑢⟩ +

1

2
|𝑑𝑑⟩ 

|𝜓2⟩ =
1

√2
|𝑢𝑢⟩ + 0|𝑢𝑑⟩ + 0|𝑑𝑢⟩ +

1

√2
|𝑑𝑑⟩ 

|𝜓3⟩ =
3

5
|𝑢𝑢⟩ +

4

5
|𝑢𝑑⟩ + 0|𝑑𝑢⟩ + 0|𝑑𝑑⟩ 

The values of 𝝍(𝒂, 𝒃) for the first case |𝝍𝟏⟩: 

𝜓(𝑢, 𝑢) =
1

2
= 𝜓(𝑢, 𝑑) = 𝜓(𝑑, 𝑢) = 𝜓(𝑑, 𝑑) 

𝜌𝑎′𝑎 =∑𝜓∗(𝑎, 𝑏)𝜓(𝑎′, 𝑏)

𝑏

 

𝜌𝑢𝑢 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑢, 𝑢) + 𝜓∗(𝑢, 𝑑)𝜓(𝑢, 𝑑) =

1

2
∙
1

2
+
1

2
∙
1

2
=
1

4
+
1

4
=
2

4
=
1

2
 

𝜌𝑢𝑑 = 𝜓
∗(𝑑, 𝑢)𝜓(𝑢, 𝑢) + 𝜓∗(𝑑, 𝑑)𝜓(𝑢, 𝑑) =

1

2
∙
1

2
+
1

2
∙
1

2
=
1

4
+
1

4
=
2

4
=
1

2
 

𝜌𝑑𝑢 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑑, 𝑢) + 𝜓∗(𝑢, 𝑑)𝜓(𝑑, 𝑑) =

1

2
∙
1

2
+
1

2
∙
1

2
=
1

4
+
1

4
=
2

4
=
1

2
 

𝜌𝑑𝑑 = 𝜓
∗(𝑑, 𝑢)𝜓(𝑑, 𝑢) + 𝜓∗(𝑑, 𝑑)𝜓(𝑑, 𝑑) =

1

2
∙
1

2
+
1

2
∙
1

2
=
1

4
+
1

4
=
2

4
=
1

2
 

The density matrix 𝜌 of Alice goes like this: 

𝜌 = (

1

2

1

2
1

2

1

2

) 

Check: a density matrix must be Hermitian and the trace of a density matrix must be 1, both 

conditions are fulfilled for this result. 

For a pure state holds: 
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𝜌2 = 𝜌 𝑎𝑛𝑑 𝑇𝑟(𝜌2) = 1 

We check: 

𝜌2 = (

1

2

1

2
1

2

1

2

)(

1

2

1

2
1

2

1

2

) = (

1

2

1

2
1

2

1

2

) 

𝑇𝑟(𝜌2) = 𝑇𝑟(

1

2

1

2
1

2

1

2

) = 1 

Alice’s matrix represents a pure state. 

Bob’s density matrix: calculate the sum 𝜌𝑏′𝑏 = ∑ 𝜓∗(𝑎, 𝑏)𝜓(𝑎, 𝑏′)𝑎    (7.23’) 

The values of 𝜓(𝑎, 𝑏) for the first case |𝜓1⟩: 

𝜓(𝑢, 𝑢) =
1

2
= 𝜓(𝑢, 𝑑) = 𝜓(𝑑, 𝑢) = 𝜓(𝑑, 𝑑) 

𝜌𝑏′𝑏 =∑𝜓∗(𝑎, 𝑏)𝜓(𝑎, 𝑏′)

𝑎

 

𝜌𝑢𝑢 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑢, 𝑢) + 𝜓∗(𝑑, 𝑢)𝜓(𝑑, 𝑢) =

1

2
∙
1

2
+
1

2
∙
1

2
=
1

4
+
1

4
=
2

4
=
1

2
 

𝜌𝑢𝑑 = 𝜓
∗(𝑢, 𝑑)𝜓(𝑢, 𝑢) + 𝜓∗(𝑑, 𝑑)𝜓(𝑑, 𝑢) =

1

2
∙
1

2
+
1

2
∙
1

2
=
1

4
+
1

4
=
2

4
=
1

2
 

𝜌𝑑𝑢 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑢, 𝑑) + 𝜓∗(𝑑, 𝑢)𝜓(𝑑, 𝑑) =

1

2
∙
1

2
+
1

2
∙
1

2
=
1

4
+
1

4
=
2

4
=
1

2
 

𝜌𝑑𝑑 = 𝜓
∗(𝑢, 𝑑)𝜓(𝑢, 𝑑) + 𝜓∗(𝑑, 𝑑)𝜓(𝑑, 𝑑) =

1

2
∙
1

2
+
1

2
∙
1

2
=
1

4
+
1

4
=
2

4
=
1

2
 

The density matrix 𝜌 of Bob goes like this: 

𝜌 = (

1

2

1

2
1

2

1

2

) 

Check: a density matrix must be Hermitian and the trace of a density matrix must be 1, both 

conditions are fulfilled for this result. Bob’s matrix represents (like Alice’s matrix) a pure state. 

The values of 𝝍(𝒂, 𝒃) for the second case |𝝍𝟐⟩: 

|𝜓2⟩ =
1

√2
|𝑢𝑢⟩ + 0|𝑢𝑑⟩ + 0|𝑑𝑢⟩ +

1

√2
|𝑑𝑑⟩ 

We calculate Alice’s density matrix: 

𝜌𝑢𝑢 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑢, 𝑢) + 𝜓∗(𝑢, 𝑑)𝜓(𝑢, 𝑑) =

1

√2
∙
1

√2
+ 0 =

1

√4
=
1

2
 

𝜌𝑢𝑑 = 𝜓
∗(𝑑, 𝑢)𝜓(𝑢, 𝑢) + 𝜓∗(𝑑, 𝑑)𝜓(𝑢, 𝑑) = 0 + 0 = 0 

𝜌𝑑𝑢 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑑, 𝑢) + 𝜓∗(𝑢, 𝑑)𝜓(𝑑, 𝑑) = 0 + 0 = 0 
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𝜌𝑑𝑑 = 𝜓
∗(𝑑, 𝑢)𝜓(𝑑, 𝑢) + 𝜓∗(𝑑, 𝑑)𝜓(𝑑, 𝑑) = 0 +

1

√2
∙
1

√2
=
1

√4
=
1

2
 

The density matrix 𝜌 of Alice goes like this: 

𝜌 = (

1

2
0

0
1

2

) 

Check: a density matrix must be Hermitian and the trace of a density matrix must be 1, both 

conditions are fulfilled for this result. 

For a pure state holds: 

𝜌2 = 𝜌 𝑎𝑛𝑑 𝑇𝑟(𝜌2) = 1 

We check: 

𝜌2 = (

1

2
0

0
1

2

)(

1

2
0

0
1

2

) = (

1

4
0

1

4

) ≠ 𝜌 

𝑇𝑟(𝜌2) = 𝑇𝑟(

1

4
0

1

4

) =
1

2
≠ 1 

The matrix of Alice represents a mixed state. 

We calculate Bob’s density matrix: 

𝜌𝑢𝑢 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑢, 𝑢) + 𝜓∗(𝑑, 𝑢)𝜓(𝑑, 𝑢) =

1

√2
∙
1

√2
+ 0 =

1

√4
=
1

2
 

𝜌𝑢𝑑 = 𝜓
∗(𝑢, 𝑑)𝜓(𝑢, 𝑢) + 𝜓∗(𝑑, 𝑑)𝜓(𝑑, 𝑢) = 0 + 0 = 0 

𝜌𝑑𝑢 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑢, 𝑑) + 𝜓∗(𝑑, 𝑢)𝜓(𝑑, 𝑑) = 0 + 0 = 0 

𝜌𝑑𝑑 = 𝜓
∗(𝑢, 𝑑)𝜓(𝑢, 𝑑) + 𝜓∗(𝑑, 𝑑)𝜓(𝑑, 𝑑) = 0 +

1

√2
∙
1

√2
=
1

√4
=
1

2
 

The density matrix 𝜌 of Bob goes like this: 

𝜌 = (

1

2
0

0
1

2

) 

As with the matrix of Alice, Bob’s matrix represents a mixed state. 

The values of 𝝍(𝒂, 𝒃) for the third case |𝝍𝟑⟩: 

|𝜓3⟩ =
3

5
|𝑢𝑢⟩ +

4

5
| 𝑢𝑑⟩ + 0|𝑑𝑢⟩ + 0|𝑑𝑑⟩ 

We calculate Alice’s density matrix: 
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𝜌𝑢𝑢 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑢, 𝑢) + 𝜓∗(𝑢, 𝑑)𝜓(𝑢, 𝑑) =

3

5
∙
3

5
+
4

5
∙
4

5
=
9

25
+
16

25
=
25

25
= 1 

𝜌𝑢𝑑 = 𝜓
∗(𝑑, 𝑢)𝜓(𝑢, 𝑢) + 𝜓∗(𝑑, 𝑑)𝜓(𝑢, 𝑑) = 0 ∙

3

5
+ 0 ∙

4

5
= 0 

𝜌𝑑𝑢 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑑, 𝑢) + 𝜓∗(𝑢, 𝑑)𝜓(𝑑, 𝑑) = 0 

𝜌𝑑𝑑 = 𝜓
∗(𝑑, 𝑢)𝜓(𝑑, 𝑢) + 𝜓∗(𝑑, 𝑑)𝜓(𝑑, 𝑑) = 0 

The density matrix 𝜌 of Alice goes like this: 

𝜌 = (
1 0
0 0

) 

Check: a density matrix must be Hermitian and the trace of a density matrix must be 1, both 

conditions are fulfilled for this result. 

For a pure state holds: 

𝜌2 = 𝜌 𝑎𝑛𝑑 𝑇𝑟(𝜌2) = 1 

This is clearly fulfilled for the matrix of Alice. Alice’s matrix represents a pure state. 

We calculate Bob’s density matrix: 

𝜌𝑢𝑢 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑢, 𝑢) + 𝜓∗(𝑑, 𝑢)𝜓(𝑑, 𝑢) =

3

5
∙
3

5
+ 0 =

9

25
 

𝜌𝑢𝑑 = 𝜓
∗(𝑢, 𝑑)𝜓(𝑢, 𝑢) + 𝜓∗(𝑑, 𝑑)𝜓(𝑑, 𝑢) =

4

5
∙
3

5
+ 0 ∙ 0 =

12

25
 

𝜌𝑑𝑢 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑢, 𝑑) + 𝜓∗(𝑑, 𝑢)𝜓(𝑑, 𝑑) =

3

5
∙
4

5
+ 0 ∙ 0 =

12

25
 

𝜌𝑑𝑑 = 𝜓
∗(𝑢, 𝑑)𝜓(𝑢, 𝑑) + 𝜓∗(𝑑, 𝑑)𝜓(𝑑, 𝑑) =

4

5
∙
4

5
+ 0 =

16

25
 

The density matrix 𝜌 of Bob goes like this: 

𝜌 = (

9

25

12

25
12

25

16

25

) 

Check: a density matrix must be Hermitian and the trace of a density matrix must be 1, both 

conditions are fulfilled for this result. 

For a pure state holds: 

𝜌2 = 𝜌 𝑎𝑛𝑑 𝑇𝑟(𝜌2) = 1 

We check: 

𝜌2 = (

9

25

12

25
12

25

16

25

)(

9

25

12

25
12

25

16

25

) = (

9

25

12

25
12

25

16

25

) 
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𝑇𝑟(𝜌2) = 𝑇𝑟(

9

25

12

25
12

25

16

25

) = 1 

The matrix of Bob represents a pure state. 

  



The exercises of „Quantum Mechanics, The Theoretical Minimum“ 

 page 87 of 106 

Exercise 7.9 

Given any Alice observable 𝐴 and Bo observable 𝐵, show that for a product state, the correlation 

𝐶(𝐴, 𝐵) is zero. 

* * * * * * * * * * 

Alice prepares her spin in state 〈𝐴〉 = 𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩. 

Bob prepares his spin in state 〈𝐵〉 = 𝛽𝑢|𝑢⟩ + 𝛽𝑑|𝑑⟩. 

The product of these two states 〈𝐴〉 ∙ 〈𝐵〉 gives: 

(𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩) ∙ (𝛽𝑢|𝑢⟩ + 𝛽𝑑|𝑑⟩) = 

(𝛼𝑢|𝑢⟩ ∙ 𝛽𝑢|𝑢⟩) + (𝛼𝑢|𝑢⟩ ∙ 𝛽𝑑|𝑑⟩) + (𝛼𝑑|𝑑⟩ ∙ 𝛽𝑢|𝑢⟩) + (𝛼𝑑|𝑑⟩ ∙ 𝛽𝑑|𝑑⟩) = 

(𝛼𝑢𝛽𝑢|𝑢𝑢⟩) + (𝛼𝑢𝛽𝑑|𝑢𝑑⟩) + (𝛼𝑑𝛽𝑢|𝑑𝑢⟩) + (𝛼𝑑𝛽𝑑|𝑑𝑑⟩) 

The product state 〈𝐴𝐵〉 is the tensor product of both states, written as 

𝐴⊗𝐵 = 

{𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩} ⊗ {𝛽𝑢|𝑢⟩ + 𝛽𝑑|𝑑⟩} = 

(𝛼𝑢|𝑢⟩)(𝛽𝑢|𝑢⟩ + 𝛽𝑑|𝑑⟩) + (𝛼𝑑|𝑑⟩)(𝛽𝑢|𝑢⟩ + 𝛽𝑑|𝑑⟩) = 

(𝛼𝑢𝛽𝑢|𝑢𝑢⟩) + (𝛼𝑢𝛽𝑑|𝑢𝑑⟩) + (𝛼𝑑𝛽𝑢|𝑑𝑢⟩) + (𝛼𝑑𝛽𝑑|𝑑𝑑⟩) 

As the result for the “normal” multiplication and the tensor product is the same, the difference 

equals zero. 
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Exercise 7.10 

Given a measuring apparatus with the states |𝑏⟩ for initial blank state, |+1⟩ for “result of spin 

measurement is up” and |−1⟩ for “result of spin measurement is down”. 

Verify that the state-vector 

αu|u, b⟩ + αd|d, b⟩ 

represents a completely unentangled state. 

* * * * * * * * * * 

We have two states, the state of the spin and the state of the apparatus: 

(αu|u⟩ + αd|d⟩) and (1|b⟩ + 0|(+1)⟩ + 0|(−1⟩)), because in the beginning the apparatus is 

certainly in the |𝑏⟩-state. 

We build the product state according to p. 164: 

|product state⟩ = {αu|u⟩ + αd|d⟩}⨂{1|b⟩ + 0|(+1)⟩ + 0|(−1⟩)} = 

{αu|u⟩ + αd|d⟩}⨂{1|b⟩} = 

αu|u⟩1|b⟩ + αd|d⟩1|b⟩ = 

αu|u, b⟩ + αd|d, b⟩ 

Note: product states are not entangled. 
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Exercise 7.11 

Calculate Alice’s density matrix for 𝜎𝑧 for the “near-singlet” state. 

* * * * * * * * * * 

Spin Operator Multiplication Table for the Up-Down-Basis: 

𝜎𝑧|𝑢𝑢⟩ = |𝑢𝑢⟩ 𝜎𝑧|𝑢𝑑⟩ = |𝑢𝑑⟩ 𝜎𝑧|𝑑𝑢⟩ = −|𝑑𝑢⟩ 𝜎𝑧|𝑑𝑑⟩ = −|𝑑𝑑⟩ 

𝜎𝑥|𝑢𝑢⟩ = |𝑑𝑢⟩ 𝜎𝑥|𝑢𝑑⟩ = |𝑑𝑑⟩ 𝜎𝑥|𝑑𝑢⟩ = |𝑢𝑢⟩ 𝜎𝑥|𝑑𝑑⟩ = |𝑢𝑑⟩ 

𝜎𝑦|𝑢𝑢⟩ = 𝑖|𝑑𝑢⟩ 𝜎𝑦|𝑢𝑑⟩ = 𝑖|𝑑𝑑⟩ 𝜎𝑦|𝑑𝑢⟩ = −𝑖|𝑢𝑢⟩ 𝜎𝑦|𝑑𝑑⟩ = −𝑖|𝑢𝑑⟩ 

𝜏𝑧|𝑢𝑢⟩ = |𝑢𝑢⟩ 𝜏𝑧|𝑢𝑑⟩ = −|𝑢𝑑⟩ 𝜏𝑧|𝑑𝑢⟩ = |𝑑𝑢⟩ 𝜏𝑧|𝑑𝑑⟩ = −|𝑑𝑑⟩ 

𝜏𝑥|𝑢𝑢⟩ = |𝑢𝑑⟩ 𝜏𝑥|𝑢𝑑⟩ = |𝑢𝑢⟩ 𝜏𝑥|𝑑𝑢⟩ = |𝑑𝑑⟩ 𝜏𝑥|𝑑𝑑⟩ = |𝑑𝑢⟩ 

𝜏𝑦|𝑢𝑢⟩ = 𝑖|𝑢𝑑⟩ 𝜏𝑦|𝑢𝑑⟩ = −𝑖|𝑢𝑢⟩ 𝜏𝑦|𝑑𝑢⟩ = 𝑖|𝑑𝑑⟩ 𝜏𝑦|𝑑𝑑⟩ = −𝑖|𝑑𝑢⟩ 

The state-vector leads to the following wave-function: 

𝜓𝑢𝑢 = 0|𝑢𝑢⟩ 𝜓𝑢𝑑 = √0.6|𝑢𝑑⟩ 𝜓𝑑𝑢 = −√0.4|𝑑𝑢⟩ 𝜓𝑑𝑑 = 0|𝑑𝑑⟩ 

As the values are all real, the complex conjugated are identical: 𝜓𝑢𝑢 = 𝜓
∗
𝑢𝑢 etc. 

Obviously, the wave function is normalized: 02 + √0.6
2
+ (−√0.4)2 + 02 = 1 

The density matrix: 

𝜓(𝑎, 𝑏) takes the form   𝜓(𝑎, 𝑏) = 𝜓𝑢𝑑 + 𝜓𝑑𝑢 = √0.6|𝑢𝑑⟩ − √0.4|𝑑𝑢⟩ 

and results in:   𝜓𝑢𝑢 = 0,  𝜓𝑢𝑑 = √0.6,  𝜓𝑑𝑢 = −√0.4,  𝜓𝑑𝑑 = 0 

The density matrix of Alice:  𝜌𝑎′𝑎 = ∑ 𝜓∗(𝑎, 𝑏)𝜓(𝑎′, 𝑏)      (7.23)𝑏  

expanded a, a’ (with 𝜓∗ = 𝜓 due to all coefficients being real): 

𝜌𝑢𝑢 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑢, 𝑢) + 𝜓∗(𝑢, 𝑑)𝜓(𝑢, 𝑑) = 0.6 

𝜌𝑢𝑑 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑑, 𝑢) + 𝜓∗(𝑢, 𝑑)𝜓(𝑑, 𝑑) = 0 

𝜌𝑑𝑢 = 𝜓
∗(𝑑, 𝑢)𝜓(𝑢, 𝑢) + 𝜓∗(𝑑, 𝑑)𝜓(𝑢, 𝑑) = 0 

𝜌𝑑𝑑 = 𝜓
∗(𝑑, 𝑢)𝜓(𝑑, 𝑢) + 𝜓∗(𝑑, 𝑑)𝜓(𝑑, 𝑑) = 0.4 

gives Alice density matrix: 

𝜌 ≔ (
0.6 0
0 0.4

) ; 𝜌2 ≔ (
0.36 0
0 0.16

) 

For Alice’s subsystem holds:  

𝜌2 ≠ 𝜌 and Trace (𝜌2) < 1 
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Exercise 7.12 

Verify the numerical values in each rap sheet. 

This is a very specific exercise that refers to so called “rap sheets”. The solution here is for reasons of 

completeness. 

* * * * * * * * * * 

State-Vector Rap Sheet 1 

Spin Operator Multiplication Table for the Up-Down-Basis: 

𝜎𝑧|𝑢𝑢⟩ = |𝑢𝑢⟩ 𝜎𝑧|𝑢𝑑⟩ = |𝑢𝑑⟩ 𝜎𝑧|𝑑𝑢⟩ = −|𝑑𝑢⟩ 𝜎𝑧|𝑑𝑑⟩ = −|𝑑𝑑⟩ 

𝜎𝑥|𝑢𝑢⟩ = |𝑑𝑢⟩ 𝜎𝑥|𝑢𝑑⟩ = |𝑑𝑑⟩ 𝜎𝑥|𝑑𝑢⟩ = |𝑢𝑢⟩ 𝜎𝑥|𝑑𝑑⟩ = |𝑢𝑑⟩ 

𝜎𝑦|𝑢𝑢⟩ = 𝑖|𝑑𝑢⟩ 𝜎𝑦|𝑢𝑑⟩ = 𝑖|𝑑𝑑⟩ 𝜎𝑦|𝑑𝑢⟩ = −𝑖|𝑢𝑢⟩ 𝜎𝑦|𝑑𝑑⟩ = −𝑖|𝑢𝑑⟩ 

𝜏𝑧|𝑢𝑢⟩ = |𝑢𝑢⟩ 𝜏𝑧|𝑢𝑑⟩ = −|𝑢𝑑⟩ 𝜏𝑧|𝑑𝑢⟩ = |𝑑𝑢⟩ 𝜏𝑧|𝑑𝑑⟩ = −|𝑑𝑑⟩ 

𝜏𝑥|𝑢𝑢⟩ = |𝑢𝑑⟩ 𝜏𝑥|𝑢𝑑⟩ = |𝑢𝑢⟩ 𝜏𝑥|𝑑𝑢⟩ = |𝑑𝑑⟩ 𝜏𝑥|𝑑𝑑⟩ = |𝑑𝑢⟩ 

𝜏𝑦|𝑢𝑢⟩ = 𝑖|𝑢𝑑⟩ 𝜏𝑦|𝑢𝑑⟩ = −𝑖|𝑢𝑢⟩ 𝜏𝑦|𝑑𝑢⟩ = 𝑖|𝑑𝑑⟩ 𝜏𝑦|𝑑𝑑⟩ = −𝑖|𝑑𝑢⟩ 

The state-vector leads to the following wave-function: 

𝜓𝑢𝑢 = 𝛼𝑢𝛽𝑢|𝑢𝑢⟩ 𝜓𝑢𝑑 = 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ 𝜓𝑑𝑢 = 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ 𝜓𝑑𝑑 = 𝛼𝑑𝛽𝑑|𝑑𝑑⟩ 

with the normalization 

𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑 = 1 

𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑 = 1 

The expectation values: 

〈𝝈𝒛〉 = ⟨𝝍|𝝈𝒛|𝝍⟩ = 

First the part 𝜎𝑧|𝜓⟩: 

𝜎𝑧|𝜓⟩ = 𝜎𝑧(𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩) = 

(𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ − 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ − 𝛼𝑑𝛽𝑑|𝑑𝑑⟩) 

The left part ⟨𝜓| added: ⟨𝜓| = ⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗ + ⟨𝑢𝑑|𝛼𝑢
∗𝛽𝑑

∗ + ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗ + ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗  

(⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗ + ⟨𝑢𝑑|𝛼𝑢
∗𝛽𝑑

∗ + ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗ + ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗)(𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ − 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ − 𝛼𝑑𝛽𝑑|𝑑𝑑⟩) 

As only products of the form ⟨𝑢𝑢|𝑢𝑢⟩ contribute, the scalar product results in: 

𝛼𝑢
∗𝛽𝑢

∗𝛼𝑢𝛽𝑢 + 𝛼𝑢
∗𝛽𝑑

∗𝛼𝑢𝛽𝑑 − 𝛼𝑑
∗𝛽𝑢

∗𝛼𝑑𝛽𝑢 − 𝛼𝑑
∗𝛽𝑑

∗𝛼𝑑𝛽𝑑 = 

𝛼𝑢
∗𝛼𝑢𝛽𝑢

∗𝛽𝑢 + 𝛼𝑢
∗𝛼𝑢𝛽𝑑

∗𝛽𝑑 − 𝛼𝑑
∗𝛼𝑑𝛽𝑢

∗𝛽𝑢 − 𝛼𝑑
∗𝛼𝑑𝛽𝑑

∗𝛽𝑑 = 

𝛼𝑢
∗𝛼𝑢(𝛽𝑢

∗𝛽𝑢 + 𝛽𝑑
∗𝛽𝑑) − 𝛼𝑑

∗𝛼𝑑(𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑) = 

(𝛼𝑢
∗𝛼𝑢 − 𝛼𝑑

∗𝛼𝑑)(𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑) = 

(𝛼𝑢
∗𝛼𝑢 − 𝛼𝑑

∗𝛼𝑑)(1) = 

(𝛼𝑢
∗𝛼𝑢 − 𝛼𝑑

∗𝛼𝑑) 
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The expectation values:  

〈𝝈𝒚〉 = ⟨𝝍|𝝈𝒚|𝝍⟩ = 

First the part 𝜎𝑦|𝜓⟩: 

𝜎𝑦|𝜓⟩ = 𝜎𝑦(𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩) = 

(𝑖𝛼𝑢𝛽𝑢|𝑑𝑢⟩ + 𝑖𝛼𝑢𝛽𝑑|𝑑𝑑⟩ − 𝑖𝛼𝑑𝛽𝑢|𝑢𝑢⟩ − 𝑖𝛼𝑑𝛽𝑑|𝑢𝑑) 

The left part ⟨𝜓| added: ⟨𝜓| = ⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗ + ⟨𝑢𝑑|𝛼𝑢
∗𝛽𝑑

∗ + ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗ + ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗  

(⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗ + ⟨𝑢𝑑|𝛼𝑢
∗𝛽𝑑

∗ + ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗ + ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗)(𝑖𝛼𝑢𝛽𝑢|𝑑𝑢⟩ + 𝑖𝛼𝑢𝛽𝑑|𝑑𝑑⟩ − 𝑖𝛼𝑑𝛽𝑢|𝑢𝑢⟩ − 𝑖𝛼𝑑𝛽𝑑|𝑢𝑑) 

As only products of the form ⟨𝑢𝑢|𝑢𝑢⟩ contribute, the scalar product results in: 

−𝑖𝛼𝑢
∗𝛽𝑢

∗𝛼𝑑𝛽𝑢 − 𝑖𝛼𝑢
∗𝛽𝑑

∗𝛼𝑑𝛽𝑑 + 𝑖𝛼𝑑
∗𝛽𝑢

∗𝛼𝑢𝛽𝑢 + 𝑖𝛼𝑑
∗𝛽𝑑

∗𝛼𝑢𝛽𝑑 = 

−𝑖𝛼𝑢
∗𝛼𝑑𝛽𝑢

∗𝛽𝑢 − 𝑖𝛼𝑢
∗𝛼𝑑𝛽𝑑

∗𝛽𝑑 + 𝑖𝛼𝑑
∗𝛼𝑢𝛽𝑢

∗𝛽𝑢 + 𝑖𝛼𝑑
∗𝛼𝑢𝛽𝑑

∗𝛽𝑑 = 

𝑖𝛼𝑑
∗𝛼𝑢𝛽𝑢

∗𝛽𝑢 − 𝑖𝛼𝑢
∗𝛼𝑑𝛽𝑢

∗𝛽𝑢 + 𝑖𝛼𝑑
∗𝛼𝑢𝛽𝑑

∗𝛽𝑑 − 𝑖𝛼𝑢
∗𝛼𝑑𝛽𝑑

∗𝛽𝑑 = 

𝑖(𝛼𝑑
∗𝛼𝑢 − 𝛼𝑢

∗𝛼𝑑)𝛽𝑢
∗𝛽𝑢 + 𝑖(𝛼𝑑

∗𝛼𝑢 − 𝛼𝑢
∗𝛼𝑑)𝛽𝑑

∗𝛽𝑑 = 

𝑖(𝛼𝑑
∗𝛼𝑢 − 𝛼𝑢

∗𝛼𝑑)(𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑) = 

𝑖(𝛼𝑑
∗𝛼𝑢 − 𝛼𝑢

∗𝛼𝑑)(1) = 

𝑖(𝛼𝑑
∗𝛼𝑢 − 𝛼𝑢

∗𝛼𝑑) 

 

〈𝝈𝒙〉 = ⟨𝝍|𝝈𝒙|𝝍⟩ = 

First the part 𝜎𝑥|𝜓⟩:  

𝜎𝑥|𝜓⟩ = 𝜎𝑥(𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩) = 

(𝛼𝑢𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑑𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑢𝑑⟩) 

The left part ⟨𝜓| added: ⟨𝜓| = ⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗ + ⟨𝑢𝑑|𝛼𝑢
∗𝛽𝑑

∗ + ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗ + ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗  

(⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗ + ⟨𝑢𝑑|𝛼𝑢
∗𝛽𝑑

∗ + ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗ + ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗)(𝛼𝑢𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑑𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑢𝑑⟩) 

As only products of the form ⟨𝑢𝑢|𝑢𝑢⟩ contribute, the scalar product results in: 

𝛼𝑢
∗𝛽𝑢

∗𝛼𝑑𝛽𝑢 + 𝛼𝑢
∗𝛽𝑑

∗𝛼𝑑𝛽𝑑 + 𝛼𝑑
∗𝛽𝑢

∗𝛼𝑢𝛽𝑢 + 𝛼𝑑
∗𝛽𝑑

∗𝛼𝑢𝛽𝑑 = 

𝛼𝑢
∗𝛼𝑑𝛽𝑢

∗𝛽𝑢 + 𝛼𝑢
∗𝛼𝑑𝛽𝑑

∗𝛽𝑑 + 𝛼𝑑
∗𝛼𝑢𝛽𝑢

∗𝛽𝑢 + 𝛼𝑑
∗𝛼𝑢𝛽𝑑

∗𝛽𝑑 = 

𝛼𝑢
∗𝛼𝑑(𝛽𝑢

∗𝛽𝑢 + 𝛽𝑑
∗𝛽𝑑) + 𝛼𝑑

∗𝛼𝑢(𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑) = 

(𝛼𝑢
∗𝛼𝑑 + 𝛼𝑑

∗𝛼𝑢)(𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑) = 

(𝛼𝑢
∗𝛼𝑑 + 𝛼𝑑

∗𝛼𝑢)(1) = 

(𝛼𝑢
∗𝛼𝑑 + 𝛼𝑑

∗𝛼𝑢) 

Now we must calculate  

〈𝜎𝑥〉
2 + 〈𝜎𝑦〉

2 + 〈𝜎𝑧〉
2 = 

(𝛼𝑢
∗𝛼𝑑 + 𝛼𝑑

∗𝛼𝑢)
2 + (𝑖(𝛼𝑑

∗𝛼𝑢 − 𝛼𝑢
∗𝛼𝑑))

2
+ (𝛼𝑢

∗𝛼𝑢 − 𝛼𝑑
∗𝛼𝑑)

2 = 
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(𝛼𝑢
∗𝛼𝑑)² + 2𝛼𝑢

∗𝛼𝑑𝛼𝑑
∗𝛼𝑢 + (𝛼𝑑

∗𝛼𝑢)
2 − (𝛼𝑑

∗𝛼𝑢)² + 2𝛼𝑑
∗𝛼𝑢𝛼𝑢

∗𝛼𝑑 − (𝛼𝑢
∗𝛼𝑑)

2

+ (𝛼𝑢
∗𝛼𝑢)² − 2𝛼𝑢

∗𝛼𝑢𝛼𝑑
∗𝛼𝑑 + (𝛼𝑑

∗𝛼𝑑)
2 = 

2𝛼𝑢
∗𝛼𝑑𝛼𝑑

∗𝛼𝑢 + 2𝛼𝑑
∗𝛼𝑢𝛼𝑢

∗𝛼𝑑 − 2𝛼𝑢
∗𝛼𝑢𝛼𝑑

∗𝛼𝑑 + (𝛼𝑢
∗𝛼𝑢)

2 + (𝛼𝑑
∗𝛼𝑑)² = 

2𝛼𝑢
∗𝛼𝑑𝛼𝑑

∗𝛼𝑢 + 2𝛼𝑢
∗𝛼𝑑𝛼𝑑

∗𝛼𝑢 − 2𝛼𝑢
∗𝛼𝑑𝛼𝑑

∗𝛼𝑢 + (𝛼𝑢
∗𝛼𝑢)

2 + (𝛼𝑑
∗𝛼𝑑)² = 

(𝛼𝑢
∗𝛼𝑢)

2 + 2𝛼𝑢
∗𝛼𝑑𝛼𝑑

∗𝛼𝑢 + (𝛼𝑑
∗𝛼𝑑)² = 

(𝛼𝑢
∗𝛼𝑢)

2 + 2𝛼𝑢
∗𝛼𝑢𝛼𝑑

∗𝛼𝑑 + (𝛼𝑑
∗𝛼𝑑)² = 

(𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑)
2 = 1 

The expectation values: 〈𝝉𝒛〉 = ⟨𝝍|𝝉𝒛|𝝍⟩ = 

First the part 𝜏𝑧|𝜓⟩: 

𝜏𝑧|𝜓⟩ = 𝜏𝑧(𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩) = 

(𝛼𝑢𝛽𝑢|𝑢𝑢⟩ − 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ − 𝛼𝑑𝛽𝑑|𝑑𝑑⟩) 

The left part ⟨𝜓| added: ⟨𝜓| = ⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗ + ⟨𝑢𝑑|𝛼𝑢
∗𝛽𝑑

∗ + ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗ + ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗  

(⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗ + ⟨𝑢𝑑|𝛼𝑢
∗𝛽𝑑

∗ + ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗ + ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗)(𝛼𝑢𝛽𝑢|𝑢𝑢⟩ − 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ − 𝛼𝑑𝛽𝑑|𝑑𝑑⟩) 

As only products of the form ⟨𝑢𝑢|𝑢𝑢⟩ contribute, the scalar product results in: 

𝛼𝑢
∗𝛽𝑢

∗𝛼𝑢𝛽𝑢 − 𝛼𝑢
∗𝛽𝑑

∗𝛼𝑢𝛽𝑑 + 𝛼𝑑
∗𝛽𝑢

∗𝛼𝑑𝛽𝑢 − 𝛼𝑑
∗𝛽𝑑

∗𝛼𝑑𝛽𝑑 = 

𝛼𝑢
∗𝛼𝑢𝛽𝑢

∗𝛽𝑢 − 𝛼𝑢
∗𝛼𝑢𝛽𝑑

∗𝛽𝑑 + 𝛼𝑑
∗𝛼𝑑𝛽𝑢

∗𝛽𝑢 − 𝛼𝑑
∗𝛼𝑑𝛽𝑑

∗𝛽𝑑 = 

𝛼𝑢
∗𝛼𝑢(𝛽𝑢

∗𝛽𝑢 − 𝛽𝑑
∗𝛽𝑑) + 𝛼𝑑

∗𝛼𝑑(𝛽𝑢
∗𝛽𝑢 − 𝛽𝑑

∗𝛽𝑑) = 

(𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑)(𝛽𝑢
∗𝛽𝑢 − 𝛽𝑑

∗𝛽𝑑) = 

(1)(𝛽𝑢
∗𝛽𝑢 − 𝛽𝑑

∗𝛽𝑑) = 

(𝛽𝑢
∗𝛽𝑢 − 𝛽𝑑

∗𝛽𝑑) 

The expectation values:  〈𝝉𝒚〉 = ⟨𝝍|𝝉𝒚|𝝍⟩ = 

First the part 𝜏𝑦|𝜓⟩: 

𝜏𝑦|𝜓⟩ = 𝜏𝑦(𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩) = 

(𝑖𝛼𝑢𝛽𝑢|𝑢𝑑⟩ − 𝑖𝛼𝑢𝛽𝑑|𝑢𝑢⟩ + 𝑖𝛼𝑑𝛽𝑢|𝑑𝑑⟩ − 𝑖𝛼𝑑𝛽𝑑|𝑑𝑢) 

The left part ⟨𝜓| added: ⟨𝜓| = ⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗ + ⟨𝑢𝑑|𝛼𝑢
∗𝛽𝑑

∗ + ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗ + ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗  

(⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗ + ⟨𝑢𝑑|𝛼𝑢
∗𝛽𝑑

∗ + ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗ + ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗)(𝑖𝛼𝑢𝛽𝑢|𝑢𝑑⟩ − 𝑖𝛼𝑢𝛽𝑑|𝑢𝑢⟩ + 𝑖𝛼𝑑𝛽𝑢|𝑑𝑑⟩ − 𝑖𝛼𝑑𝛽𝑑|𝑑𝑢) 
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As only products of the form ⟨𝑢𝑢|𝑢𝑢⟩ contribute, the scalar product results in: 

−𝑖𝛼𝑢
∗𝛽𝑢

∗𝛼𝑢𝛽𝑑 + 𝑖𝛼𝑢
∗𝛽𝑑

∗𝛼𝑢𝛽𝑢 − 𝑖𝛼𝑑
∗𝛽𝑢

∗𝛼𝑑𝛽𝑑 + 𝑖𝛼𝑑
∗𝛽𝑑

∗𝛼𝑑𝛽𝑢 = 

−𝑖𝛼𝑢
∗𝛼𝑢𝛽𝑢

∗𝛽𝑑 + 𝑖𝛼𝑢
∗𝛼𝑢𝛽𝑑

∗𝛽𝑢 − 𝑖𝛼𝑑
∗𝛼𝑑𝛽𝑢

∗𝛽𝑑 + 𝑖𝛼𝑑
∗𝛼𝑑𝛽𝑑

∗𝛽𝑢 = 

−𝑖𝛼𝑢
∗𝛼𝑢𝛽𝑢

∗𝛽𝑑 − 𝑖𝛼𝑑
∗𝛼𝑑𝛽𝑢

∗𝛽𝑑 + 𝑖𝛼𝑢
∗𝛼𝑢𝛽𝑑

∗𝛽𝑢 + 𝑖𝛼𝑑
∗𝛼𝑑𝛽𝑑

∗𝛽𝑢 = 

−𝑖𝛽𝑢
∗𝛽𝑑(𝛼𝑢

∗𝛼𝑢 + 𝛼𝑑
∗𝛼𝑑) + 𝑖𝛽𝑑

∗𝛽𝑢(𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑) = 

(𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑)(−𝑖𝛽𝑢
∗𝛽𝑑 + 𝑖𝛽𝑑

∗𝛽𝑢) = 

𝑖(𝛽𝑑
∗𝛽𝑢 − 𝛽𝑢

∗𝛽𝑑) 

The expectation values:  〈𝝉𝒙〉 = ⟨𝝍|𝝉𝒙|𝝍⟩ = 

First the part 𝜎𝑥|𝜓⟩:  

𝜏𝑥|𝜓⟩ = 𝜏𝑥(𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩) = 

(𝛼𝑢𝛽𝑢|𝑢𝑑⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑢⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑑⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑢⟩) 

The left part ⟨𝜓| added: ⟨𝜓| = ⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗ + ⟨𝑢𝑑|𝛼𝑢
∗𝛽𝑑

∗ + ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗ + ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗  

(⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗ + ⟨𝑢𝑑|𝛼𝑢
∗𝛽𝑑

∗ + ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗ + ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗)(𝛼𝑢𝛽𝑢|𝑢𝑑⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑢⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑑⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑢⟩) 

As only products of the form ⟨𝑢𝑢|𝑢𝑢⟩ contribute, the scalar product results in: 

𝛼𝑢
∗𝛽𝑢

∗𝛼𝑢𝛽𝑑 + 𝛼𝑢
∗𝛽𝑑

∗𝛼𝑢𝛽𝑢 + 𝛼𝑑
∗𝛽𝑢

∗𝛼𝑑𝛽𝑑 + 𝛼𝑑
∗𝛽𝑑

∗𝛼𝑑𝛽𝑢 = 

𝛼𝑢
∗𝛼𝑢𝛽𝑢

∗𝛽𝑑 + 𝛼𝑢
∗𝛼𝑢𝛽𝑑

∗𝛽𝑢 + 𝛼𝑑
∗𝛼𝑑𝛽𝑢

∗𝛽𝑑 + 𝛼𝑑
∗𝛼𝑑𝛽𝑑

∗𝛽𝑢 = 

𝛼𝑢
∗𝛼𝑢(𝛽𝑢

∗𝛽𝑑 + 𝛽𝑑
∗𝛽𝑢) + 𝛼𝑑

∗𝛼𝑑(𝛽𝑢
∗𝛽𝑑 + 𝛽𝑑

∗𝛽𝑢) = 

(𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑)(𝛽𝑢
∗𝛽𝑑 + 𝛽𝑑

∗𝛽𝑢) = 

(1)(𝛽𝑢
∗𝛽𝑑 + 𝛽𝑑

∗𝛽𝑢) = 

(𝛽𝑢
∗𝛽𝑑 + 𝛽𝑑

∗𝛽𝑢) 

Now we must calculate  

〈𝜏𝑥〉
2 + 〈𝜏𝑦〉

2 + 〈𝜏𝑧〉
2 = 

(𝛽𝑢
∗𝛽𝑑 + 𝛽𝑑

∗𝛽𝑢)
2 + (𝑖(𝛽𝑑

∗𝛽𝑢 − 𝛽𝑢
∗𝛽𝑑))

2 + (𝛽𝑢
∗𝛽𝑢 − 𝛽𝑑

∗𝛽𝑑)
2 = 

(𝛽𝑢
∗𝛽𝑑 + 𝛽𝑑

∗𝛽𝑢)
2 − (𝛽𝑑

∗𝛽𝑢 − 𝛽𝑢
∗𝛽𝑑)

2 + (𝛽𝑢
∗𝛽𝑢 − 𝛽𝑑

∗𝛽𝑑)
2 = 

(𝛽𝑢
∗𝛽𝑑)² + 2𝛽𝑢

∗𝛽𝑑𝛽𝑑
∗𝛽𝑢 + (𝛽𝑑

∗𝛽𝑢)
2 − ((𝛽𝑑

∗𝛽𝑢)² − 2𝛽𝑑
∗𝛽𝑢𝛽𝑢

∗𝛽𝑑 + (𝛽𝑢
∗𝛽𝑑)²)

+ (𝛽𝑢
∗𝛽𝑢)² − 2𝛽𝑢

∗𝛽𝑢𝛽𝑑
∗𝛽𝑑 + (𝛽𝑑

∗𝛽𝑑)
2 = 

(𝛽𝑢
∗𝛽𝑑)² + 2𝛽𝑢

∗𝛽𝑑𝛽𝑑
∗𝛽𝑢 + (𝛽𝑑

∗𝛽𝑢)
2 − (𝛽𝑑

∗𝛽𝑢)
2 + 2𝛽𝑑

∗𝛽𝑢𝛽𝑢
∗𝛽𝑑 − (𝛽𝑢

∗𝛽𝑑)²)

+ (𝛽𝑢
∗𝛽𝑢)² − 2𝛽𝑢

∗𝛽𝑢𝛽𝑑
∗𝛽𝑑 + (𝛽𝑑

∗𝛽𝑑)
2 = 

(𝛽𝑢
∗𝛽𝑢)² + 2𝛽𝑢

∗𝛽𝑢𝛽𝑑
∗𝛽𝑑 + (𝛽𝑑

∗𝛽𝑑)
2 = 

(𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑)² = 1 
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The composite expectation value: 〈𝜏𝑧𝜎𝑧〉 = ⟨𝜓|𝜏𝑧𝜎𝑧|𝜓⟩  

𝜎𝑧|𝜓⟩ = (𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ − 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ − 𝛼𝑑𝛽𝑑|𝑑𝑑⟩) 

𝜏𝑧𝜎𝑧|𝜓⟩ = 

𝜏𝑧(𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ − 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ − 𝛼𝑑𝛽𝑑|𝑑𝑑⟩) = 

(𝛼𝑢𝛽𝑢|𝑢𝑢⟩ − 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ − 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩) 

The left part ⟨𝜓| added: ⟨𝜓| = ⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗ + ⟨𝑢𝑑|𝛼𝑢
∗𝛽𝑑

∗ + ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗ + ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗  

(⟨𝑢𝑢|𝛼𝑢
∗𝛽𝑢

∗ + ⟨𝑢𝑑|𝛼𝑢
∗𝛽𝑑

∗ + ⟨𝑑𝑢|𝛼𝑑
∗𝛽𝑢

∗ + ⟨𝑑𝑑|𝛼𝑑
∗𝛽𝑑

∗)(𝛼𝑢𝛽𝑢|𝑢𝑢⟩ − 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ − 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩) 

As only products of the form ⟨𝑢𝑢|𝑢𝑢⟩ contribute, the scalar product results in: 

𝛼𝑢
∗𝛽𝑢

∗𝛼𝑢𝛽𝑢 − 𝛼𝑢
∗𝛽𝑑

∗𝛼𝑢𝛽𝑑 − 𝛼𝑑
∗𝛽𝑢

∗𝛼𝑑𝛽𝑢 + 𝛼𝑑
∗𝛽𝑑

∗𝛼𝑑𝛽𝑑 = 

𝛼𝑢
∗𝛼𝑢𝛽𝑢

∗𝛽𝑢 − 𝛼𝑢
∗𝛼𝑢𝛽𝑑

∗𝛽𝑑 − 𝛼𝑑
∗𝛼𝑑𝛽𝑢

∗𝛽𝑢 + 𝛼𝑑
∗𝛼𝑑𝛽𝑑

∗𝛽𝑑 = 

𝛼𝑢
∗𝛼𝑢(𝛽𝑢

∗𝛽𝑢 − 𝛽𝑑
∗𝛽𝑑) − 𝛼𝑑

∗𝛼𝑑(𝛽𝑢
∗𝛽𝑢 − 𝛽𝑑

∗𝛽𝑑) 

The product 〈𝜎𝑧〉〈𝜏𝑧〉: 

〈𝜎𝑧〉 = (𝛼𝑢
∗𝛼𝑢 − 𝛼𝑑

∗𝛼𝑑) 

〈𝜏𝑧〉 = (𝛽𝑢
∗𝛽𝑢 − 𝛽𝑑

∗𝛽𝑑) 

〈𝜎𝑧〉〈𝜏𝑧〉 = (𝛼𝑢
∗𝛼𝑢 − 𝛼𝑑

∗𝛼𝑑)(𝛽𝑢
∗𝛽𝑢 − 𝛽𝑑

∗𝛽𝑑) = 

𝛼𝑢
∗𝛼𝑢(𝛽𝑢

∗𝛽𝑢 − 𝛽𝑑
∗𝛽𝑑) − 𝛼𝑑

∗𝛼𝑑(𝛽𝑢
∗𝛽𝑢 − 𝛽𝑑

∗𝛽𝑑) 

〈𝜏𝑧𝜎𝑧〉: 

〈𝜏𝑧𝜎𝑧〉 = 𝛼𝑢
∗𝛼𝑢(𝛽𝑢

∗𝛽𝑢 − 𝛽𝑑
∗𝛽𝑑) − 𝛼𝑑

∗𝛼𝑑(𝛽𝑢
∗𝛽𝑢 − 𝛽𝑑

∗𝛽𝑑) 

The correlation: 

〈𝜏𝑧𝜎𝑧〉 = 〈𝜏𝑧〉〈𝜎𝑧〉 → 〈𝜏𝑧𝜎𝑧〉 − 〈𝜏𝑧〉〈𝜎𝑧〉 = 0 
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State-Vector Rap Sheet 2 

Spin Operator Multiplication Table for the Up-Down-Basis: 

𝜎𝑧|𝑢𝑢⟩ = |𝑢𝑢⟩ 𝜎𝑧|𝑢𝑑⟩ = |𝑢𝑑⟩ 𝜎𝑧|𝑑𝑢⟩ = −|𝑑𝑢⟩ 𝜎𝑧|𝑑𝑑⟩ = −|𝑑𝑑⟩ 

𝜎𝑥|𝑢𝑢⟩ = |𝑑𝑢⟩ 𝜎𝑥|𝑢𝑑⟩ = |𝑑𝑑⟩ 𝜎𝑥|𝑑𝑢⟩ = |𝑢𝑢⟩ 𝜎𝑥|𝑑𝑑⟩ = |𝑢𝑑⟩ 

𝜎𝑦|𝑢𝑢⟩ = 𝑖|𝑑𝑢⟩ 𝜎𝑦|𝑢𝑑⟩ = 𝑖|𝑑𝑑⟩ 𝜎𝑦|𝑑𝑢⟩ = −𝑖|𝑢𝑢⟩ 𝜎𝑦|𝑑𝑑⟩ = −𝑖|𝑢𝑑⟩ 

𝜏𝑧|𝑢𝑢⟩ = |𝑢𝑢⟩ 𝜏𝑧|𝑢𝑑⟩ = −|𝑢𝑑⟩ 𝜏𝑧|𝑑𝑢⟩ = |𝑑𝑢⟩ 𝜏𝑧|𝑑𝑑⟩ = −|𝑑𝑑⟩ 

𝜏𝑥|𝑢𝑢⟩ = |𝑢𝑑⟩ 𝜏𝑥|𝑢𝑑⟩ = |𝑢𝑢⟩ 𝜏𝑥|𝑑𝑢⟩ = |𝑑𝑑⟩ 𝜏𝑥|𝑑𝑑⟩ = |𝑑𝑢⟩ 

𝜏𝑦|𝑢𝑢⟩ = 𝑖|𝑢𝑑⟩ 𝜏𝑦|𝑢𝑑⟩ = −𝑖|𝑢𝑢⟩ 𝜏𝑦|𝑑𝑢⟩ = 𝑖|𝑑𝑑⟩ 𝜏𝑦|𝑑𝑑⟩ = −𝑖|𝑑𝑢⟩ 

The state-vector leads to the following wave-function: 

𝜓𝑢𝑢 = 0|𝑢𝑢⟩ 𝜓𝑢𝑑 =
1

√2
|𝑢𝑑⟩ 𝜓𝑑𝑢 = −

1

√2
|𝑑𝑢⟩ 𝜓𝑑𝑑 = 0|𝑑𝑑⟩ 

As the values are all real, the complex conjugated are identical: 𝜓𝑢𝑢 = 𝜓
∗
𝑢𝑢 etc. 

Obviously, the wave function is normalized: 02 + (
1

√2
)
2
+ (−

1

√2
)2 + 02 = 1 

The density matrix: 

𝜓(𝑎, 𝑏) takes the form   𝜓(𝑎, 𝑏) = 𝜓𝑢𝑑 + 𝜓𝑑𝑢 =
1

√2
|𝑢𝑑⟩ −

1

√2
|𝑑𝑢⟩ 

and results in:   𝜓𝑢𝑢 = 0,  𝜓𝑢𝑑 = 
1

√2
,  𝜓𝑑𝑢 = −

1

√2
,  𝜓𝑑𝑑 = 0 

The density matrix of Alice:  𝜌𝑎′𝑎 = ∑ 𝜓∗(𝑎, 𝑏)𝜓(𝑎′, 𝑏)      (7.23)𝑏  

expanding a, a’ to uu, ud, du and dd (with 𝜓∗ = 𝜓 due to all coefficients being real): 

𝜌𝑢𝑢 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑢, 𝑢) + 𝜓∗(𝑢, 𝑑)𝜓(𝑢, 𝑑) = 0 ∙ 0 +

1

√2
∙
1

√2
=
1

2
 

𝜌𝑢𝑑 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑑, 𝑢) + 𝜓∗(𝑢, 𝑑)𝜓(𝑑, 𝑑) = 0 ∙

−1

√2
+
1

√2
∙ 0 = 0 

𝜌𝑑𝑢 = 𝜓
∗(𝑑, 𝑢)𝜓(𝑢, 𝑢) + 𝜓∗(𝑑, 𝑑)𝜓(𝑢, 𝑑) =

−1

√2
∙ 0 + 0 ∙

1

√2
= 0 

𝜌𝑑𝑑 = 𝜓
∗(𝑑, 𝑢)𝜓(𝑑, 𝑢) + 𝜓∗(𝑑, 𝑑)𝜓(𝑑, 𝑑) =

−1

√2
∙
−1

√2
+ 0 ∙ 0 =

1

2
 

gives Alice density matrix: 

𝜌 ≔ (

1

2
0

0
1

2

) ; 𝜌2 ≔ (

1

4
0

0
1

4

) 

For Alice’s subsystem holds:  

𝜌2 ≠ 𝜌 and Trace (𝜌2) < 1 
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The expectation values:  

〈𝜎𝑧〉 = ⟨𝜓|𝜎𝑧|𝜓⟩ = 

⟨(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) |𝜎𝑧| (

1

√2
|𝑢𝑑⟩ −

1

√2
| 𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) (
1

√2
|𝑢𝑑⟩ +

1

√2
| 𝑑𝑢⟩) = 

1

2
⟨𝑢𝑑|𝑢𝑑⟩ +

1

2
⟨𝑢𝑑|𝑑𝑢⟩ +

1

2
⟨𝑑𝑢|𝑢𝑑⟩ −

1

2
⟨𝑑𝑢|𝑑𝑢⟩ = 

1

2
+ 0 + 0 −

1

2
= 0 

〈𝜎𝑥〉 = ⟨𝜓|𝜎𝑥|𝜓⟩ = 

⟨(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) |𝜎𝑥| ((

1

√2
|𝑢𝑑⟩ −

1

√2
| 𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) (
1

√2
|𝑑𝑑⟩ −

1

√2
| 𝑢𝑢⟩) = 

1

2
⟨𝑢𝑑|𝑑𝑑⟩ −

1

2
⟨𝑢𝑑|𝑢𝑢⟩ −

1

2
⟨𝑑𝑢|𝑑𝑑⟩ +

1

2
⟨𝑑𝑢|𝑢𝑢⟩ = 

0 − 0 − 0 + 0 = 0 

 

〈𝜎𝑦〉 = ⟨𝜓|𝜎𝑦|𝜓⟩ = 

⟨(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) |𝜎𝑦| ((

1

√2
|𝑢𝑑⟩ −

1

√2
| 𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) (𝑖

1

√2
|𝑑𝑑⟩ + 𝑖

1

√2
| 𝑢𝑢⟩) = 

𝑖
1

2
⟨𝑢𝑑|𝑑𝑑⟩ + 𝑖

1

2
⟨𝑢𝑑|𝑢𝑢⟩ − 𝑖

1

2
⟨𝑑𝑢|𝑑𝑑⟩ − 𝑖

1

2
⟨𝑑𝑢|𝑢𝑢⟩ = 

0 + 0 − 0 − 0 = 0 

 

〈𝜏𝑧〉 = ⟨𝜓|𝜏𝑧|𝜓⟩ = 

⟨(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) |𝜏𝑧| ((

1

√2
|𝑢𝑑⟩ −

1

√2
| 𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) (−

1

√2
|𝑢𝑑⟩ −

1

√2
| 𝑑𝑢⟩) = 

−
1

2
⟨𝑢𝑑|𝑢𝑑⟩ −

1

2
⟨𝑢𝑑|𝑑𝑢⟩ +

1

2
⟨𝑑𝑢|𝑢𝑑⟩ +

1

2
⟨𝑑𝑢|𝑑𝑢⟩ = 

−
1

2
+ 0 + 0 +

1

2
= 0 
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〈𝜏𝑥〉 = ⟨𝜓|𝜏𝑥|𝜓⟩ = 

⟨(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) |𝜏𝑥| (

1

√2
|𝑢𝑑⟩ −

1

√2
| 𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) (
1

√2
|𝑢𝑢⟩ −

1

√2
| 𝑑𝑑⟩) = 

1

2
⟨𝑢𝑑|𝑢𝑢⟩ −

1

2
⟨𝑢𝑑|𝑑𝑑⟩ −

1

2
⟨𝑑𝑢|𝑢𝑢⟩ +

1

2
⟨𝑑𝑢|𝑑𝑑⟩ = 

0 − 0 − 0 + 0 = 0 

 

〈𝜏𝑦〉 = ⟨𝜓|𝜏𝑦|𝜓⟩ = 

⟨(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) |𝜏𝑦| (

1

√2
|𝑢𝑑⟩ −

1

√2
| 𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) (−𝑖

1

√2
|𝑢𝑢⟩ − 𝑖

1

√2
| 𝑑𝑑⟩) = 

−𝑖
1

2
⟨𝑢𝑑|𝑢𝑢⟩ − 𝑖

1

2
⟨𝑢𝑑|𝑑𝑑⟩ + 𝑖

1

2
⟨𝑑𝑢|𝑢𝑢⟩ + 𝑖

1

2
⟨𝑑𝑢|𝑑𝑑⟩ = 

−0 − 0 + 0 + 0 = 0 

The composite expectation values:  

〈𝜏𝑧𝜎𝑧〉 = ⟨𝜓|𝜏𝑧𝜎𝑧|𝜓⟩ = 

⟨(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) |𝜏𝑧𝜎𝑧| (

1

√2
|𝑢𝑑⟩ −

1

√2
| 𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) |𝜏𝑧| (

1

√2
|𝑢𝑑⟩ +

1

√2
| 𝑑𝑢⟩) = 

(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) (−

1

√2
|𝑢𝑑⟩ +

1

√2
| 𝑑𝑢⟩) = 

−
1

2
⟨𝑢𝑑|𝑢𝑑⟩ +

1

2
⟨𝑢𝑑|𝑑𝑢⟩ +

1

2
⟨𝑑𝑢|𝑢𝑑⟩ −

1

2
⟨𝑑𝑢|𝑑𝑢⟩ = 

−
1

2
+ 0 + 0 −

1

2
= −1 
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〈𝜏𝑦𝜎𝑦〉 = ⟨𝜓|𝜏𝑦𝜎𝑦|𝜓⟩ = 

⟨(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) |𝜏𝑦𝜎𝑦| (

1

√2
|𝑢𝑑⟩ −

1

√2
| 𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) |𝜏𝑦| (

𝑖

√2
|𝑑𝑑⟩ +

𝑖

√2
| 𝑢𝑢⟩) = 

(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
)(
−𝑖²

√2
|𝑑𝑢⟩ −

𝑖²

√2
| 𝑢𝑑⟩) = 

(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) (
1

√2
|𝑑𝑢⟩ +

1

√2
| 𝑢𝑑⟩) = 

1

2
⟨𝑢𝑑|𝑑𝑢⟩ −

1

2
⟨𝑢𝑑|𝑢𝑑⟩ −

1

2
⟨𝑑𝑢|𝑑𝑢⟩ −

1

2
⟨𝑑𝑢|𝑢𝑑⟩ = 

0 −
1

2
−
1

2
+ 0 = −1 

 

〈𝜏𝑥𝜎𝑥〉 = ⟨𝜓|𝜏𝑥𝜎𝑥|𝜓⟩ = 

⟨(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) |𝜏𝑥𝜎𝑥| (

1

√2
|𝑢𝑑⟩ −

1

√2
| 𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) |𝜏𝑥| (

1

√2
|𝑑𝑑⟩ −

1

√2
| 𝑢𝑢⟩) = 

(⟨𝑢𝑑|
1

√2
− ⟨𝑑𝑢|

1

√2
) (
1

√2
|𝑑𝑢⟩ −

1

√2
| 𝑢𝑑⟩) = 

1

2
⟨𝑢𝑑|𝑑𝑢⟩ −

1

2
⟨𝑢𝑑|𝑢𝑑⟩ −

1

2
⟨𝑑𝑢|𝑑𝑢⟩ +

1

2
⟨𝑑𝑢|𝑢𝑑⟩ = 

0 −
1

2
−
1

2
+ 0 = −1 

The correlation:  

〈𝜏𝑧𝜎𝑧〉 − 〈𝜏𝑧〉〈𝜎𝑧〉 = −1 − 0 = −1 
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Vector Rap Sheet 3 

Spin Operator Multiplication Table for the Up-Down-Basis: 

𝜎𝑧|𝑢𝑢⟩ = |𝑢𝑢⟩ 𝜎𝑧|𝑢𝑑⟩ = |𝑢𝑑⟩ 𝜎𝑧|𝑑𝑢⟩ = −|𝑑𝑢⟩ 𝜎𝑧|𝑑𝑑⟩ = −|𝑑𝑑⟩ 

𝜎𝑥|𝑢𝑢⟩ = |𝑑𝑢⟩ 𝜎𝑥|𝑢𝑑⟩ = |𝑑𝑑⟩ 𝜎𝑥|𝑑𝑢⟩ = |𝑢𝑢⟩ 𝜎𝑥|𝑑𝑑⟩ = |𝑢𝑑⟩ 

𝜎𝑦|𝑢𝑢⟩ = 𝑖|𝑑𝑢⟩ 𝜎𝑦|𝑢𝑑⟩ = 𝑖|𝑑𝑑⟩ 𝜎𝑦|𝑑𝑢⟩ = −𝑖|𝑢𝑢⟩ 𝜎𝑦|𝑑𝑑⟩ = −𝑖|𝑢𝑑⟩ 

𝜏𝑧|𝑢𝑢⟩ = |𝑢𝑢⟩ 𝜏𝑧|𝑢𝑑⟩ = −|𝑢𝑑⟩ 𝜏𝑧|𝑑𝑢⟩ = |𝑑𝑢⟩ 𝜏𝑧|𝑑𝑑⟩ = −|𝑑𝑑⟩ 

𝜏𝑥|𝑢𝑢⟩ = |𝑢𝑑⟩ 𝜏𝑥|𝑢𝑑⟩ = |𝑢𝑢⟩ 𝜏𝑥|𝑑𝑢⟩ = |𝑑𝑑⟩ 𝜏𝑥|𝑑𝑑⟩ = |𝑑𝑢⟩ 

𝜏𝑦|𝑢𝑢⟩ = 𝑖|𝑢𝑑⟩ 𝜏𝑦|𝑢𝑑⟩ = −𝑖|𝑢𝑢⟩ 𝜏𝑦|𝑑𝑢⟩ = 𝑖|𝑑𝑑⟩ 𝜏𝑦|𝑑𝑑⟩ = −𝑖|𝑑𝑢⟩ 

The state-vector leads to the following wave-function: 

𝜓𝑢𝑢 = 0|𝑢𝑢⟩ 𝜓𝑢𝑑 = √0.6|𝑢𝑑⟩ 𝜓𝑑𝑢 = −√0.4|𝑑𝑢⟩ 𝜓𝑑𝑑 = 0|𝑑𝑑⟩ 

As the values are all real, the complex conjugated are identical: 𝜓𝑢𝑢 = 𝜓
∗
𝑢𝑢 etc. 

Obviously, the wave function is normalized: 02 + √0.6
2
+ (−√0.4)2 + 02 = 1 

The density matrix: 

𝜓(𝑎, 𝑏) takes the form   𝜓(𝑎, 𝑏) = 𝜓𝑢𝑑 + 𝜓𝑑𝑢 = √0.6|𝑢𝑑⟩ − √0.4|𝑑𝑢⟩ 

and results in:   𝜓𝑢𝑢 = 0,  𝜓𝑢𝑑 = √0.6,  𝜓𝑑𝑢 = −√0.4,  𝜓𝑑𝑑 = 0 

The density matrix of Alice:  𝜌𝑎′𝑎 = ∑ 𝜓∗(𝑎, 𝑏)𝜓(𝑎′, 𝑏)      (7.23)𝑏  

expanded a, a’ (with 𝜓∗ = 𝜓 due to all coefficients being real): 

𝜌𝑢𝑢 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑢, 𝑢) + 𝜓∗(𝑢, 𝑑)𝜓(𝑢, 𝑑) = 0.6 

𝜌𝑢𝑑 = 𝜓
∗(𝑢, 𝑢)𝜓(𝑑, 𝑢) + 𝜓∗(𝑢, 𝑑)𝜓(𝑑, 𝑑) = 0 

𝜌𝑑𝑢 = 𝜓
∗(𝑑, 𝑢)𝜓(𝑢, 𝑢) + 𝜓∗(𝑑, 𝑑)𝜓(𝑢, 𝑑) = 0 

𝜌𝑑𝑑 = 𝜓
∗(𝑑, 𝑢)𝜓(𝑑, 𝑢) + 𝜓∗(𝑑, 𝑑)𝜓(𝑑, 𝑑) = 0.4 

gives Alice density matrix: 

𝜌 ≔ (
0.6 0
0 0.4

) ; 𝜌2 ≔ (
0.36 0
0 0.16

) 

For Alice’s subsystem holds:  

𝜌2 ≠ 𝜌 and Trace (𝜌2) < 1 

The expectation values: 

〈𝜎𝑧〉 = ⟨𝜓|𝜎𝑧|𝜓⟩ = 

⟨(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)|𝜎𝑧|(√0,6|𝑢𝑑⟩ − √0,4|𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)(√0,6|𝑢𝑑⟩ + √0,4|𝑑𝑢⟩) = 

0.6⟨𝑢𝑑|𝑢𝑑⟩ + √0.24⟨𝑢𝑑|𝑑𝑢⟩ + √0.24⟨𝑑𝑢|𝑢𝑑⟩ − 0.4⟨𝑑𝑢|𝑑𝑢⟩ = 

0.6 + 0 + 0 − 0.4 = 0.2 
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〈𝜎𝑥〉 = ⟨𝜓|𝜎𝑥|𝜓⟩ = 

⟨(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)|𝜎𝑥|(√0,6|𝑢𝑑⟩ − √0,4|𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)(√0,6|𝑑𝑑⟩ − √0,4|𝑢𝑢⟩) = 

0.6⟨𝑢𝑑|𝑑𝑑⟩ − √0.24⟨𝑢𝑑|𝑢𝑢⟩ − √0.24⟨𝑑𝑢|𝑑𝑑⟩ + 0.4⟨𝑑𝑢|𝑢𝑢⟩ = 

0 − 0 − 0 + 0 = 0 

 

〈𝜎𝑦〉 = ⟨𝜓|𝜎𝑦|𝜓⟩ = 

⟨(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)|𝜎𝑦|(√0,6|𝑢𝑑⟩ − √0,4|𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)(𝑖√0,6|𝑑𝑑⟩ + 𝑖√0,4|𝑢𝑢⟩) = 

𝑖0.6⟨𝑢𝑑|𝑑𝑑⟩ + 𝑖√0.24⟨𝑢𝑑|𝑢𝑢⟩ − 𝑖√0.24⟨𝑑𝑢|𝑑𝑑⟩ − 𝑖0.4⟨𝑑𝑢|𝑢𝑢⟩ = 

0 + 0 − 0 − 0 = 0 

 

〈𝜏𝑧〉 = ⟨𝜓|𝜏𝑧|𝜓⟩ = 

⟨(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)|𝜏𝑧|(√0,6|𝑢𝑑⟩ − √0,4|𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)(−√0,6|𝑢𝑑⟩ − √0,4|𝑑𝑢⟩) = 

−0.6⟨𝑢𝑑|𝑢𝑑⟩ − √0.24⟨𝑢𝑑|𝑑𝑢⟩ + √0.24⟨𝑑𝑢|𝑢𝑑⟩ + 0.4⟨𝑑𝑢|𝑑𝑢⟩ = 

−0.6 + 0 + 0 + 0.4 = −0.2 

 

〈𝜏𝑥〉 = ⟨𝜓|𝜏𝑥|𝜓⟩ = 

⟨(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)|𝜏𝑥|(√0,6|𝑢𝑑⟩ − √0,4|𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)(√0,6|𝑢𝑢⟩ − √0,4|𝑑𝑑⟩) = 

0.6⟨𝑢𝑑|𝑢𝑢⟩ − √0.24⟨𝑢𝑑|𝑑𝑑⟩ − √0.24⟨𝑑𝑢|𝑢𝑢⟩ + 0.4⟨𝑑𝑢|𝑑𝑑⟩ = 

0 − 0 − 0 + 0 = 0 

〈𝜏𝑦〉 = ⟨𝜓|𝜏𝑦|𝜓⟩ = 

⟨(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)|𝜏𝑦|(√0,6|𝑢𝑑⟩ − √0,4|𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)(−𝑖√0,6|𝑢𝑢⟩ − 𝑖√0,4|𝑑𝑑⟩) = 

−𝑖0.6⟨𝑢𝑑|𝑢𝑢⟩ − 𝑖√0.24⟨𝑢𝑑|𝑑𝑑⟩ + 𝑖√0.24⟨𝑑𝑢|𝑢𝑢⟩ + 𝑖0.4⟨𝑑𝑢|𝑑𝑑⟩ = 

−0 − 0 + 0 + 0 = 0 
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The composite expectation values: 

〈𝜏𝑧𝜎𝑧〉 = ⟨𝜓|𝜏𝑧𝜎𝑧|𝜓⟩ = 

⟨(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)|𝜏𝑧𝜎𝑧|(√0,6|𝑢𝑑⟩ − √0,4|𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)|𝜏𝑧|(√0,6|𝑢𝑑⟩ + √0,4|𝑑𝑢⟩) = 

(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)(−√0,6|𝑢𝑑⟩ + √0,4|𝑑𝑢⟩) = 

−0.6⟨𝑢𝑑|𝑢𝑑⟩ + √0.24⟨𝑢𝑑|𝑑𝑢⟩ + √0.24⟨𝑑𝑢|𝑢𝑑⟩ − 0.4⟨𝑑𝑢|𝑑𝑢⟩ = 

−0.6 + 0 + 0 − 0.4 = −1 

 

〈𝜏𝑥𝜎𝑥〉 = ⟨𝜓|𝜏𝑥𝜎𝑥|𝜓⟩ = 

⟨(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)|𝜏𝑥𝜎𝑥|(√0,6|𝑢𝑑⟩ − √0,4|𝑑𝑢⟩)⟩ = 

(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)|𝜏𝑥|(√0,6|𝑑𝑑⟩ − √0,4|𝑢𝑢⟩) = 

(⟨𝑢𝑑|√0,6 − ⟨𝑑𝑢|√0,4)(√0,6|𝑑𝑢⟩ − √0,4|𝑢𝑑⟩) = 

0.6⟨𝑢𝑑|𝑑𝑢⟩ − √0.24⟨𝑢𝑑|𝑢𝑑⟩ − √0.24⟨𝑑𝑢|𝑑𝑢⟩ + 0.4⟨𝑑𝑢|𝑢𝑑⟩ = 

0 − √0.24 − √0.24 + 0 = −2 ∙ √0.24 = −√0.96 

The correlation: 

〈𝜏𝑧𝜎𝑧〉 − 〈𝜏𝑧〉〈𝜎𝑧〉 = −1 − 0.2 ∙ (−0.2) = −1 + 0.04 = −0.96 
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Exercise 8.1 

Prove that the position operator 𝑋 and the momentum operator 𝐷 are linear operators. 

𝑿:𝑿𝜑(𝑥) = 𝑥𝜑(𝑥) 

𝑫:𝑫𝜑(𝑥) =
𝑑𝜑(𝑥)

𝑑𝑥
 

* * * * * * * * * * 

Properties of a linear operator 𝑳: 

1) 𝑳(𝑓 + 𝑔) = 𝑳𝑓 + 𝑳𝑔 

2) 𝑳(𝑡𝑓) = 𝑡𝑳𝑓 

For 𝑿 

1) 

𝑿(𝜑(𝑥) + 𝜃(𝑥)) = 𝑥(𝜑(𝑥) + 𝜃(𝑥)) = 

𝑥𝜑(𝑥) + 𝑥𝜃(𝑥) = 𝑿𝜑(𝑥) + 𝑿𝜃(𝑥) 

2) 

𝑿(𝑧𝜑(𝑥)) = 𝑥𝑧𝜑(𝑥) = 𝑧𝑥𝜑(𝑥) = 𝑧𝑿(𝜑(𝑥)) 

For 𝑫 

1) 

𝑫(𝜑(𝑥) + 𝜃(𝑥)) =
𝑑(𝜑(𝑥) + 𝜃(𝑥))

𝑑𝑥
= 

𝑑𝜑(𝑥)

𝑑𝑥
+
𝑑𝜃(𝑥)

𝑑𝑥
= 𝑫𝜑(𝑥) + 𝜃𝑫(𝑥) 

2) 

𝑫(𝑧𝜑(𝑥)) =
𝑑(𝑧𝜑(𝑥))

𝑑𝑥
=
𝑧(𝑑𝜑(𝑥))

𝑑𝑥
= 𝑧𝑫(𝜑(𝑥)) 
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Exercise 9.1 

Applicate the Hamiltonian 

−
ℏ2

2𝑚

𝜕2𝜓(𝑥)

𝜕𝑥2
= 𝐸𝜓(𝑥) 

to the wave function: 

𝜓(𝑥) = 𝑒
𝑖𝑝
ℏ
𝑥

 

Show that this wave function is a solution, if we set: 

𝐸 =
𝑝2

2𝑚
 

* * * * * * * * * * 

We start with the Hamiltonian: 

−
ℏ2

2𝑚

𝜕2𝜓(𝑥)

𝜕𝑥2
= 𝐸𝜓(𝑥) 

We insert the wave function: 

−
ℏ2

2𝑚

𝜕2𝑒
𝑖𝑝𝑥
ℏ

𝜕𝑥2
=; 

We derive partial twice: 

Once: 

𝜕𝑒
𝑖𝑝𝑥
ℏ

𝜕𝑥
=
𝑖𝑝

ℏ
𝑒
𝑖𝑝𝑥
ℏ  

Twice: 

𝜕 (
𝑖𝑝
ℏ
𝑒
𝑖𝑝𝑥
ℏ )

𝜕𝑥
=
𝑖𝑝

ℏ

𝑖𝑝

ℏ
𝑒
𝑖𝑝𝑥
ℏ = −

𝑝2

ℏ2
𝑒
𝑖𝑝𝑥
ℏ  

… fill in the result: 

−
ℏ2

2𝑚

𝜕2𝑒
𝑖𝑝𝑥
ℏ

𝜕𝑥2
= (−

ℏ2

2𝑚
)(−

𝑝2

ℏ2
𝑒
𝑖𝑝𝑥
ℏ ) = 

(
𝑝2

2𝑚
𝑒
𝑖𝑝𝑥
ℏ ) =

𝑝2

2𝑚
 𝜓(𝑥) 

We get: 

−
ℏ2

2𝑚

𝜕2𝜓(𝑥)

𝜕𝑥2
=
𝑝2

2𝑚
 𝜓(𝑥):= 𝐸𝜓(𝑥) 

We can conclude: 

𝑝2

2𝑚
 = 𝐸 
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Exercise 9.2 

Prove the following equation by expanding each side and comparing the results: 

[𝑃2, 𝑋] = 𝑃[𝑃, 𝑋] + [𝑃, 𝑋]𝑃 

𝑃 is the momentum operator, 𝑋 is the position operator – both are matrices. 

[𝑃, 𝑋] is the commutator relation: [𝑃, 𝑋] = 𝑃𝑋 − 𝑋𝑃 

* * * * * * * * * * 

[𝑃2, 𝑋] = 𝑃[𝑃, 𝑋] + [𝑃, 𝑋]𝑃 

Left side: 

[𝑃2, 𝑋] = 𝑃𝑃𝑋 − 𝑋𝑃𝑃 

Right side: 

𝑃[𝑃, 𝑋] + [𝑃, 𝑋]𝑃 = 

𝑃(𝑃𝑋 − 𝑋𝑃) + (𝑃𝑋 − 𝑋𝑃)𝑃 = 

𝑃𝑃𝑋 − 𝑃𝑋𝑃 + 𝑃𝑋𝑃 − 𝑋𝑃𝑃 = 

𝑃𝑃𝑋 − 𝑋𝑃𝑃 

Obviously both sides of the equation are the same. 
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Exercise 9.3 

Show that the right-hand side of  

[𝑉(𝑥), 𝑃]𝜓(𝑥) = 𝑉(𝑥) (−𝑖ℏ
𝑑

𝑑𝑥 
)𝜓(𝑥) − (−𝑖ℏ

𝑑

𝑑𝑥 
) 𝑉(𝑥)𝜓(𝑥) 

simplifies to the right-hand side of: 

[𝑉(𝑥), 𝑃]𝜓(𝑥) = 𝑖ℏ
𝑑𝑉(𝑥)

𝑑𝑥 
 

Hint: First expand the second term by taking the derivative of the product.  

Then look for cancellations. 

* * * * * * * * * * 

[𝑉(𝑥), 𝑃]𝜑(𝑥) = 𝑉(𝑥) (−𝑖ℏ
𝑑

𝑑𝑥
)𝜑(𝑥) − (−𝑖ℏ

𝑑

𝑑𝑥
)𝑉(𝑥)𝜑(𝑥) 

We calculate the derivations: 

𝑉(𝑥) (−𝑖ℏ
𝑑

𝑑𝑥
)𝜑(𝑥) − (−𝑖ℏ

𝑑

𝑑𝑥
)𝑉(𝑥)𝜑(𝑥) = 

𝑉(𝑥) (−𝑖ℏ
𝑑𝜑(𝑥)

𝑑𝑥
) + 𝑖ℏ(

𝑑𝑉(𝑥)

𝑑𝑥
∙ 𝜑(𝑥) +

𝑑𝜑(𝑥)

𝑑𝑥
∙ 𝑉(𝑥)) = 

−𝑖ℏ
𝑑𝜑(𝑥)

𝑑𝑥
∙ 𝑉(𝑥) + 𝑖ℏ

𝑑𝑉(𝑥)

𝑑𝑥
∙ 𝜑(𝑥) + 𝑖ℏ

𝑑𝜑(𝑥)

𝑑𝑥
∙ 𝑉(𝑥) = 

𝑖ℏ
𝑑𝑉(𝑥)

𝑑𝑥
∙ 𝜑(𝑥) 

We get 

[𝑉(𝑥), 𝑃]𝜑(𝑥) = 𝑖ℏ
𝑑𝑉(𝑥)

𝑑𝑥
∙ 𝜑(𝑥) 

or 

[𝑉(𝑥), 𝑃] = 𝑖ℏ
𝑑𝑉(𝑥)

𝑑𝑥
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Exercise 10.1 

Find the second derivative of 𝑥: 

𝑥 = 𝐴 ∙ 𝑐𝑜𝑠(𝜔𝑡) + 𝐵 ∙ 𝑠𝑖𝑛(𝜔𝑡) 

Show thereby that it solves: 

−𝜔2𝑥 = �̈� 

* * * * * * * * * * 

We calculate: 

𝑥 = 𝐴 ∙ 𝑐𝑜𝑠(𝜔𝑡) + 𝐵 ∙ 𝑠𝑖𝑛(𝜔𝑡) 

�̇� = −𝐴 ∙ 𝑠𝑖𝑛(𝜔𝑡) ∙ 𝜔 + 𝐵 ∙ 𝑐𝑜𝑠(𝜔𝑡) ∙ 𝜔 = 

𝜔(𝐵 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝐴 ∙ 𝑠𝑖𝑛(𝜔𝑡)) 

�̇̈� = 𝜔(−𝐴 ∙ 𝑐𝑜𝑠(𝜔𝑡) ∙ 𝜔 − 𝐵 ∙ 𝑠𝑖𝑛(𝜔𝑡) ∙ 𝜔) = 

−𝜔2(𝐴 ∙ 𝑐𝑜𝑠(𝜔𝑡) + 𝐵 ∙ 𝑠𝑖𝑛(𝜔𝑡)) = 

−𝜔2𝑥 

 

The same calculation with complex numbers: 

𝑥 = 𝑒𝑖𝜔𝑡 

�̇� = 𝑖𝜔𝑒𝑖𝜔𝑡 

�̈� = 𝑖2𝜔2𝑖𝑒𝑖𝜔𝑡 = −𝜔2𝑒𝑖𝜔𝑡 = −𝜔2𝑥 

 

 


