These worked examples follow "Rechenmethoden der Quantentheorie, Siegfried Flügge, Springer, Berlin, 1965". Library of Congress Catalog Card Number 65-24546, title-nr. 7288

Hope I can help you with learning quantum mechanics.

Solve the time-dependent Schrödinger equation (no potential).

$$
-\frac{\hbar}{i} \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \Delta \Psi
$$

Note: $\Psi(r, t)$
Show that there exist solutions representing plane waves and discuss their physical meaning.

We separate variables:

$$
\Psi(\vec{r}, t)=u(\vec{r}) \cdot g(t)
$$

We get:

$$
\begin{aligned}
-\frac{\hbar}{i} \frac{\partial \Psi}{\partial t} & =-\frac{\hbar^{2}}{2 m} \Delta \Psi \rightarrow \\
-\frac{\hbar}{i} \cdot \frac{\partial(u(\vec{r}) \cdot g(t))}{\partial t} & =-\frac{\hbar^{2}}{2 m} \cdot \Delta(u(\vec{r}) \cdot g(t)) \\
-\frac{\hbar}{i} \cdot\left(\frac{\partial u(\vec{r})}{\partial t} \cdot g(t)+u(\vec{r}) \cdot \frac{d}{d t} g(t)\right) & =-\frac{\hbar^{2}}{2 m} \cdot(\Delta u(\vec{r}) \cdot g(t)+u(\vec{r}) \cdot \Delta g(t)) \\
-\frac{\hbar}{i} \cdot u(\vec{r}) \cdot \frac{d}{d t} g(t) & =-\frac{\hbar^{2}}{2 m} \cdot \Delta u(\vec{r}) \cdot g(t) \\
-\frac{\hbar}{i} \cdot \frac{1}{g(t)} \cdot \frac{d}{d t} g(t) & =-\frac{\hbar^{2}}{2 m} \cdot \frac{\Delta u(\vec{r})}{u(\vec{r})}
\end{aligned}
$$

We rewrite:

$$
\begin{equation*}
-\frac{\hbar}{2 m} \cdot \frac{\Delta u(\vec{r})}{u(\vec{r})}:=\omega \tag{1}
\end{equation*}
$$

We get:

$$
-\frac{\hbar}{i} \cdot \frac{1}{g(t)} \cdot \frac{d}{d t} g(t)=\hbar \omega
$$

We can now express

$$
\frac{d}{d t} g(t)=-i \omega g(t)
$$

This is a differential equation with solution:

$$
g(t)=e^{-i \omega t}
$$

We recycle (1):

$$
\begin{gathered}
-\frac{\hbar}{2 m} \cdot \frac{\Delta u(\vec{r})}{u(\vec{r})}:=\omega \\
\Delta u(\vec{r})=-\frac{2 m \omega}{\hbar} \cdot u(\vec{r}) \\
\Delta u(\vec{r})+\frac{2 m \omega}{\hbar} \cdot u(\vec{r})=0
\end{gathered}
$$

We rename:

$$
\frac{2 m \omega}{\hbar}:=k^{2}
$$

Note: $[k]=\frac{1}{\text { meter }}$, the unit of k is a reciprocal length. As k is a property of a plane wave we could write it as the value of the vector $|\vec{k}|$, pointing into the direction the wave propagates.

We get:

$$
\Delta u(\vec{r})+k^{2} \cdot u(\vec{r})=0
$$

This is a differential equation for $u(r)$ with the solution:

$$
u(\vec{r})=C \cdot e^{i \vec{k} \vec{r}}
$$

\vec{k} is an arbitrary constant vector in direction of the plane wave of length k.
We write the solution to the time dependent Schrödinger equation $-\frac{\hbar}{i} \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \Delta \Psi$:

$$
\begin{equation*}
\Psi_{k}(\vec{r}, t)=u(\vec{r}) \cdot g(t)=C \cdot e^{i \vec{k} \vec{r}} \cdot e^{-i \omega t} \tag{2}
\end{equation*}
$$

This is a running wave with phase velocity $\frac{\omega}{k}$ in direction \vec{k}.
We need the probability density ρ :

$$
\rho=\Psi^{*} \Psi=|C|^{2}
$$

The probability density states that the density is constant everywhere. The probability for localizing the "particle" at any point in space is the same.

We need the probability current $\vec{\jmath}$:

$$
\vec{\jmath}=\frac{\hbar}{2 m i}\left(\Psi^{*} \operatorname{grad} \Psi-\Psi \operatorname{grad} \Psi^{*}\right)=|C|^{2} \frac{\hbar}{m} \vec{k}
$$

The probability current for the "particle":

$$
\vec{\jmath}=\rho \cdot \vec{v}
$$

We get the "particle-speed":

$$
\vec{v}=\frac{\hbar}{m} \vec{k}
$$

Using $k=|\vec{k}|$ we define the wave-length λ :

$$
\lambda=\frac{2 \pi}{k}
$$

We define the momentum \vec{p} :

$$
\vec{p}=m \cdot \vec{v}
$$

With these definitions we can write:

$$
\vec{p}=\hbar \cdot \vec{k}
$$

$$
p=|\vec{p}|=\frac{2 \pi \cdot \hbar}{\lambda}
$$

These are de Broglie's equations.
We use kinetic energy:

$$
E_{k i n}=\frac{p^{2}}{2 \cdot m}=\frac{\hbar^{2} \cdot k^{2}}{2 \cdot m}
$$

We remember:

$$
\frac{2 \cdot m \cdot \omega}{\hbar}:=k^{2}
$$

We get:

$$
E_{k i n}=\frac{p^{2}}{2 \cdot m}=\frac{\hbar^{2} \cdot k^{2}}{2 \cdot m}=\frac{\hbar^{2} \cdot 2 \cdot m \cdot \omega}{2 \cdot m \cdot \hbar}=\hbar \cdot \omega
$$

The phase velocity:

$$
\frac{\omega}{k}
$$

The phase velocity of the "particle":

$$
v_{\text {phase }}=\frac{\omega}{k}=\frac{\hbar \cdot \omega}{\hbar \cdot k}=\frac{E_{k i n}}{p}=\frac{m \cdot v^{2}}{2 \cdot m \cdot v}=\frac{v}{2}
$$

