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These worked examples follow “Rechenmethoden der Quantentheorie, Siegfried Flügge, Springer, 

Berlin, 1965”. Library of Congress Catalog Card Number 65-24546, title-nr. 7288 

 

Hope I can help you with learning quantum mechanics. 
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Calculate energy values and eigenfunctions for the one-dimensional potential well. 

 

Maybe it is helpful to have the following picture in mind:  

• We have a moving particle. This particle has positive kinetic energy +|𝑇|. The particle is 

located in region 𝐼𝐼 (it can’t be located in region 𝐼 or 𝐼𝐼𝐼). 

• Inside region 𝐼𝐼 we have a constant potential 𝑉. It is negative, we name it −|𝑈|. We use a 

potential with |𝑈| > |𝑇|. 

• From classic physics we know that the force 𝐹 from potential 𝑉 on the particle is given by its 

derivation: 𝐹 =
𝑑𝑉(𝑥)

𝑑𝑥
. In our case the potential is constant, 

𝑑𝑉(𝑥)

𝑑𝑥
= 0. The particle will move 

inside the well undisturbed. 

• At the borders 𝑎, −𝑎 we have the derivation of the potential with infinite value (the slope is 

infinite). This gives an infinite force acting on the particle (reversing its direction in our 1D 

example). 

• If we look from outside (region 𝐼 or 𝐼𝐼𝐼) at this particle inside the well (region 𝐼𝐼), the particle 

there has total energy 𝐸 = 𝐸𝑘𝑖𝑛 + 𝐸𝑝𝑜𝑡. As the potential is negative (−𝑈) the total energy 𝐸, 

viewed from the regions outside is negative, namely 𝐸 = |𝑇| − |𝑈|. With |𝑈| > |𝑇| we get 

that 𝐸 is negative. We write this as −|𝐸|. 

• But within region 𝐼𝐼 the energy is positive with respect to the (negative) potential −|𝑈|. It is 

the kinetic energy |𝑇|. 

With this picture in mind we take a look at the Schrödinger equation adapted to our 1D example: 

𝑢′′ +
2𝑚𝐸

ℏ2
𝑢 = 0 

usually written as: 

𝑢′′ + 𝑘2𝑢 = 0, 𝑘2 =
2𝑚𝐸

ℏ2
 

  

0 
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Viewed from outside, regions 𝐼 or 𝐼𝐼𝐼, the total energy −|𝐸| < 0 is negative, so we write using 𝜅 

instead of 𝑘: 

𝜅2 =
2𝑚|𝐸|

ℏ2
 

Consistently get the differential equation: 

𝑢′′ − 𝜅2𝑢 = 0 

𝑢′′ −
2𝑚|𝐸|

ℏ2
𝑢 = 0 

This Schrödinger equation has the solutions in region 𝐼 resp. region 𝐼𝐼𝐼: 

𝑢𝐼 = 𝐴𝐼𝑒𝜅𝑥 + 𝐵𝐼𝑒−𝜅𝑥 

𝑢𝐼𝐼𝐼 = 𝐴𝐼𝐼𝐼𝑒𝜅𝑥 + 𝐵𝐼𝐼𝐼𝑒−𝜅𝑥 

In region 𝐼𝐼 we have the (regular) Schrödinger equation: 

𝑢′′ + 𝑘2𝑢 = 0 

Solution, written as exponentials: 

𝑢𝐼𝐼 = 𝐴𝐼𝐼𝑒𝑖𝑘𝑥 + 𝐵𝐼𝐼𝑒−𝑖𝑘𝑥 

Written as trigonometric functions: 

𝑢𝐼𝐼 = 𝐴𝐼𝐼𝑐𝑜𝑠(𝑘𝑥) + 𝐵𝐼𝐼𝑠𝑖𝑛(𝑘𝑥) 

Note: The equivalence of exponential and trigonometric solution you may find at: 

https://quantum-abc.de/twice_potential_well.pdf 

We know that eigenfunctions need to be normalizable. Necessary condition for this is that they 

decay to zero for 𝑥 → ±∞. 

Assuming this we get: 

𝐵𝐼 = 0 because we have negative values of 𝑥 there. 

𝐴𝐼𝐼𝐼 = 0 because we have positive values of 𝑥 there. 

So there remain three equations: 

𝑢𝐼 = 𝐴𝐼𝑒𝜅𝑥 

𝑢𝐼𝐼 = 𝐴𝐼𝐼𝑐𝑜𝑠(𝑘𝑥) + 𝐵𝐼𝐼𝑠𝑖𝑛(𝑘𝑥) 

𝑢𝐼𝐼𝐼 = 𝐵𝐼𝐼𝐼𝑒−𝜅𝑥 

We need the derivatives: 

𝑢𝐼
′ = 𝜅𝐴𝐼𝑒𝜅𝑥 

𝑢𝐼𝐼
′ = −𝑘𝐴𝐼𝐼𝑠𝑖𝑛(𝑘𝑥) + 𝑘𝐵𝐼𝐼𝑐𝑜𝑠(𝑘𝑥) 

𝑢𝐼𝐼𝐼
′ = −𝜅𝐵𝐼𝐼𝐼𝑒−𝜅𝑥 

  

https://quantum-abc.de/twice_potential_well.pdf
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Any valid solution requests that at the boundaries left (−𝑎) and right (𝑎) the functions must match 

in terms of the functions themselves (continuity) and their first derivatives (slopes): 

𝑢𝐼(−𝑎) = 𝑢𝐼𝐼(−𝑎) 

𝑢𝐼
′(−𝑎) = 𝑢𝐼𝐼

′(−𝑎) 

𝑢𝐼𝐼(𝑎) = 𝑢𝐼𝐼𝐼(𝑎) 

𝑢𝐼𝐼
′(𝑎) = 𝑢𝐼𝐼𝐼

′(𝑎) 

We insert the definitions: 

𝐴𝐼𝑒−𝜅𝑎 = 𝐴𝐼𝐼𝑐𝑜𝑠(−𝑘𝑎) + 𝐵𝐼𝐼𝑠𝑖𝑛(−𝑘𝑎) 

𝜅𝐴𝐼𝑒−𝜅𝑎 = −𝑘𝐴𝐼𝐼𝑠𝑖𝑛(−𝑘𝑎) + 𝑘𝐵𝐼𝐼𝑐𝑜𝑠(−𝑘𝑎) 

𝐴𝐼𝐼𝑐𝑜𝑠(𝑘𝑎) + 𝐵𝐼𝐼𝑠𝑖𝑛(𝑘𝑎) = 𝐵𝐼𝐼𝐼𝑒−𝜅𝑎 

−𝑘𝐴𝐼𝐼𝑠𝑖𝑛(𝑘𝑎) + 𝑘𝐵𝐼𝐼𝑐𝑜𝑠(𝑘𝑎) = 𝜅𝐵𝐼𝐼𝐼𝑒−𝜅𝑎 

We want the arguments of the trigonometric functions to be positive. We use symmetries of 𝑠𝑖𝑛 and 

𝑐𝑜𝑠: 

sin(𝑥) = − sin(−𝑥) 

cos(𝑥) = cos(−𝑥) 

We rewrite: 

𝐴𝐼𝑒−𝜅𝑎 = 𝐴𝐼𝐼𝑐𝑜𝑠(𝑘𝑎) − 𝐵𝐼𝐼𝑠𝑖𝑛(𝑘𝑎) 

𝜅𝐴𝐼𝑒−𝜅𝑎 = 𝑘𝐴𝐼𝐼𝑠𝑖𝑛(𝑘𝑎) + 𝑘𝐵𝐼𝐼𝑐𝑜𝑠(𝑘𝑎) 

𝐵𝐼𝐼𝐼𝑒−𝜅𝑎 = 𝐴𝐼𝐼𝑐𝑜𝑠(𝑘𝑎) + 𝐵𝐼𝐼𝑠𝑖𝑛(𝑘𝑎) 

𝜅𝐵𝐼𝐼𝐼𝑒−𝜅𝑎 = −𝑘𝐴𝐼𝐼𝑠𝑖𝑛(𝑘𝑎) + 𝑘𝐵𝐼𝐼𝑐𝑜𝑠(𝑘𝑎) 

These are four equations for four variables. 

We rearrange: 

𝐴𝐼 ∙ 𝑒−𝜅𝑎 − 𝐴𝐼𝐼 ∙ 𝑐𝑜𝑠(𝑘𝑎) + 𝐵𝐼𝐼 ∙ 𝑠𝑖𝑛(𝑘𝑎) + 𝐵𝐼𝐼𝐼 ∙ 0 = 0 

𝐴𝐼 ∙ 𝜅 ∙ 𝑒−𝜅𝑎 − 𝐴𝐼𝐼 ∙ 𝑘 ∙ 𝑠𝑖𝑛(𝑘𝑎) − 𝐵𝐼𝐼 ∙ 𝑘 ∙ 𝑐𝑜𝑠(𝑘𝑎) + 𝐵𝐼𝐼𝐼 ∙ 0 = 0 

𝐴𝐼 ∙ 0 − 𝐴𝐼𝐼 ∙ 𝑐𝑜𝑠(𝑘𝑎) − 𝐵𝐼𝐼 ∙ 𝑠𝑖𝑛(𝑘𝑎) + 𝐵𝐼𝐼𝐼 ∙ 𝑒−𝜅𝑎 = 0 

𝐴𝐼 ∙ 0 + 𝐴𝐼𝐼 ∙ 𝑘 ∙ 𝑠𝑖𝑛(𝑘𝑎) − 𝐵𝐼𝐼 ∙ 𝑘 ∙ 𝑐𝑜𝑠(𝑘𝑎) − 𝐵𝐼𝐼𝐼 ∙ 𝜅 ∙ 𝑒−𝜅𝑎 = 0 

This homogeneous system of linear equations has a solution if the determinant is zero. 

We calculate the determinant by help of wxmaxima: 

|(

𝑒−𝜅𝑎 −𝑐𝑜𝑠(𝑘𝑎) 𝑠𝑖𝑛(𝑘𝑎) 0
𝜅 ∙ 𝑒−𝜅𝑎 −𝑘 ∙ 𝑠𝑖𝑛(𝑘𝑎) −𝑘 ∙ 𝑐𝑜𝑠(𝑘𝑎) 0

0 −𝑐𝑜𝑠(𝑘𝑎) −𝑠𝑖𝑛(𝑘𝑎) 𝑒−𝜅𝑎

0 𝑘 ∙ 𝑠𝑖𝑛(𝑘𝑎) −𝑘 ∙ 𝑐𝑜𝑠(𝑘𝑎) −𝜅 ∙ 𝑒−𝜅𝑎

)| 

  

https://wxmaxima-developers.github.io/wxmaxima/download.html
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We get the determinant: 

𝑒−𝑎𝜅(𝑘 cos(𝑎𝑘) (cos(𝑎𝑘) 𝜅𝑒−𝑎𝜅 − 𝑘 sin(𝑎𝑘) 𝑒−𝑎𝜅) − 𝑘 sin(𝑎𝑘) (sin(𝑎𝑘) 𝜅𝑒−𝑎𝜅 + 𝑘 cos(𝑎𝑘) 𝑒−𝑎𝜅))

+ cos(𝑎𝑘) 𝜅%𝑒−𝑎𝜅(sin(𝑎𝑘) 𝜅𝑒−𝑎𝜅 + 𝑘 cos(𝑎𝑘) 𝑒−𝑎𝜅) + sin(𝑎𝑘) 𝜅𝑒−𝑎𝜅(cos(𝑎𝑘) 𝜅𝑒−𝑎𝜅

− 𝑘 sin(𝑎𝑘) 𝑒−𝑎𝜅) 

We simplify this by help of wxmaxima: 

(cos(𝑎𝑘) sin(𝑎𝑘) 𝜅2 + (cos(𝑎𝑘)2 − sin(𝑎𝑘)2)𝑘𝜅 − 𝑘2 cos(𝑎𝑘) sin(𝑎𝑘))2𝑒−2𝑎𝜅 

We solve with respect to 𝜅 and get two solutions: 

𝜅 = −𝑘
cos(𝑎𝑘)

sin(𝑎𝑘)
, 𝜅 = 𝑘

sin(𝑎𝑘)

cos(𝑎𝑘)
 

We rewrite: 

𝜅 = −𝑘 𝑐𝑜𝑡(𝑎𝑘), 𝜅 = 𝑘 𝑡𝑎𝑛(𝑎𝑘) 

These are the eigenvalue conditions, the conditions necessary that eigenvalues exist. 

Note: The following transformations are guided by the goal of determining the conditions at the 

boundaries of −𝑎 and 𝑎. There, exponential functions are to be connected to trigonometric 

functions. 

We check 𝜅 = −𝑘 𝑐𝑜𝑡(𝑎𝑘): 

𝐴𝐼 ∙ 𝑒𝑎𝑘 𝑐𝑜𝑡(𝑎𝑘) − 𝐴𝐼𝐼 ∙ 𝑐𝑜𝑠(𝑘𝑎) + 𝐵𝐼𝐼 ∙ 𝑠𝑖𝑛(𝑘𝑎) = 0 

−𝐴𝐼 ∙ 𝑘 𝑐𝑜𝑡(𝑎𝑘) ∙ 𝑒𝑎𝑘 𝑐𝑜𝑡(𝑎𝑘) − 𝐴𝐼𝐼 ∙ 𝑘 ∙ 𝑠𝑖𝑛(𝑘𝑎) − 𝐵𝐼𝐼 ∙ 𝑘 ∙ 𝑐𝑜𝑠(𝑘𝑎) = 0 

−𝐴𝐼𝐼 ∙ 𝑐𝑜𝑠(𝑘𝑎) − 𝐵𝐼𝐼 ∙ 𝑠𝑖𝑛(𝑘𝑎) + 𝐵𝐼𝐼𝐼 ∙ 𝑒𝑎𝑘 𝑐𝑜𝑡(𝑎𝑘) = 0 

𝐴𝐼𝐼 ∙ 𝑘 ∙ 𝑠𝑖𝑛(𝑘𝑎) − 𝐵𝐼𝐼 ∙ 𝑘 ∙ 𝑐𝑜𝑠(𝑘𝑎) + 𝐵𝐼𝐼𝐼 ∙ 𝑘 𝑐𝑜𝑡(𝑎𝑘) ∙ 𝑒𝑎𝑘 𝑐𝑜𝑡(𝑎𝑘) = 0 

We subtract equation one and three: 

𝐴𝐼 ∙ 𝑒𝑎𝑘 𝑐𝑜𝑡(𝑎𝑘) + 2 ∙ 𝐵𝐼𝐼 ∙ 𝑠𝑖𝑛(𝑘𝑎) − 𝐵𝐼𝐼𝐼 ∙ 𝑒𝑎𝑘 𝑐𝑜𝑡(𝑎𝑘) = 0 ⇒ 

We add equation two and four we get: 

−𝐴𝐼 ∙ 𝑘 𝑐𝑜𝑡(𝑎𝑘) ∙ 𝑒𝑎𝑘 𝑐𝑜𝑡(𝑎𝑘) − 2 ∙ 𝐵𝐼𝐼 ∙ 𝑘 ∙ 𝑐𝑜𝑠(𝑘𝑎) + 𝐵𝐼𝐼𝐼 ∙ 𝑘 𝑐𝑜𝑡(𝑎𝑘) ∙ 𝑒𝑎𝑘 𝑐𝑜𝑡(𝑎𝑘) = 0 ⇒ 

𝐴𝐼 ∙ 𝑒𝑎𝑘 𝑐𝑜𝑡(𝑎𝑘) + 2 ∙ 𝐵𝐼𝐼 ∙
𝑘 ∙ 𝑐𝑜𝑠(𝑘𝑎)

𝑘 𝑐𝑜𝑡(𝑎𝑘)
− 𝐵𝐼𝐼𝐼 ∙ 𝑒𝑎𝑘 𝑐𝑜𝑡(𝑎𝑘) = 0 

From (1) and (2) we see that 𝐵𝐼𝐼 must be zero and 𝐵𝐼𝐼𝐼 = 𝐴𝐼. With this we go into (3): 

𝐴𝐼𝐼 ∙ 𝑐𝑜𝑠(𝑘𝑎) = 𝐴𝐼 ∙ 𝑒𝑎𝑘 𝑐𝑜𝑡(𝑎𝑘) 

Similar we get for 𝜅 = 𝑘 𝑡𝑎𝑛(𝑎𝑘): 

𝐴𝐼𝐼 = 0, 𝐵𝐼𝐼𝐼 = −𝐴𝐼 , 𝐵𝐼𝐼 ∙ 𝑠𝑖𝑛(𝑘𝑎) = 𝐴𝐼 ∙ 𝑒−𝑎𝑘 𝑐𝑜𝑡(𝑎𝑘) 

The eigenvalue conditions give us two kinds eigenfunctions, the first type being symmetric, the 

second antisymmetric with respect to a switch of 𝑥 to −𝑥. 

 

  

(1) 

(2) 

(3) 
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Let us compare this behavior: 

𝜅 = 𝑘 𝑡𝑎𝑛(𝑎𝑘) 
 

𝑢𝐼 = 𝐴𝐼 ∙ 𝑒𝑘 𝑡𝑎𝑛(𝑎𝑘)∙𝑥 
 

𝑢𝐼𝐼 = 𝐴𝐼 ∙ 𝑒−𝑎𝑘 𝑡𝑎𝑛(𝑎𝑘) ∙
𝑐𝑜𝑠(𝑘𝑥)

𝑐𝑜𝑠(𝑘𝑎)
 

 

𝑢𝐼𝐼𝐼 = 𝐴𝐼 ∙ 𝑒−𝑘 𝑡𝑎𝑛(𝑎𝑘)∙𝑥 
 

Eigenfunctions are symmetric 
𝑢(𝑥) = 𝑢(−𝑥) 

 

𝜅 = −𝑘 𝑐𝑜𝑡(𝑎𝑘) 
 

𝑢𝐼 = −𝐴𝐼 ∙ 𝑒−𝑘 𝑐𝑜𝑡(𝑎𝑘)∙𝑥 
 

𝑢𝐼𝐼 = 𝐴𝐼 ∙ 𝑒𝑎𝑘 𝑐𝑜𝑡(𝑎𝑘) ∙
𝑠𝑖𝑛(𝑘𝑥)

𝑠𝑖𝑛(𝑘𝑎)
 

 

𝑢𝐼𝐼𝐼 = 𝐴𝐼 ∙ 𝑒𝑘 𝑐𝑜𝑡(𝑎𝑘)∙𝑥 
 

Eigenfunctions are antisymmetric 
𝑢(𝑥) = −𝑢(−𝑥) 

 

For better readability we write this shorter: 

𝜅 = 𝑘 𝑡𝑎𝑛(𝑎𝑘) 
 

𝑢𝐼 = 𝐴𝐼 ∙ 𝑒𝜅∙𝑥 
 

𝑢𝐼𝐼 = 𝐴𝐼 ∙ 𝑒−𝑎𝜅 ∙
𝑐𝑜𝑠(𝑘𝑥)

𝑐𝑜𝑠(𝑘𝑎)
 

 
𝑢𝐼𝐼𝐼 = 𝐴𝐼 ∙ 𝑒−𝜅∙𝑥 

 
Eigenfunctions are symmetric 

𝑢(𝑥) = 𝑢(−𝑥) 
 

𝜅 = −𝑘 𝑐𝑜𝑡(𝑎𝑘) 
 

𝑢𝐼 = −𝐴𝐼 ∙ 𝑒𝜅∙𝑥 
 

𝑢𝐼𝐼 = 𝐴𝐼 ∙ 𝑒−𝑎𝜅 ∙
𝑠𝑖𝑛(𝑘𝑥)

𝑠𝑖𝑛(𝑘𝑎)
 

 
𝑢𝐼𝐼𝐼 = 𝐴𝐼 ∙ 𝑒−𝜅∙𝑥 

 
Eigenfunctions are antisymmetric 

𝑢(𝑥) = −𝑢(−𝑥) 

 

We plot a symmetric eigenfunction with 𝐴𝐼 =
1, 𝑎 = 2, 𝑘 = 1.75: 
 

We plot an antisymmetric eigenfunction with 
𝐴𝐼 = 1, 𝑎 = 2, 𝑘 = 1.25: 
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We calculate the amplitude 𝐴𝐼 from the 
normalization restriction for the symmetric function: 

We calculate the amplitude 𝐴𝐼 from the normalization 
restriction for the antisymmetric function: 

∫ 𝑢2𝑑𝑥
∞

−∞

= ∫ 𝑢𝐼
2𝑑𝑥

−𝑎

−∞

+ ∫ 𝑢𝐼𝐼
2𝑑𝑥

𝑎

−𝑎

+ ∫ 𝑢𝐼𝐼𝐼
2𝑑𝑥

∞

𝑎

= 1 ∫ 𝑢2𝑑𝑥
∞

−∞

= ∫ 𝑢𝐼
2𝑑𝑥

−𝑎

−∞

+ ∫ 𝑢𝐼𝐼
2𝑑𝑥

𝑎

−𝑎

+ ∫ 𝑢𝐼𝐼𝐼
2𝑑𝑥

∞

𝑎

= 1 

 

∫ 𝑢𝐼
2𝑑𝑥

−𝑎

−∞

= 𝐴𝐼
2 ∙ ∫ 𝑒2𝜅∙𝑥𝑑𝑥

−𝑎

−∞

= ∫ 𝑢𝐼
2𝑑𝑥

−𝑎

−∞

= 𝐴𝐼
2 ∙ ∫ 𝑒2𝜅∙𝑥𝑑𝑥

−𝑎

−∞

= 

𝐴𝐼
2 ∙

1

2𝜅
∙ [𝑒2𝜅∙𝑥]−∞

−𝑎 = 𝐴𝐼
2 ∙

1

2𝜅
∙ [𝑒2𝜅∙𝑥]−∞

−𝑎 = 

𝐴𝐼
2 ∙

1

2𝜅
∙ 𝑒−2𝜅𝑎 = 𝐴𝐼

2 ∙
1

2𝜅
∙ 𝑒−2𝜅𝑎 = 

𝐴𝐼
2 ∙

𝑒−2𝜅𝑎

2𝜅
 𝐴𝐼

2 ∙
𝑒−2𝜅𝑎

2𝜅
 

 

∫ 𝑢𝐼𝐼
2𝑑𝑥

𝑎

−𝑎

=
𝐴𝐼

2 ∙ 𝑒−2𝑎𝜅

𝑐𝑜𝑠2(𝑘𝑎)
∙ ∫ 𝑐𝑜𝑠2(𝑘𝑥)𝑑𝑥

𝑎

−𝑎

= ∫ 𝑢𝐼𝐼
2𝑑𝑥

𝑎

−𝑎

=
𝐴𝐼

2 ∙ 𝑒−2𝑎𝜅

𝑐𝑜𝑠2(𝑘𝑎)
∙ ∫ 𝑐𝑜𝑠2(𝑘𝑥)𝑑𝑥

𝑎

−𝑎

= 

𝐴𝐼
2 ∙ 𝑒−2𝑎𝜅

𝑐𝑜𝑠2(𝑘𝑎)
∙ [

𝑥

2
+

1

2𝑘
∙ 𝑠𝑖𝑛(𝑘𝑥)𝑐𝑜𝑠(𝑘𝑥)]

−𝑎

𝑎

= 
𝐴𝐼

2 ∙ 𝑒−2𝑎𝜅

𝑐𝑜𝑠2(𝑘𝑎)
∙ [

𝑥

2
+

1

2𝑘
∙ 𝑠𝑖𝑛(𝑘𝑥)𝑐𝑜𝑠(𝑘𝑥)]

−𝑎

𝑎

= 

𝐴𝐼
2 ∙ 𝑒−2𝑎𝜅

𝑐𝑜𝑠2(𝑘𝑎)
∙ (

𝑎

2
+

1

4𝑘
∙ 𝑠𝑖𝑛(2𝑘𝑎) +

𝑎

2
−

1

4𝑘
∙ 𝑠𝑖𝑛(−2𝑘𝑎)) = 

𝐴𝐼
2 ∙ 𝑒−2𝑎𝜅

𝑐𝑜𝑠2(𝑘𝑎)
∙ (

𝑎

2
+

1

4𝑘
∙ 𝑠𝑖𝑛(2𝑘𝑎) +

𝑎

2
−

1

4𝑘
∙ 𝑠𝑖𝑛(−2𝑘𝑎)) = 

𝐴𝐼
2 ∙ 𝑒−2𝑎𝜅

𝑐𝑜𝑠2(𝑘𝑎)
∙ (𝑎 +

1

2𝑘
∙ 𝑠𝑖𝑛(2𝑘𝑎)) = 

𝐴𝐼
2 ∙ 𝑒−2𝑎𝜅

𝑐𝑜𝑠2(𝑘𝑎)
∙ (𝑎 +

1

2𝑘
∙ 𝑠𝑖𝑛(2𝑘𝑎)) = 

𝐴𝐼
2 ∙ 𝑒−2𝑎𝜅

2 ∙ 𝑘 ∙ 𝑐𝑜𝑠2(𝑘𝑎)
∙ (2𝑘𝑎 + 𝑠𝑖𝑛(2𝑘𝑎)) −

𝐴𝐼
2 ∙ 𝑒−2𝑎𝜅

2 ∙ 𝑘 ∙ 𝑠𝑖𝑛2(𝑘𝑎)
∙ (−2𝑘𝑎 + 𝑠𝑖𝑛(2𝑘𝑎)) 

 

∫ 𝑢𝐼𝐼𝐼
2𝑑𝑥

∞

𝑎

= 𝐴𝐼
2 ∙ ∫ 𝑒−2𝜅∙𝑥𝑑𝑥

∞

𝑎

= ∫ 𝑢𝐼𝐼𝐼
2𝑑𝑥

∞

𝑎

= 𝐴𝐼
2 ∙ ∫ 𝑒−2𝜅∙𝑥𝑑𝑥

∞

𝑎

= 

−𝐴𝐼
2 ∙

1

2𝜅
∙ [𝑒−2𝜅∙𝑥]𝑎

∞ = −𝐴𝐼
2 ∙

1

2𝜅
∙ [𝑒−2𝜅∙𝑥]𝑎

∞ = 

𝐴𝐼
2 ∙

𝑒−2𝜅𝑎

2𝜅
 𝐴𝐼

2 ∙
𝑒−2𝜅𝑎

2𝜅
 

 

Result: Result: 

∫ 𝑢2𝑑𝑥
∞

−∞

= 𝐴𝐼
2 ∙

𝑒−2𝜅𝑎

2𝜅
+

𝐴𝐼
2 ∙ 𝑒−2𝑎𝜅

2 ∙ 𝑘 ∙ 𝑐𝑜𝑠2(𝑘𝑎)
∙ (2𝑘𝑎 + 𝑠𝑖𝑛(2𝑘𝑎)) + 𝐴𝐼

2 ∙
𝑒−2𝜅𝑎

2𝜅
= ∫ 𝑢2𝑑𝑥

∞

−∞

= 𝐴𝐼
2 ∙

𝑒−2𝜅𝑎

2𝜅
−

𝐴𝐼
2 ∙ 𝑒−2𝑎𝜅

2 ∙ 𝑘 ∙ 𝑠𝑖𝑛2(𝑘𝑎)
∙ (−2𝑘𝑎 + 𝑠𝑖𝑛(2𝑘𝑎)) + 𝐴𝐼

2 ∙
𝑒−2𝜅𝑎

2𝜅
= 

𝐴𝐼
2𝑒−2𝑎𝜅

𝜅
+

𝐴𝐼
2(sin(2𝑎𝑘) + 2𝑎𝑘)𝑒−2𝑎𝜅

2𝑘 cos(𝑎𝑘)2 = 
𝐴𝐼

2𝑒−2𝑎𝜅

𝜅
−

𝐴𝐼
2(sin(2𝑎𝑘) − 2𝑎𝑘)𝑒−2𝑎𝜅

2𝑘𝑠𝑖𝑛2(𝑘𝑎)
= 

𝐴𝐼
2 ∙ 𝑒−2𝜅𝑎 ∙ (

1

𝜅
+

2𝑘𝑎 + 𝑠𝑖𝑛(2𝑘𝑎)

2 ∙ 𝑘 ∙ 𝑐𝑜𝑠2(𝑘𝑎)
) = 𝐴𝐼

2 ∙ 𝑒−2𝜅𝑎 ∙ (
1

𝜅
−

𝑠𝑖𝑛(2𝑘𝑎) − 2𝑘𝑎

2 ∙ 𝑘 ∙ 𝑠𝑖𝑛2(𝑘𝑎)
) = 

𝐴𝐼
2 ∙ 𝑒−2𝜅𝑎 ∙ (

1

𝜅
+

2𝑘𝑎

2 ∙ 𝑘 ∙ 𝑐𝑜𝑠2(𝑘𝑎)
+

𝑠𝑖𝑛(2𝑘𝑎)

2 ∙ 𝑘 ∙ 𝑐𝑜𝑠2(𝑘𝑎)
) = 𝐴𝐼

2 ∙ 𝑒−2𝜅𝑎 ∙ (
1

𝜅
+

2𝑘𝑎

2 ∙ 𝑘 ∙ 𝑠𝑖𝑛2(𝑘𝑎)
−

𝑠𝑖𝑛(2𝑘𝑎)

2 ∙ 𝑘 ∙ 𝑠𝑖𝑛2(𝑘𝑎)
) = 

𝐴𝐼
2 ∙ 𝑒−2𝜅𝑎 ∙ (

1

𝜅
+

𝑎

𝑐𝑜𝑠2(𝑘𝑎)
+

1

𝑘

𝑠𝑖𝑛(2𝑘𝑎)

2 ∙ 𝑐𝑜𝑠2(𝑘𝑎)
) = 𝐴𝐼

2 ∙ 𝑒−2𝜅𝑎 ∙ (
1

𝜅
+

𝑎

𝑠𝑖𝑛2(𝑘𝑎)
−

1

𝑘

𝑠𝑖𝑛(2𝑘𝑎)

2 ∙ 𝑠𝑖𝑛2(𝑘𝑎)
) = 

𝐴𝐼
2 ∙ 𝑒−2𝜅𝑎 ∙ (

1

𝜅
+

𝑎

𝑐𝑜𝑠2(𝑘𝑎)
+

1

𝑘
tan(𝑘𝑎)) = 1 → 𝐴𝐼

2 ∙ 𝑒−2𝜅𝑎 ∙ (
1

𝜅
+

𝑎

𝑠𝑖𝑛2(𝑘𝑎)
−

1

𝑘
cot(𝑘𝑎)) = 1 → 

𝐴𝐼 =
√

𝑒2𝜅𝑎

(
1
𝜅

+
𝑎

𝑐𝑜𝑠2(𝑘𝑎)
+

1
𝑘

tan(𝑘𝑎))

 𝐴𝐼 =
√

𝑒2𝜅𝑎

(
1
𝜅

+
𝑎

𝑠𝑖𝑛2(𝑘𝑎)
−

1
𝑘

cot(𝑘𝑎))

 

 

This obviously is not the same.1 

                                                           
1 Note: In the original text is stated that the constant 𝐴1 is the same for the symmetric and the antisymmetric 

case: 1
𝐴𝐼

2⁄ = 𝑎 ∙ 𝑒𝑥𝑝(−2𝜅𝑎) ∙ (1 + 1
𝜅𝑎⁄ + 𝜅

𝑘2𝑎⁄ + 𝜅2

𝑘2⁄ ). I couldn’t reproduce this. 
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We take a look at the symmetric case,  

𝑢𝐼 = 𝐴𝐼 ∙ 𝑒𝑘 𝑡𝑎𝑛(𝑎𝑘)∙𝑥. 
 

We take a look at the asymmetric case,  

𝑢𝐼 = −𝐴𝐼 ∙ 𝑒−𝑘 𝑐𝑜𝑡(𝑎𝑘)∙𝑥.  
 

𝑢1 must go to zero for 𝑥 → −∞, so 𝑡𝑎𝑛(𝑎𝑘) 
must be a positive value. 𝑎 and 𝑘 are positive 
numbers. Similar for 𝑢3. 
 

𝑢1 must go to zero for 𝑥 → −∞, so 𝑡𝑎𝑛(𝑎𝑘) 
must be a positive value. 𝑎 and 𝑘 are positive 
numbers. Similar for 𝑢3. 

This restricts the product 𝑎𝑘 to value between 

0 and 
𝜋

2
: 

0 < 𝑎𝑘 <
𝜋

2
 

 

This restricts the product 𝑎𝑘 to value between 

0 and 
𝜋

2
: 

0 < 𝑎𝑘 <
𝜋

2
 

 

In both cases we have: 

0 < 𝑎𝑘 <
𝜋

2
 

𝑎 is an arbitrary value, twice the width of the well. 

𝑘 is the energy in region 𝐼𝐼: 

𝑘 = √
2𝑚𝑇

ℏ2
 

We check the units of 𝑘: 

[𝑘] = √
𝑘𝑔 ∙ 𝑘𝑔 ∙ 𝑚2 ∙ 𝑠2

𝑠2 ∙ 𝑘𝑔2 ∙ 𝑚4
= √

1

𝑚2
=

1

𝑚
 

This is ok, an inverted wavelength as expected, 𝑎𝑘 then is unit-free. 

We calculate the eigenvalues. 

We use the necessary eigenvalue conditions: 

𝜅 = 𝑘 𝑡𝑎𝑛(𝑎𝑘) 𝜅 = −𝑘 𝑐𝑜𝑡(𝑎𝑘) 
 

We remember: 

𝜅2 =
2𝑚|𝐸|

ℏ2
 

𝑘2 =
2𝑚𝑇

ℏ2
 

𝜅 = −𝑘 𝑐𝑜𝑡(𝑎𝑘), 𝜅 = 𝑘 𝑡𝑎𝑛(𝑎𝑘) are transcendental equations.  

We see that: 

𝜅2 + 𝑘2 =
2𝑚|𝐸|

ℏ2
+

2𝑚𝑇

ℏ2
=

2𝑚|𝑈|

ℏ2
 

This is a constant depending on the potential. 
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We multiply by the square of the width of the well, 𝑎2 to get a dimensionless constant: 

𝑎2(𝜅2 + 𝑘2) =
2𝑎2𝑚|𝑈|

ℏ2
= 𝐶2 

We check the units: 

[
2𝑎𝑚|𝑈|

ℏ2
] =

𝑚2 ∙ 𝑘𝑔 ∙
𝑘𝑔 ∙ 𝑚2

𝑠2

𝑘𝑔2 ∙ 𝑚4

𝑠4 ∙ 𝑠2

= 1 

𝐶2is a dimensionless constant.  

We now get rid of 𝜅 in the necessary eigenvalue conditions 𝜅 = −𝑘 𝑐𝑜𝑡(𝑎𝑘), 𝜅 = 𝑘 𝑡𝑎𝑛(𝑎𝑘): 

𝑎2(𝜅2 + 𝑘2) = 𝐶2 

𝜅2 + 𝑘2 =
𝐶2

𝑎2
 

𝜅2 =
𝐶2

𝑎2
− 𝑘2 

𝜅 = √
𝐶2

𝑎2
− 𝑘2 

We insert this in the necessary eigenvalue conditions and get an expression for 𝑡𝑎𝑛(𝑎𝑘): 

𝜅 = 𝑘 𝑡𝑎𝑛(𝑎𝑘) 𝜅 = −𝑘 𝑐𝑜𝑡(𝑎𝑘) 

√
𝐶2

𝑎2
− 𝑘2 = 𝑘 𝑡𝑎𝑛(𝑎𝑘) 

 

√
𝐶2

𝑎2
− 𝑘2 = −𝑘 𝑐𝑜𝑡(𝑎𝑘) 

√𝐶2

𝑎2 − 𝑘2

𝑘
=  𝑡𝑎𝑛(𝑎𝑘) 

 

−√
𝐶2

𝑘2𝑎2
− 1 =  𝑐𝑜𝑡(𝑎𝑘) 

 𝑡𝑎𝑛(𝑎𝑘) = √
𝐶2

𝑘2𝑎2
− 1 

 

𝑡𝑎𝑛(𝑎𝑘) = −
1

√ 𝐶2

𝑘2𝑎2 − 1
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We solve this graphically. 

We plot: 0 < 𝐶 <
𝜋

2
.  

In the upper half we have the symmetric 

eigenvalue condition 𝜅 = 𝑘 𝑡𝑎𝑛(𝑎𝑘), in the lower 

half the antisymmetric eigenvalue condition  

𝜅 = −𝑘 𝑐𝑜𝑡(𝑎𝑘). 

We see that in this range we have only 

intersections (solutions) of the symmetric 

eigenvalue condition. 

 

We plot: 
𝜋

2
< 𝐶 < 𝜋.  

In the upper half we have the symmetric 

eigenvalue condition 𝜅 = 𝑘 𝑡𝑎𝑛(𝑎𝑘), in the lower 

half the antisymmetric eigenvalue condition  

𝜅 = −𝑘 𝑐𝑜𝑡(𝑎𝑘). 

We see that in this range we have one 

intersection (solution) of the symmetric 

eigenvalue condition as well as one intersection 

(solution) of the antisymmetric eigenvalue 

condition. 

 

We plot: 𝜋 < 𝐶 <
3

2
𝜋.  

In the upper half we have the symmetric 

eigenvalue condition 𝜅 = 𝑘 𝑡𝑎𝑛(𝑎𝑘), in the lower 

half the antisymmetric eigenvalue condition  

𝜅 = −𝑘 𝑐𝑜𝑡(𝑎𝑘). 

We see that in this range we have two 

intersections (solutions) of the symmetric 

eigenvalue condition as well as one intersection 

(solution) of the antisymmetric eigenvalue 

condition. 

 

We plot: 
3

2
𝜋 < 𝐶 < 2𝜋.  

In the upper half we have the symmetric 

eigenvalue condition 𝜅 = 𝑘 𝑡𝑎𝑛(𝑎𝑘), in the lower 

half the antisymmetric eigenvalue condition  

𝜅 = −𝑘 𝑐𝑜𝑡(𝑎𝑘). 

We see that in this range we have two 

intersections (solutions) of the symmetric 

eigenvalue condition as well as two intersections 

(solutions) of the antisymmetric eigenvalue 

condition.  
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Interpretation 

The dimensionless constant 𝐶2 is built by: 

2𝑎2𝑚|𝑈|

ℏ2
= 𝐶2 

2𝑎2𝑚|𝑈|

ℏ2  is the amount of potential energy within the well in units of ℎ (Planck’s constant), so the 

lowest possible value of 𝐶2 is one. In this case we have only a symmetric solution. 

We calculate the energy for 𝐶2 = 1. 

We use: 

−|𝐸| = −|𝑈| + |𝑇| → |𝐸| = |𝑈| − |𝑇| 

In a well with 𝐶2 = 1 exists only one symmetric eigenfunction. 

 

We calculate the kinetic energy 𝐸𝛼: 

|𝐸𝛼| = |𝑈| − |𝑇𝛼| =; 

We assume the kinetic energy being smaller then the potential energy and omit the absolute value 

signs: 

𝐸𝛼 = 𝑈 − 𝑇𝛼 =; 

We have the kinetic energy: 

𝑘𝛼
2 =

2𝑚𝑇𝛼

ℏ2
→ 𝑇𝛼 =

𝑘𝛼
2ℏ2

2𝑚
 

In our graphic scheme we use 𝑘𝑎 instead of 𝑘: 

𝑇𝛼 =
ℏ2

2𝑚𝑎2
∙ (𝑎𝑘𝛼)2 

The energy level of the first symmetric eigenfunction: 

𝐸𝛼 = 𝑈 − 𝑇𝛼 = 𝑈 −
ℏ2

2𝑚𝑎2
∙ (𝑎𝑘𝛼)2 
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Using 
2𝑎2𝑚|𝑈|

ℏ2 = 𝐶2 we get: 

2𝑎2𝑚|𝑈|

ℏ2
= 𝐶2 →

ℏ2

2𝑎2𝑚
=

|𝑈|

𝐶2
 

We omit the absolute value signs for 𝑈 and write: 

ℏ2

2𝑚𝑎2
=

𝑈

𝐶2
 

With this we rewrite: 

𝐸𝛼 = 𝑈 −
ℏ2

2𝑚𝑎2
∙ (𝑎𝑘𝛼)2 = 𝑈 (1 −

(𝑎𝑘𝛼)2

𝐶2 ) 

The deeper the well the more eigenfunctions are possible. We get the picture: 

 

 

 

 

 

 

 

 

 

 

Note: Dotted lines belong to asymmetric eigenfunctions. 

Additional remark 

The probability of the particle to be found in the interval 𝑑𝑥 is 𝑢2𝑑𝑥. For 𝐸 < 0, it decays 

exponentially like 𝑒−2𝑥𝑎 outside |𝑥| = 𝑎. According to quantum mechanics, the particle can move 

into these areas forbidden by classical mechanics. With noticeable probability, a distance outside of 

|𝑥| = 𝑎 can still be reached: 

∆𝑥~
ℏ

√2𝑚|𝐸|
 

The deeper the well, the larger |𝐸| and the smaller ∆𝑥. 


