These worked examples follow "Rechenmethoden der Quantentheorie, Siegfried Flügge, Springer, Berlin, 1965". Library of Congress Catalog Card Number 65-24546, title-nr. 7288

Hope I can help you with learning quantum mechanics.

Calculate energy values and eigenfunctions for the one-dimensional potential well. region I
region II
region III

Maybe it is helpful to have the following picture in mind:

- We have a moving particle. This particle has positive kinetic energy $+|T|$. The particle is located in region II (it can't be located in region I or III).
- Inside region $I I$ we have a constant potential V. It is negative, we name it $-|U|$. We use a potential with $|U|>|T|$.
- From classic physics we know that the force F from potential V on the particle is given by its derivation: $F=\frac{d V(x)}{d x}$. In our case the potential is constant, $\frac{d V(x)}{d x}=0$. The particle will move inside the well undisturbed.
- At the borders $a,-a$ we have the derivation of the potential with infinite value (the slope is infinite). This gives an infinite force acting on the particle (reversing its direction in our 1D example).
- If we look from outside (region I or $I I I$) at this particle inside the well (region $I I$), the particle there has total energy $E=E_{\text {kin }}+E_{\text {pot }}$. As the potential is negative $(-U)$ the total energy E, viewed from the regions outside is negative, namely $E=|T|-|U|$. With $|U|>|T|$ we get that E is negative. We write this as $-|E|$.
- But within region $I I$ the energy is positive with respect to the (negative) potential $-|U|$. It is the kinetic energy $|T|$.

With this picture in mind we take a look at the Schrödinger equation adapted to our 1D example:

$$
u^{\prime \prime}+\frac{2 m E}{\hbar^{2}} u=0
$$

usually written as:

$$
u^{\prime \prime}+k^{2} u=0, \quad k^{2}=\frac{2 m E}{\hbar^{2}}
$$

Viewed from outside, regions I or $I I I$, the total energy $-|E|<0$ is negative, so we write using κ instead of k :

$$
\kappa^{2}=\frac{2 m|E|}{\hbar^{2}}
$$

Consistently get the differential equation:

$$
\begin{gathered}
u^{\prime \prime}-\kappa^{2} u=0 \\
u^{\prime \prime}-\frac{2 m|E|}{\hbar^{2}} u=0
\end{gathered}
$$

This Schrödinger equation has the solutions in region I resp. region III:

$$
\begin{gathered}
u_{I}=A_{I} e^{\kappa x}+B_{I} e^{-\kappa x} \\
u_{I I I}=A_{I I I} e^{\kappa x}+B_{I I I} e^{-\kappa x}
\end{gathered}
$$

In region II we have the (regular) Schrödinger equation:

$$
u^{\prime \prime}+k^{2} u=0
$$

Solution, written as exponentials:

$$
u_{I I}=A_{I I} e^{i k x}+B_{I I} e^{-i k x}
$$

Written as trigonometric functions:

$$
u_{I I}=A_{I I} \cos (k x)+B_{I I} \sin (k x)
$$

Note: The equivalence of exponential and trigonometric solution you may find at:

https://quantum-abc.de/twice potential well.pdf

We know that eigenfunctions need to be normalizable. Necessary condition for this is that they decay to zero for $x \rightarrow \pm \infty$.

Assuming this we get:
$B_{I}=0$ because we have negative values of x there.
$A_{I I I}=0$ because we have positive values of x there
So there remain three equations:

$$
\begin{gathered}
u_{I}=A_{I} e^{\kappa x} \\
u_{I I}=A_{I I} \cos (k x)+B_{I I} \sin (k x) \\
u_{I I I}=B_{I I I} e^{-\kappa x}
\end{gathered}
$$

We need the derivatives:

$$
\begin{gathered}
u_{I}^{\prime}=\kappa A_{I} e^{\kappa x} \\
u_{I I}^{\prime}=-k A_{I I} \sin (k x)+k B_{I I} \cos (k x) \\
u_{I I I}^{\prime}=-\kappa B_{I I I} e^{-\kappa x}
\end{gathered}
$$

Any valid solution requests that at the boundaries left $(-a)$ and right (a) the functions must match in terms of the functions themselves (continuity) and their first derivatives (slopes):

$$
\begin{gathered}
u_{I}(-a)=u_{I I}(-a) \\
u_{I}^{\prime}(-a)=u_{I I}^{\prime}(-a) \\
u_{I I}(a)=u_{I I I}(a) \\
u_{I I}^{\prime}(a)=u_{I I I}^{\prime}(a)
\end{gathered}
$$

We insert the definitions:

$$
\begin{gathered}
A_{I} e^{-\kappa a}=A_{I I} \cos (-k a)+B_{I I} \sin (-k a) \\
\kappa A_{I} e^{-\kappa a}=-k A_{I I} \sin (-k a)+k B_{I I} \cos (-k a) \\
A_{I I} \cos (k a)+B_{I I} \sin (k a)=B_{I I I} e^{-\kappa a} \\
-k A_{I I} \sin (k a)+k B_{I I} \cos (k a)=\kappa B_{I I I} e^{-\kappa a}
\end{gathered}
$$

We want the arguments of the trigonometric functions to be positive. We use symmetries of \sin and cos:

$$
\begin{gathered}
\sin (x)=-\sin (-x) \\
\cos (x)=\cos (-x)
\end{gathered}
$$

We rewrite:

$$
\begin{gathered}
A_{I} e^{-\kappa a}=A_{I I} \cos (k a)-B_{I I} \sin (k a) \\
\kappa A_{I} e^{-\kappa a}=k A_{I I} \sin (k a)+k B_{I I} \cos (k a) \\
B_{I I I} e^{-\kappa a}=A_{I I} \cos (k a)+B_{I I} \sin (k a) \\
\kappa B_{I I I} e^{-\kappa a}=-k A_{I I} \sin (k a)+k B_{I I} \cos (k a)
\end{gathered}
$$

These are four equations for four variables.
We rearrange:

$$
\begin{gathered}
A_{I} \cdot e^{-\kappa a}-A_{I I} \cdot \cos (k a)+B_{I I} \cdot \sin (k a)+B_{I I I} \cdot 0=0 \\
A_{I} \cdot \kappa \cdot e^{-\kappa a}-A_{I I} \cdot k \cdot \sin (k a)-B_{I I} \cdot k \cdot \cos (k a)+B_{I I I} \cdot 0=0 \\
A_{I} \cdot 0-A_{I I} \cdot \cos (k a)-B_{I I} \cdot \sin (k a)+B_{I I I} \cdot e^{-\kappa a}=0 \\
A_{I} \cdot 0+A_{I I} \cdot k \cdot \sin (k a)-B_{I I} \cdot k \cdot \cos (k a)-B_{I I I} \cdot \kappa \cdot e^{-\kappa a}=0
\end{gathered}
$$

This homogeneous system of linear equations has a solution if the determinant is zero.
We calculate the determinant by help of wxmaxima:

$$
\left|\left(\begin{array}{cccc}
e^{-\kappa a} & -\cos (k a) & \sin (k a) & 0 \\
\kappa \cdot e^{-\kappa a} & -k \cdot \sin (k a) & -k \cdot \cos (k a) & 0 \\
0 & -\cos (k a) & -\sin (k a) & e^{-\kappa a} \\
0 & k \cdot \sin (k a) & -k \cdot \cos (k a) & -\kappa \cdot e^{-\kappa a}
\end{array}\right)\right|
$$

We get the determinant:

$$
\begin{aligned}
e^{-a \kappa}(k \cos (a k)(& \left.\left(\cos (a k) \kappa e^{-a \kappa}-k \sin (a k) e^{-a \kappa}\right)-k \sin (a k)\left(\sin (a k) \kappa e^{-a \kappa}+k \cos (a k) e^{-a \kappa}\right)\right) \\
& +\cos (a k) \kappa \% e^{-a \kappa}\left(\sin (a k) \kappa e^{-a \kappa}+k \cos (a k) e^{-a \kappa}\right)+\sin (a k) \kappa e^{-a \kappa}\left(\cos (a k) \kappa e^{-a \kappa}\right. \\
& \left.-k \sin (a k) e^{-a \kappa}\right)
\end{aligned}
$$

We simplify this by help of wxmaxima:

$$
\left(\cos (a k) \sin (a k) \kappa^{2}+\left(\cos (a k)^{2}-\sin (a k)^{2}\right) k \kappa-k^{2} \cos (a k) \sin (a k)\right) 2 e^{-2 a \kappa}
$$

We solve with respect to κ and get two solutions:

$$
\kappa=-k \frac{\cos (a k)}{\sin (a k)}, \kappa=k \frac{\sin (a k)}{\cos (a k)}
$$

We rewrite:

$$
\kappa=-k \cot (a k), \kappa=k \tan (a k)
$$

These are the eigenvalue conditions, the conditions necessary that eigenvalues exist.
Note: The following transformations are guided by the goal of determining the conditions at the boundaries of $-a$ and a. There, exponential functions are to be connected to trigonometric functions.

We check $\kappa=-k \cot (a k)$:

$$
\begin{gather*}
A_{I} \cdot e^{a k \cot (a k)}-A_{I I} \cdot \cos (k a)+B_{I I} \cdot \sin (k a)=0 \\
-A_{I} \cdot k \cot (a k) \cdot e^{a k \cot (a k)}-A_{I I} \cdot k \cdot \sin (k a)-B_{I I} \cdot k \cdot \cos (k a)=0 \\
-A_{I I} \cdot \cos (k a)-B_{I I} \cdot \sin (k a)+B_{I I I} \cdot e^{a k \cot (a k)}=0 \tag{3}\\
A_{I I} \cdot k \cdot \sin (k a)-B_{I I} \cdot k \cdot \cos (k a)+B_{I I I} \cdot k \cot (a k) \cdot e^{a k \cot (a k)}=0
\end{gather*}
$$

We subtract equation one and three:

$$
\begin{equation*}
A_{I} \cdot e^{a k \cot (a k)}+2 \cdot B_{I I} \cdot \sin (k a)-B_{I I I} \cdot e^{a k \cot (a k)}=0 \Rightarrow \tag{1}
\end{equation*}
$$

We add equation two and four we get:

$$
\begin{gather*}
-A_{I} \cdot k \cot (a k) \cdot e^{a k \cot (a k)}-2 \cdot B_{I I} \cdot k \cdot \cos (k a)+B_{I I I} \cdot k \cot (a k) \cdot e^{a k \cot (a k)}=0 \Rightarrow \\
A_{I} \cdot e^{a k \cot (a k)}+2 \cdot B_{I I} \cdot \frac{k \cdot \cos (k a)}{k \cot (a k)}-B_{I I I} \cdot e^{a k \cot (a k)}=0 \tag{2}
\end{gather*}
$$

From (1) and (2) we see that $B_{I I}$ must be zero and $B_{I I I}=A_{I}$. With this we go into (3):

$$
A_{I I} \cdot \cos (k a)=A_{I} \cdot e^{a k \cot (a k)}
$$

Similar we get for $\kappa=k \tan (a k)$:

$$
A_{I I}=0, B_{I I I}=-A_{I}, B_{I I} \cdot \sin (k a)=A_{I} \cdot e^{-a k \cot (a k)}
$$

The eigenvalue conditions give us two kinds eigenfunctions, the first type being symmetric, the second antisymmetric with respect to a switch of x to $-x$.

Let us compare this behavior:

$$
\begin{gathered}
\kappa=k \tan (a k) \\
u_{I}=A_{I} \cdot e^{k \tan (a k) \cdot x} \\
u_{I I}=A_{I} \cdot e^{-a k \tan (a k)} \cdot \frac{\cos (k x)}{\cos (k a)} \\
u_{I I I}=A_{I} \cdot e^{-k \tan (a k) \cdot x}
\end{gathered}
$$

Eigenfunctions are symmetric

$$
u(x)=u(-x)
$$

$$
\begin{gathered}
\kappa=-k \cot (a k) \\
u_{I}=-A_{I} \cdot e^{-k \cot (a k) \cdot x} \\
u_{I I}=A_{I} \cdot e^{a k \cot (a k)} \cdot \frac{\sin (k x)}{\sin (k a)} \\
u_{I I I}=A_{I} \cdot e^{k \cot (a k) \cdot x}
\end{gathered}
$$

Eigenfunctions are antisymmetric

$$
u(x)=-u(-x)
$$

For better readability we write this shorter:

$$
\begin{array}{c|c}
\kappa=k \tan (a k) & \kappa=-k \cot (a k) \\
u_{I}=A_{I} \cdot e^{\kappa \cdot x} & u_{I}=-A_{I} \cdot e^{\kappa \cdot x} \\
u_{I I}=A_{I} \cdot e^{-a \kappa} \cdot \frac{\cos (k x)}{\cos (k a)} & u_{I I}=A_{I} \cdot e^{-a \kappa} \cdot \frac{\sin (k x)}{\sin (k a)} \\
u_{I I I}=A_{I} \cdot e^{-\kappa \cdot x} & u_{I I I}=A_{I} \cdot e^{-\kappa \cdot x}
\end{array}
$$

Eigenfunctions are symmetric

$$
u(x)=u(-x)
$$

Eigenfunctions are antisymmetric

$$
u(x)=-u(-x)
$$

We calculate the amplitude A_{I} from the normalization restriction for the symmetric function:	We calculate the amplitude A_{I} from the normalization restriction for the antisymmetric function:
$\int_{-\infty}^{\infty} u^{2} d x=\int_{-\infty}^{-a} u_{I}{ }^{2} d x+\int_{-a}^{a} u_{I I}^{2} d x+\int_{a}^{\infty} u_{I I I}^{2} d x=1$	$\int_{-\infty}^{\infty} u^{2} d x=\int_{-\infty}^{-a} u_{I}^{2} d x+\int_{-a}^{a} u_{I I}^{2} d x+\int_{a}^{\infty} u_{I I I}^{2} d x=1$

$\int_{-\infty}^{-a} u_{I}{ }^{2} d x={A_{I}}^{2} \cdot \int_{-\infty}^{-a} e^{2 \kappa \cdot x} d x=$	$\int_{-\infty}^{-a} u_{I}{ }^{2} d x=A_{I}{ }^{2} \cdot \int_{-\infty}^{-a} e^{2 \kappa \cdot x} d x=$
$A_{I}{ }^{2} \cdot \frac{1}{2 \kappa} \cdot\left[e^{2 \kappa \cdot x}\right]_{-\infty}^{-a}=$	$A_{I}{ }^{2} \cdot \frac{1}{2 \kappa} \cdot\left[e^{2 \kappa \cdot x}\right]_{-\infty}^{-a}=$
$A_{I}{ }^{2} \cdot \frac{1}{2 \kappa} \cdot e^{-2 \kappa a}=$	$A_{I}{ }^{2} \cdot \frac{1}{2 \kappa} \cdot e^{-2 \kappa a}=$
$A_{I}{ }^{2} \cdot \frac{e^{-2 \kappa a}}{2 \kappa}$	$A_{I}{ }^{2} \cdot \frac{e^{-2 \kappa a}}{2 \kappa}$

$\int_{-a}^{a} u_{I I}^{2} d x=\frac{A_{I}^{2} \cdot e^{-2 a \kappa}}{\cos ^{2}(k a)} \cdot \int_{-a}^{a} \cos ^{2}(k x) d x=$	$\int_{-a}^{a} u_{I I}^{2} d x=\frac{A_{I}^{2} \cdot e^{-2 a \kappa}}{\cos ^{2}(k a)} \cdot \int_{-a}^{a} \cos ^{2}(k x) d x=$
$\frac{A_{I}^{2} \cdot e^{-2 a \kappa}}{\cos ^{2}(k a)} \cdot\left[\frac{x}{2}+\frac{1}{2 k} \cdot \sin (k x) \cos (k x)\right]_{-a}^{a}=$	$\frac{A_{I}^{2} \cdot e^{-2 a \kappa}}{\cos ^{2}(k a)} \cdot\left[\frac{x}{2}+\frac{1}{2 k} \cdot \sin (k x) \cos (k x)\right]_{-a}^{a}=$
$\frac{A_{I}^{2} \cdot e^{-2 a \kappa}}{\cos ^{2}(k a)} \cdot\left(\frac{a}{2}+\frac{1}{4 k} \cdot \sin (2 k a)+\frac{a}{2}-\frac{1}{4 k} \cdot \sin (-2 k a)\right)=$	$\frac{A_{I}^{2} \cdot e^{-2 a \kappa}}{\cos ^{2}(k a)} \cdot\left(\frac{a}{2}+\frac{1}{4 k} \cdot \sin (2 k a)+\frac{a}{2}-\frac{1}{4 k} \cdot \sin (-2 k a)\right)=$
$\frac{A_{I}^{2} \cdot e^{-2 a \kappa}}{\cos ^{2}(k a)} \cdot\left(a+\frac{1}{2 k} \cdot \sin (2 k a)\right)=$	$\frac{A_{I}^{2} \cdot e^{-2 a \kappa}}{\cos ^{2}(k a)} \cdot\left(a+\frac{1}{2 k} \cdot \sin (2 k a)\right)=$
$\frac{A_{I}^{2} \cdot e^{-2 a \kappa}}{2 \cdot k \cdot \cos ^{2}(k a)} \cdot(2 k a+\sin (2 k a))$	$-\frac{A_{I}^{2} \cdot e^{-2 a \kappa}}{2 \cdot k \cdot \sin ^{2}(k a)} \cdot(-2 k a+\sin (2 k a))$

$\int_{a}^{\infty} u_{I I I}{ }^{2} d x={A_{I}}^{2} \cdot \int_{a}^{\infty} e^{-2 \kappa \cdot x} d x=$	$\int_{a}^{\infty} u_{I I I}{ }^{2} d x=A_{I}{ }^{2} \cdot \int_{a}^{\infty} e^{-2 \kappa \cdot x} d x=$
$-A_{I}{ }^{2} \cdot \frac{1}{2 \kappa} \cdot\left[e^{-2 \kappa \cdot x}\right]_{a}^{\infty}=$	$-A_{I}{ }^{2} \cdot \frac{1}{2 \kappa} \cdot\left[e^{-2 \kappa \cdot x}\right]_{a}^{\infty}=$
$A_{I}{ }^{2} \cdot \frac{e^{-2 \kappa a}}{2 \kappa}$	$A_{I}{ }^{2} \cdot \frac{e^{-2 \kappa a}}{2 \kappa}$

Result:	Result:
$\int_{-\infty}^{\infty} u^{2} d x=A_{I}{ }^{2} \cdot \frac{e^{-2 \kappa a}}{2 \kappa}+\frac{A_{I}^{2} \cdot e^{-2 a \kappa}}{2 \cdot k \cdot \cos ^{2}(k a)} \cdot(2 k a+\sin (2 k a))+A_{I}{ }^{2} \cdot \frac{e^{-2 \kappa a}}{2 \kappa}=$	$\int_{-\infty}^{\infty} u^{2} d x=A_{I}{ }^{2} \cdot \frac{e^{-2 \kappa a}}{2 \kappa}-\frac{A_{I}{ }^{2} \cdot e^{-2 a \kappa}}{2 \cdot k \cdot \sin ^{2}(k a)} \cdot(-2 k a+\sin (2 k a))+A_{I}{ }^{2} \cdot \frac{e^{-2 \kappa a}}{2 \kappa}=$
$\frac{{A_{I}}^{2} e^{-2 a \kappa}}{\kappa}+\frac{{A_{I}^{2}}^{2}(\sin (2 a k)+2 a k) e^{-2 a \kappa}}{2 k \cos (a k)^{2}}=$	$\frac{{A_{I}}^{2} e^{-2 a \kappa}}{\kappa}-\frac{{A_{I}^{2}}^{2}(\sin (2 a k)-2 a k) e^{-2 a \kappa}}{2 k \sin ^{2}(k a)}=$
$A_{I}{ }^{2} \cdot e^{-2 \kappa a} \cdot\left(\frac{1}{\kappa}+\frac{2 k a+\sin (2 k a)}{2 \cdot k \cdot \cos ^{2}(k a)}\right)=$	$A_{I}{ }^{2} \cdot e^{-2 \kappa a} \cdot\left(\frac{1}{\kappa}-\frac{\sin (2 k a)-2 k a}{2 \cdot k \cdot \sin ^{2}(k a)}\right)=$
$A_{I}^{2} \cdot e^{-2 \kappa a} \cdot\left(\frac{1}{\kappa}+\frac{2 k a}{2 \cdot k \cdot \cos ^{2}(k a)}+\frac{\sin (2 k a)}{2 \cdot k \cdot \cos ^{2}(k a)}\right)=$	$A_{I}^{2} \cdot e^{-2 \kappa a} \cdot\left(\frac{1}{\kappa}+\frac{2 k a}{2 \cdot k \cdot \sin ^{2}(k a)}-\frac{\sin (2 k a)}{2 \cdot k \cdot \sin ^{2}(k a)}\right)=$
$A_{I}^{2} \cdot e^{-2 \kappa a} \cdot\left(\frac{1}{\kappa}+\frac{a}{\cos ^{2}(k a)}+\frac{1}{k} \frac{\sin (2 k a)}{2 \cdot \cos ^{2}(k a)}\right)=$	$A_{I}^{2} \cdot e^{-2 \kappa a} \cdot\left(\frac{1}{\kappa}+\frac{a}{\sin ^{2}(k a)}-\frac{1}{k} \frac{\sin (2 k a)}{2 \cdot \sin ^{2}(k a)}\right)=$
$A_{I}{ }^{2} \cdot e^{-2 \kappa a} \cdot\left(\frac{1}{\kappa}+\frac{a}{\cos ^{2}(k a)}+\frac{1}{k} \tan (k a)\right)=1 \rightarrow$	$A_{I}^{2} \cdot e^{-2 \kappa a} \cdot\left(\frac{1}{\kappa}+\frac{a}{\sin ^{2}(k a)}-\frac{1}{k} \cot (k a)\right)=1 \rightarrow$
$A_{I}=\sqrt{\frac{e^{2 \kappa a}}{\left(\frac{1}{\kappa}+\frac{a}{\cos ^{2}(k a)}+\frac{1}{k} \tan (k a)\right)}}$	$A_{I}=\sqrt{\frac{e^{2 \kappa a}}{\left(\frac{1}{\kappa}+\frac{a}{\sin ^{2}(k a)}-\frac{1}{k} \cot (k a)\right)}}$

This obviously is not the same. ${ }^{1}$
${ }^{1}$ Note: In the original text is stated that the constant A_{1} is the same for the symmetric and the antisymmetric case: $1 /{A_{I}}^{2}=a \cdot \exp (-2 \kappa a) \cdot\left(1+1 / \kappa a+\kappa / k^{2} a+\kappa^{2} / k^{2}\right)$. I couldn't reproduce this.

We take a look at the symmetric case, $u_{I}=A_{I} \cdot e^{k \tan (a k) \cdot x} .$	We take a look at the asymmetric case, $u_{I}=-A_{I} \cdot e^{-k \cot (a k) \cdot x}$.
u_{1} must go to zero for $x \rightarrow-\infty$, so $\tan (a k)$ must be a positive value. a and k are positive numbers. Similar for u_{3}.	u_{1} must go to zero for $x \rightarrow-\infty$, so $\tan (a k)$ must be a positive value. a and k are positive numbers. Similar for u_{3}.
This restricts the product $a k$ to value between 0 and $\frac{\pi}{2}$: $0<a k<\frac{\pi}{2}$	This restricts the product $a k$ to value between 0 and $\frac{\pi}{2}$: $0<a k<\frac{\pi}{2}$

In both cases we have:

$$
0<a k<\frac{\pi}{2}
$$

a is an arbitrary value, twice the width of the well.
k is the energy in region $I I$:

$$
k=\sqrt{\frac{2 m T}{\hbar^{2}}}
$$

We check the units of k :

$$
[k]=\sqrt{\frac{\mathrm{kg} \cdot \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{2}}{\mathrm{~s}^{2} \cdot \mathrm{~kg}^{2} \cdot \mathrm{~m}^{4}}}=\sqrt{\frac{1}{\mathrm{~m}^{2}}}=\frac{1}{m}
$$

This is ok, an inverted wavelength as expected, $a k$ then is unit-free.
We calculate the eigenvalues.
We use the necessary eigenvalue conditions:

$$
\kappa=k \tan (a k) \quad \kappa=-k \cot (a k)
$$

We remember:

$$
\begin{aligned}
\kappa^{2} & =\frac{2 m|E|}{\hbar^{2}} \\
k^{2} & =\frac{2 m T}{\hbar^{2}}
\end{aligned}
$$

$\kappa=-k \cot (a k), \kappa=k \tan (a k)$ are transcendental equations.
We see that:

$$
\kappa^{2}+k^{2}=\frac{2 m|E|}{\hbar^{2}}+\frac{2 m T}{\hbar^{2}}=\frac{2 m|U|}{\hbar^{2}}
$$

This is a constant depending on the potential.

We multiply by the square of the width of the well, a^{2} to get a dimensionless constant:

$$
a^{2}\left(\kappa^{2}+k^{2}\right)=\frac{2 a^{2} m|U|}{\hbar^{2}}=C^{2}
$$

We check the units:

$$
\left[\frac{2 a m|U|}{\hbar^{2}}\right]=\frac{\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}}{\frac{\mathrm{~kg} g^{2} \cdot \mathrm{~m}^{4}}{\mathrm{~s}^{4}} \cdot \mathrm{~s}^{2}}=1
$$

C^{2} is a dimensionless constant.
We now get rid of κ in the necessary eigenvalue conditions $\kappa=-k \cot (a k), \kappa=k \tan (a k)$:

$$
\begin{gathered}
a^{2}\left(\kappa^{2}+k^{2}\right)=C^{2} \\
\kappa^{2}+k^{2}=\frac{C^{2}}{a^{2}} \\
\kappa^{2}=\frac{C^{2}}{a^{2}}-k^{2} \\
\kappa=\sqrt{\frac{C^{2}}{a^{2}}-k^{2}}
\end{gathered}
$$

We insert this in the necessary eigenvalue conditions and get an expression for $\tan (a k)$:

$\kappa=k \tan (a k)$	$\kappa=-k \cot (a k)$
$\sqrt{\frac{C^{2}}{a^{2}}-k^{2}}=k \tan (a k)$	$\sqrt{\frac{C^{2}}{a^{2}}-k^{2}}=-k \cot (a k)$
$\frac{\sqrt{\frac{C^{2}}{a^{2}}-k^{2}}}{k}=\tan (a k)$	$-\sqrt{\frac{C^{2}}{k^{2} a^{2}}-1}=\cot (a k)$
$\tan (a k)=\sqrt{\frac{C^{2}}{k^{2} a^{2}}-1}$	$\tan (a k)=-\frac{1}{\sqrt{\frac{C^{2}}{k^{2} a^{2}}-1}}$

We solve this graphically.
We plot: $0<C<\frac{\pi}{2}$.
In the upper half we have the symmetric eigenvalue condition $\kappa=k \tan (a k)$, in the lower half the antisymmetric eigenvalue condition $\kappa=-k \cot (a k)$.

We see that in this range we have only intersections (solutions) of the symmetric eigenvalue condition.

We plot: $\frac{\pi}{2}<C<\pi$.
In the upper half we have the symmetric eigenvalue condition $\kappa=k \tan (a k)$, in the lower half the antisymmetric eigenvalue condition $\kappa=-k \cot (a k)$.

We see that in this range we have one intersection (solution) of the symmetric eigenvalue condition as well as one intersection (solution) of the antisymmetric eigenvalue condition.

We plot: $\pi<C<\frac{3}{2} \pi$.
In the upper half we have the symmetric eigenvalue condition $\kappa=k \tan (a k)$, in the lower half the antisymmetric eigenvalue condition $\kappa=-k \cot (a k)$.

We see that in this range we have two intersections (solutions) of the symmetric eigenvalue condition as well as one intersection (solution) of the antisymmetric eigenvalue condition.

We plot: $\frac{3}{2} \pi<C<2 \pi$.
In the upper half we have the symmetric eigenvalue condition $\kappa=k \tan (a k)$, in the lower half the antisymmetric eigenvalue condition $\kappa=-k \cot (a k)$.

We see that in this range we have two intersections (solutions) of the symmetric eigenvalue condition as well as two intersections (solutions) of the antisymmetric eigenvalue condition.

Interpretation

The dimensionless constant C^{2} is built by:

$$
\frac{2 a^{2} m|U|}{\hbar^{2}}=C^{2}
$$

$\frac{2 a^{2} m|U|}{\hbar^{2}}$ is the amount of potential energy within the well in units of h (Planck's constant), so the lowest possible value of C^{2} is one. In this case we have only a symmetric solution.

We calculate the energy for $C^{2}=1$.
We use:

$$
-|E|=-|U|+|T| \rightarrow|E|=|U|-|T|
$$

In a well with $C^{2}=1$ exists only one symmetric eigenfunction.

We calculate the kinetic energy E_{α} :

$$
\left|E_{\alpha}\right|=|U|-\left|T_{\alpha}\right|=
$$

We assume the kinetic energy being smaller then the potential energy and omit the absolute value signs:

$$
E_{\alpha}=U-T_{\alpha}=
$$

We have the kinetic energy:

$$
k_{\alpha}^{2}=\frac{2 m T_{\alpha}}{\hbar^{2}} \rightarrow T_{\alpha}=\frac{k_{\alpha}^{2} \hbar^{2}}{2 m}
$$

In our graphic scheme we use $k a$ instead of k :

$$
T_{\alpha}=\frac{\hbar^{2}}{2 m a^{2}} \cdot\left(a k_{\alpha}\right)^{2}
$$

The energy level of the first symmetric eigenfunction:

$$
E_{\alpha}=U-T_{\alpha}=U-\frac{\hbar^{2}}{2 m a^{2}} \cdot\left(a k_{\alpha}\right)^{2}
$$

Using $\frac{2 a^{2} m|U|}{\hbar^{2}}=C^{2}$ we get:

$$
\frac{2 a^{2} m|U|}{\hbar^{2}}=C^{2} \rightarrow \frac{\hbar^{2}}{2 a^{2} m}=\frac{|U|}{C^{2}}
$$

We omit the absolute value signs for U and write:

$$
\frac{\hbar^{2}}{2 m a^{2}}=\frac{U}{C^{2}}
$$

With this we rewrite:

$$
E_{\alpha}=U-\frac{\hbar^{2}}{2 m a^{2}} \cdot\left(a k_{\alpha}\right)^{2}=U\left(1-\frac{\left(a k_{\alpha}\right)^{2}}{C^{2}}\right)
$$

The deeper the well the more eigenfunctions are possible. We get the picture:

Note: Dotted lines belong to asymmetric eigenfunctions.

Additional remark

The probability of the particle to be found in the interval $d x$ is $u^{2} d x$. For $E<0$, it decays exponentially like $e^{-2 x a}$ outside $|x|=a$. According to quantum mechanics, the particle can move into these areas forbidden by classical mechanics. With noticeable probability, a distance outside of $|x|=a$ can still be reached:

$$
\Delta x \sim \frac{\hbar}{\sqrt{2 m|E|}}
$$

The deeper the well, the larger $|E|$ and the smaller Δx.

