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These worked examples follow “Rechenmethoden der Quantentheorie, Siegfried Flügge, Springer, 

Berlin, 1965”. Library of Congress Catalog Card Number 65-24546, title-nr. 7288 

Remark 

The treatment of the quantum bouncing ball, a high-school problem of classic physics, exceeds the 

scope of what can be expected of beginners. Nevertheless, beginners are also invited to read this 

text. They can learn from it how physicists proceed to adapt mathematics to the conditions of 

nature. 

We here are dealing with this topic based on a book from 1965. In this book, the basics are worked 

out in a more complicated way. Modern books use the Airy function, which combines many 

properties of Bessel and Hankel functions. 

You may find a modern approach to this topic at: https://ia600208.us.archive.org/3/items/arxiv-

0909.2209/0909.2209.pdf 

 

Hope I can help you with learning quantum mechanics. 

 

Note: This is an experimental text that may contain errors. 

 

  

https://ia600208.us.archive.org/3/items/arxiv-0909.2209/0909.2209.pdf
https://ia600208.us.archive.org/3/items/arxiv-0909.2209/0909.2209.pdf


FAQ Quantum Mechanics 

D. Kriesell  page 2 of 12 

A particle (a super hard ball) bounces over a super hard surface. No damping, no loss 

of energy. Calculate the movement with quantum mechanics methods. 

Classic physics 
A simulation using classic physics and made with geogebra you find here. 

The particle with mass 𝑚 and heigth 𝑥 over the surface lives in a gravitational potential 𝑚 ∙ 𝑔 ∙ 𝑥.  

We assume the potential 𝑔 to be constant. The potential is the total energy as we assume no initial 

velocity. 

When the particle starts falling we have potential energy only. 

When the particle reaches the ground we have kinetic energy only. 

We have elastic reflection, so the energy is conserved: 𝐸𝑝𝑜𝑡 + 𝐸𝑘𝑖𝑛 = 𝐸 = 𝑐𝑜𝑛𝑠𝑡. 

We get the laws of motion: 

𝑥(𝑡) = 𝑥0 −
1

2
∙ 𝑔 ∙ 𝑡2 

𝑣(𝑡) = −𝑔 ∙ 𝑡 

𝑎(𝑡) = 𝑐𝑜𝑛𝑠𝑡. 

We get the time the particle needs to reach zero: 

𝑡 = √
2 ∙ 𝑥0

𝑔
 

Due to the reflection on the ground we get in the next period: 

𝑥(𝑡) = 𝑥0 −
1

2
∙ 𝑔 ∙ (𝑡 − 2 ∙ √

2 ∙ 𝑥0

𝑔
)

2

 

𝑣(𝑡) = −𝑔 ∙ (𝑡 − 2 ∙ √
2 ∙ 𝑥0

𝑔
) 

We plot this: 

 

Note: What might be problematic for classic physics is the point of reflection. 

|∆𝑡 = √
2 ∙ 𝑥0

𝑔
| 

https://www.physicslens.com/simulation-of-a-bouncing-ball/


FAQ Quantum Mechanics 

D. Kriesell  page 3 of 12 

Quantum mechanics 
We use the following picture: 

 

Note: Any given energy 𝐸 determines the height the ball is bouncing and separates the classically 

forbidden range right of 𝑥 > 𝜉 from the classically allowed range 𝑥 < 𝜉. 

We use abbreviations: 

2 ∙ 𝑚2 ∙ 𝑔

ℏ2
=

1

𝑙3
 

2 ∙ 𝑚 ∙ 𝐸

ℏ2
=

𝜆

𝑙2
 

We check units. 

[
𝑚2 ∙ 𝑔

ℏ2
] =

𝑘𝑔2 ∙ 𝑚 ∙ 𝑠2

𝑠2 ∙ 𝑘𝑔2 ∙ 𝑚4
=

1

𝑚3
 

[
𝑚 ∙ 𝐸

ℏ2 ] =
𝑘𝑔 ∙ 𝑘𝑔 ∙ 𝑚2 ∙ 𝑠2

𝑠2 ∙ 𝑘𝑔2 ∙ 𝑚4
=

1

𝑚2
 

Note: 𝑙 is of unit lentgh, 𝜆 a real number. 

Note: We can look at 𝜆 as the ratio of the total energy 𝐸 of the particle divided by the potential 

energy in length unit 𝑙: 

𝜆 =
𝐸

𝑚 ∙ 𝑔 ∙ 𝑙
 

Note: We can look at the characteristic length unit 𝑙 as the ratio of total energy 𝐸 divided by the 

force acting multiplied by the ratio 𝜆: 

𝑙 =
𝐸

𝑚 ∙ 𝑔 ∙ 𝜆
 

We get 𝜉: 

𝜉 =
𝑥

𝑙
− 𝜆 =

𝑥 − 𝑙 ∙ 𝜆

𝑙
 

Note: 𝜉 is unit free. 

We shift the 𝑥-axis by 𝑙 ∙ 𝜆 to the right and rescale it by 
1

𝑙
. 

𝜉 = 0 

𝐸 

mass meter 
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We note: 

𝜉 < 0 → 𝑥 <
𝜆

𝑙
 

The turning point 𝜉 becomes the new zero. This helps because we get the energy 𝐸 negative within 

the allowed area left and positive in the forbidden area right.  

The Schrödinger equation for the original problem: 

−
ℏ2

2 ∙ 𝑚
∙

𝑑2𝑢

𝑑𝑥2
+ (𝑚 ∙ 𝑔 ∙ 𝑥 − 𝐸) ∙ 𝑢 = 0 

We use boundary conditions: 

𝑢(0) = 0, 𝑢(𝑥 → ∞) → 0 

Note: the Schrödinger equation does not calculate a position but a probability amplitude for the 

particle at position 𝑥. The square of the probability amplitude gives the probability density. The 

integral over the probability density within an area then gives the probability the particle being in 

this area. 

We apply the coordinate change and get a new differential equation: 

−
𝑑2𝑢

𝑑𝜉2
+ 𝜉 ∙ 𝑢 = 0 

We check this in detail. 

We use: 

2 ∙ 𝑚2 ∙ 𝑔

ℏ2
=

1

𝑙3
 

2 ∙ 𝑚 ∙ 𝐸

ℏ2
=

𝜆

𝑙2
 

𝜉 =
𝑥

𝑙
− 𝜆 

We rearrange: 

𝜉 =
𝑥

𝑙
− 𝜆 → 𝑥 = 𝑙 ∙ (𝜉 + 𝜆) 

2 ∙ 𝑚 ∙ 𝐸

ℏ2
=

𝜆

𝑙2
→ 𝐸 =

𝜆 ∙ ℏ2

2 ∙ 𝑚 ∙ 𝑙2
 

2 ∙ 𝑚2 ∙ 𝑔

ℏ2
=

1

𝑙3
→ 𝑚 ∙ 𝑔 =

ℏ2

2 ∙ 𝑚 ∙ 𝑙3
 

We combine: 

𝑚 ∙ 𝑔 ∙ 𝑥 =
ℏ2 ∙ 𝑙 ∙ (𝜉 + 𝜆)

2 ∙ 𝑚 ∙ 𝑙3
=

ℏ2 ∙ (𝜉 + 𝜆)

2 ∙ 𝑚 ∙ 𝑙2
 

𝐸 =
𝜆 ∙ ℏ2

2 ∙ 𝑚 ∙ 𝑙2
 

𝑚 ∙ 𝑔 ∙ 𝑥 − 𝐸 =
ℏ2 ∙ (𝜉 + 𝜆)

2 ∙ 𝑚 ∙ 𝑙2
−

𝜆 ∙ ℏ2

2 ∙ 𝑚 ∙ 𝑙2
= 
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ℏ2 ∙ (𝜉 + 𝜆) − 𝜆 ∙ ℏ2

2 ∙ 𝑚 ∙ 𝑙2
=

ℏ2 ∙ (𝜉 + 𝜆 − 𝜆)

2 ∙ 𝑚 ∙ 𝑙2
=

ℏ2 ∙ 𝜉

2 ∙ 𝑚 ∙ 𝑙2
 

We examine 
𝑑𝑢

𝑑𝜉
: 

𝑑𝑢

𝑑𝑥
=

𝑑𝑢

𝑑𝜉
∙

𝑑𝜉

𝑑𝑥
=

𝑑𝑢

𝑑𝜉
∙

1

𝑙
 

We examine 
𝑑2𝑢

𝑑𝜉2: 

𝑑2𝑢

𝑑𝑥2
=

𝑑

𝑑𝑥
(

𝑑𝑢

𝑑𝑥
) =

𝑑

𝑑𝑥
(

𝑑𝑢

𝑑𝜉
∙

1

𝑙
) = 

1

𝑙
∙

𝑑

𝑑𝑥
(

𝑑𝑢

𝑑𝜉
) =

1

𝑙
∙

𝑑

𝑑𝜉
(

𝑑𝑢

𝑑𝜉
) ∙

𝑑𝜉

𝑑𝑥
=

1

𝑙2
∙

𝑑2𝑢

𝑑𝜉2
 

We insert into the original Schrödinger equation: 

−
ℏ2

2 ∙ 𝑚
∙

𝑑2𝑢

𝑑𝑥2
+ (𝑚 ∙ 𝑔 ∙ 𝑥 − 𝐸) ∙ 𝑢 = 0 → 

−
ℏ2

2 ∙ 𝑚
∙

1

𝑙2
∙

𝑑2𝑢

𝑑𝜉2
+ (

ℏ2 ∙ 𝜉

2 ∙ 𝑚 ∙ 𝑙2) ∙ 𝑢 = 0 → 

−
𝑑2𝑢

𝑑𝜉2
+ 𝜉 ∙ 𝑢 = 0 

This is a second order linear ordinary differential equation.  

We set the boundary conditions: 

𝑢(𝜉 = −𝜆) = 0, 𝑢(𝜉 → ∞) = 0 

Note: 𝜉 = −𝜆 implies 𝑥 = 0 and we are back to the boundary condition of the original differential 

equation. 

The solution for −
𝑑2𝑢

𝑑𝜉2 + 𝜉 ∙ 𝑢 = 0: 

𝑢(𝜉) = 𝐶 ∙ √𝜉 ∙ 𝑍1
3

(
2

3
∙ 𝑖 ∙ 𝜉

3
2) 

Note: 𝑍1

3

 are Bessel resp. Hankel functions. 

To get the solutions for −
𝑑2𝑢

𝑑𝜉2 + 𝜉 ∙ 𝑢 = 0 we need knowledge about Bessel functions and Hankel functions and 

are definitely out of the scope of this paper. You may find more information at: 

https://www.johndcook.com/blog/2013/09/01/relating-airy-and-bessel-functions/.  

Another source (in german) might be: https://itp.tugraz.at/~schnizer/AnalyticalMethods/AnMe26.pdf.  

Another source (in geman) maight be: 

https://support.ptc.com/help/mathcad/r10.0/de/index.html#page/PTC_Mathcad_Help/example_hankel_funct

ions.html#wwID0ETL46 

We will discuss separately the areas 𝜉 > 0, the classical inaccessible area and 𝜉 < 0, the classical 

allowed area. 

https://www.johndcook.com/blog/2013/09/01/relating-airy-and-bessel-functions/
https://itp.tugraz.at/~schnizer/AnalyticalMethods/AnMe26.pdf
https://support.ptc.com/help/mathcad/r10.0/de/index.html#page/PTC_Mathcad_Help/example_hankel_functions.html
https://support.ptc.com/help/mathcad/r10.0/de/index.html#page/PTC_Mathcad_Help/example_hankel_functions.html
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First part: 𝜉 > 0 
For 𝜉 ≫ 1 we can use the asymptotic formulas of the Hankel function of first kind: 

𝐻1
3

(1)
(𝑧) = √

2

𝜋 ∙ 𝑧
∙ 𝑒𝑥𝑝 (𝑖 ∙ (𝑧 −

5

12
∙ 𝜋)) 

The Hankel function becomes: 

𝐻1
3

(1)
(

2

3
∙ 𝑖 ∙ 𝜉

3
2) = √

2

𝜋 ∙
2
3

∙ 𝑖 ∙ 𝜉
3
2

∙ 𝑒𝑥𝑝 (𝑖 ∙ (
2

3
∙ 𝑖 ∙ 𝜉

3
2 −

5

12
∙ 𝜋)) 

We will replace this expression in our solution for 𝑢(𝜉): 

𝑢(𝜉) = 𝐶 ∙ √𝜉 ∙ 𝐻1
3

(1)
(

2

3
∙ 𝑖 ∙ 𝜉

3
2) → 

𝑢(𝜉) = 𝐶 ∙ √𝜉 ∙ √
2

𝜋 ∙
2
3 ∙ 𝑖 ∙ 𝜉

3
2

∙ 𝑒𝑥𝑝 (𝑖 ∙ (
2

3
∙ 𝑖 ∙ 𝜉

3
2 −

5

12
∙ 𝜋)) = 

𝐶 ∙ 𝜉
1
2 ∙ 𝜉

1
2

∙(−
3
2

)
∙ √

3

𝜋 ∙ 𝑖
∙ 𝑒𝑥𝑝 (𝑖 ∙ (

2

3
∙ 𝑖 ∙ 𝜉

3
2 −

5

12
∙ 𝜋)) = 

𝐶 ∙ 𝜉−
1
4 ∙ √

3

𝜋 ∙ 𝑖
∙ 𝑒𝑥𝑝 ((−

2

3
∙ 𝜉

3
2 − 𝑖 ∙

5

12
∙ 𝜋)) = 

𝐶 ∙ 𝜉−
1
4 ∙ √

3

𝜋
∙ 𝑖−

1
2 ∙ 𝑒𝑥𝑝 ((−

2

3
∙ 𝜉

3
2)) ∙ 𝑒𝑥𝑝 ((−𝑖 ∙

5

12
∙ 𝜋)) = 

𝐶 ∙ 𝜉−
1
4 ∙ √

3

𝜋
∙ 𝑒𝑥𝑝 ((−𝑖 ∙

1

4
∙ 𝜋)) ∙ 𝑒𝑥𝑝 ((−

2

3
∙ 𝜉

3
2)) ∙ 𝑒𝑥𝑝 ((−𝑖 ∙

5

12
∙ 𝜋)) = 

𝐶 ∙ 𝜉−
1
4 ∙ √

3

𝜋
∙ 𝑒𝑥𝑝 ((−𝑖 ∙

1

4
∙ 𝜋 − 𝑖 ∙

5

12
∙ 𝜋)) ∙ 𝑒𝑥𝑝 ((−

2

3
∙ 𝜉

3
2)) = 

𝐶 ∙ 𝜉−
1
4 ∙ √

3

𝜋
∙ 𝑒𝑥𝑝 ((−𝑖 ∙ 𝜋 (

1

4
+

5

12
))) ∙ 𝑒𝑥𝑝 ((−

2

3
∙ 𝜉

3
2)) = 

𝐶 ∙ 𝜉−
1
4 ∙ √

3

𝜋
∙ 𝑒𝑥𝑝 ((−𝑖 ∙

2

3
∙ 𝜋)) ∙ 𝑒𝑥𝑝 ((−

2

3
∙ 𝜉

3
2)) 

This solution for positive 𝜉 becomes real if we set 𝐶 to eliminate the complex term (−𝑖 ∙
2

3
∙ 𝜋): 

𝐶 = 𝐴 ∙ 𝑒𝑥𝑝 ((𝑖 ∙
2

3
∙ 𝜋)) 
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We get the real solution: 

𝑢(𝜉) = 𝐴 ∙ 𝜉−
1
4 ∙ √

3

𝜋
∙ 𝑒𝑥𝑝 ((−

2

3
∙ 𝜉

3
2)) 

Note: 𝐴 is a real value. 

This solution has the correct behavior, it goes to zero for growing 𝜉. 

Let us take a look at the graph: 

 

The graph shows an exponential decay for positive values of 𝜉 and has a singularity at 𝜉 = 0. 

Second part: 𝜉 < 0 
The solution for 𝜉 > 0 was: 

𝑢(𝜉) = 𝐶 ∙ √𝜉 ∙ 𝑍1
3

(
2

3
∙ 𝑖 ∙ 𝜉

3
2) 

In the complex plane we write 𝜉 < 0 as |𝜉| ∙ (−1) or |𝜉| ∙ 𝑒−𝑖𝜋. 

The solution for 𝜉 < 0 then is: 

𝑢(𝜉 < 0) = 𝐶 ∙ √−|𝜉| ∙ 𝐻1
3

(1)
(−

2

3
∙ |𝜉|

3
2) 

Note: 𝐻1

3

(1)
 is the Hankel function or Bessel funciton of the third kind. 

Note: You may find more information at: Hankel functions - Encyclopedia of Mathematics. 

We use the general Hankel function for noninteger 𝜈: 

𝐻𝜈
(1)

(𝑧 ∙ 𝑒−𝑖𝜋) =
𝑖

𝑠𝑖𝑛(𝜋 ∙ 𝜈)
(𝑒𝑥𝑝(−2 ∙ 𝜋 ∙ 𝑖 ∙ 𝜈) ∙ 𝐽𝜈(𝑧) − 𝑒𝑥𝑝(𝜋 ∙ 𝑖 ∙ 𝜈) ∙ 𝐽−𝜈(𝑧)) 

Note: 𝐽𝜈(𝑧), 𝐽−𝜈(𝑧) are Bessel functions of first kind. 

https://encyclopediaofmath.org/wiki/Hankel_functions
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For 𝜈 =
1

3
 we get: 

𝐻1
3

(1)
(𝑧 ∙ 𝑒−𝑖𝜋) =

𝑖

𝑠𝑖𝑛 (
𝜋
3

)
(𝑒𝑥𝑝 (−

2

3
∙ 𝜋 ∙ 𝑖) ∙ 𝐽1

3

(𝑧) − 𝑒𝑥𝑝 (𝜋 ∙ 𝑖 ∙
1

3
) ∙ 𝐽

−
1
3

(𝑧)) = 

𝑖 ∙ 𝑒𝑥𝑝 (−
2
3 ∙ 𝜋 ∙ 𝑖)

𝑠𝑖𝑛 (
𝜋
3

)
(𝐽1

3

(𝑧) − 𝑒𝑥𝑝 (𝜋 ∙ 𝑖 ∙
3

3
) ∙ 𝐽

−
1
3

(𝑧)) = 

𝑖 ∙ 𝑒𝑥𝑝 (−
2
3

∙ 𝜋 ∙ 𝑖)

𝑠𝑖𝑛 (
𝜋
3)

(𝐽1
3

(𝑧) + 𝐽
−

1
3

(𝑧)) = 

𝑒𝑥𝑝 (−
1
2

∙ 𝜋 ∙ 𝑖) ∙ 𝑒𝑥𝑝 (−
2
3

∙ 𝜋 ∙ 𝑖)

𝑠𝑖𝑛 (
𝜋
3

)
(𝐽1

3

(𝑧) + 𝐽
−

1
3

(𝑧)) = 

𝑒𝑥𝑝 (−
7
6

∙ 𝜋 ∙ 𝑖)

𝑠𝑖𝑛 (
𝜋
3

)
(𝐽1

3

(𝑧) + 𝐽
−

1
3

(𝑧)) 

We get: 

𝑢(𝑧 ∙ 𝑒−𝑖𝜋) = 𝐶 ∙ √𝑧 ∙ 𝑒−𝑖𝜋 ∙ 𝐻1
3

(1)
(

2

3
∙ (𝑧 ∙ 𝑒−𝑖𝜋)

3
2) = 

𝐶 ∙ √𝑧 ∙ 𝑒−𝑖𝜋 ∙
𝑒𝑥𝑝 (−

7
6 ∙ 𝜋 ∙ 𝑖)

𝑠𝑖𝑛 (
𝜋
3)

(𝐽1
3

(
2

3
∙ (𝑧 ∙ 𝑒−𝑖𝜋)

3
2) + 𝐽

−
1
3

(
2

3
∙ (𝑧 ∙ 𝑒−𝑖𝜋)

3
2)) 

Again, this solution is real if we choose C: 

𝐶 = 𝐴 ∙ 𝑒𝑥𝑝 (
7

6
∙ 𝜋 ∙ 𝑖) 

We get: 

𝑢(𝑧 ∙ 𝑒−𝑖𝜋) = √𝑧 ∙ 𝑒−𝑖𝜋 ∙
𝐴

𝑠𝑖𝑛 (
𝜋
3)

(𝐽1
3

(
2

3
∙ (𝑧 ∙ 𝑒−𝑖𝜋)

3
2) + 𝐽

−
1
3

(
2

3
∙ (𝑧 ∙ 𝑒−𝑖𝜋)

3
2)) 

We use that 𝑧 ∙ 𝑒−𝑖𝜋 = −𝑧, replace 𝑧 by 𝜉 and resubstitute: 

𝜉 =
𝑥

𝑙
− 𝜆 → −𝜉 = 𝜆 −

𝑥

𝑙
 

We get: 

𝑢 (𝜆 −
𝑥

𝑙
) = √𝜆 −

𝑥

𝑙
∙

𝐴

𝑠𝑖𝑛 (
𝜋
3)

(𝐽1
3

(
2

3
∙ (𝜆 −

𝑥

𝑙
)

3
2

) + 𝐽
−

1
3

(
2

3
∙ (𝜆 −

𝑥

𝑙
)

3
2

)) 

  



FAQ Quantum Mechanics 

D. Kriesell  page 9 of 12 

This is a real eigenfunction with eigenvalue zero. This forces 𝜆 to fulfill the condition: 

𝑢(𝑥 = 0) = 0 → 𝑢(𝜆) = 0 → 

𝐽1
3

(
2

3
∙ 𝜆

3
2) + 𝐽

−
1
3

(
2

3
∙ 𝜆

3
2) = 0 

Let us harvest the results. 

Eigenfunction 
We have the length unit: 

𝑙 = (
ℏ2

2 ∙ 𝑔 ∙ 𝑚2)

1
3

 

For an electron we get: 

ℏ2

2 ∙ 𝑔 ∙ 𝑚2
=

(1.055 ∙ 10−34)2

2 ∙ 9.81 ∙ (9.1094 ∙ 10−31)2
~0.00088 (meter) 

We check units: 

[(
ℏ2

𝑔 ∙ 𝑚2)

1
3

] =
𝑘𝑔2 ∙ 𝑚4 ∙ 𝑠2 ∙ 𝑠2

𝑠4 ∙ 𝑚 ∙ 𝑘𝑔2
= (𝑚3)

1
3 = 𝑚 

According to classic physics the position 𝑥0 = 𝜆 ∙ 𝑙 =
𝐸

𝑚∙𝑔
 is the highest point of the trajectory.  

Going beyond this position only for few millimeter results in |𝜉| ≫ 1 and thus a very small probability 

amplitude. Therefore we are interested in the asymptotic behavior of the solution near the classical 

limit 𝑥0. 

Case 𝛏 > 𝟎 

𝑢(𝜉) = 𝐴 ∙ 𝜉−
1
4 ∙ √

3

𝜋
∙ 𝑒𝑥𝑝 ((−

2

3
∙ 𝜉

3
2)) 

We resubstitute to get a function of 𝑥: 

𝑢(𝑥) = 𝐴 ∙ (
𝑥 − 𝑥0

𝑙
)

−
1
4

∙ √
3

𝜋
∙ 𝑒𝑥𝑝 ((−

2

3
∙ (

𝑥 − 𝑥0

𝑙
)

3
2

)) 

This means roughly an exponential decay for 𝑥 > 𝑥0. 

Case 𝝃 < 𝟎 

We have the solution for 𝜉 < 0: 

𝑢 (𝜆 −
𝑥

𝑙
) = √𝜆 −

𝑥

𝑙
∙

𝐴

𝑠𝑖𝑛 (
𝜋
3)

(𝐽1
3

(
2

3
∙ (𝜆 −

𝑥

𝑙
)

3
2

) + 𝐽
−

1
3

(
2

3
∙ (𝜆 −

𝑥

𝑙
)

3
2

)) 
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We have asymptotic behavior: 

𝐽1
3

(𝑧) → √
2

𝜋 ∙ 𝑧
∙ 𝑐𝑜𝑠 (𝑧 −

5 ∙ 𝜋

12
) 

𝐽
−

1
3

(𝑧) → √
2

𝜋 ∙ 𝑧
∙ 𝑐𝑜𝑠 (𝑧 −

𝜋

12
) 

We use: 

𝑧 =
2

3
∙ (

𝑥 − 𝑥0

𝑙
) 

If the electron is some millimeter below the classical point of return, we get: 

𝑢(𝑥) = (
𝑥 − 𝑥0

𝑙
)

−
1
4

∙
𝐴

𝑠𝑖𝑛 (
𝜋
3

)
∙ √

3

𝜋
∙ (𝑐𝑜𝑠 (

2

3
∙ (

𝑥0 − 𝑥

𝑙
)

3
2

−
5 ∙ 𝜋

12
) + 𝑐𝑜𝑠 (

2

3
∙ (

𝑥0 − 𝑥

𝑙
)

3
2

−
𝜋

12
)) 

We build the average of the expectation value of 𝑢2 over a range ∆𝑥 ≫ 𝑙: 

𝑢2 =
4

𝜋
∙ 𝐴2 ∙ √

𝑙

𝑥 − 𝑥0
 

The classical residence time 𝑑𝑡 in an interval 𝑑𝑥 is proportional 𝑢2: 

𝑑𝑡~
𝑑𝑥

√𝑥0 − 𝑥
 

We get the speed of the particle: 

𝑑𝑥

𝑑𝑡
~√𝑥0 − 𝑥 

We use that 𝑥0 − 𝑥 ≔ 𝑠 is the distance of the moving particle and get finally the classical formula: 

𝑑𝑥

𝑑𝑡
~√2 ∙ 𝑔 ∙ 𝑠 

We compare with the classic solution: 

We get the laws of motion (with the origin 𝑥0 set to zero) 

𝑥(𝑡) =
1

2
∙ 𝑔 ∙ 𝑡2 𝑣(𝑡) = −𝑔 ∙ 𝑡 𝑎(𝑡) = 𝑐𝑜𝑛𝑠𝑡. 𝑡 = √

2 ∙ 𝑥

𝑔
 

𝑣(𝑡) = −𝑔 ∙ 𝑡 = −𝑔 ∙ √
2 ∙ 𝑥

𝑔
= −√2 ∙ 𝑥 ∙ 𝑔 

  



FAQ Quantum Mechanics 

D. Kriesell  page 11 of 12 

Eigenvalue 
We have discrete eigenvalues for 𝜉 < 0.  

The zeros are given by the condition: 

𝑢 (𝜆 −
𝑥

𝑙
) = 0 → 

√𝜆 −
𝑥

𝑙
∙

𝐴

𝑠𝑖𝑛 (
𝜋
3

)
(𝐽1

3
(

2

3
∙ (𝜆 −

𝑥

𝑙
)

3
2

) + 𝐽
−

1
3

(
2

3
∙ (𝜆 −

𝑥

𝑙
)

3
2

)) = 0 → 

𝐽1
3

(
2

3
∙ (𝜆 −

𝑥

𝑙
)

3
2

) + 𝐽
−

1
3

(
2

3
∙ (𝜆 −

𝑥

𝑙
)

3
2

) = 0 

We write: 

𝑓(𝑧) ≔ 𝐽1
3

(𝑧) + 𝐽
−

1
3

(𝑧) = 0 

We assume the zeros 𝑧𝑛(𝑛 = 1,2,3, … ). 

We have the according energy in terms of 𝜆𝑛: 

𝐸𝑛 =
ℏ2

2 ∙ 𝑚 ∙ 𝑙2
∙ 𝜆𝑛 

We use: 

𝑧𝑛 = (
2

3
∙ 𝜆𝑛)

3
2

→ 𝜆𝑛 = (
3

2
∙ 𝑧𝑛)

2
3

 

We get the energy: 

𝐸𝑛 =
ℏ2

2 ∙ 𝑚 ∙ 𝑙2
∙ (

3

2
∙ 𝑧𝑛)

2
3

=
ℏ2

2 ∙ 𝑚 ∙ 𝑙2
∙ (

3

2
)

2
3

∙ 𝑧𝑛

2
3 = 𝜀 ∙ 𝑧𝑛

2
3 

We use the length unit: 

𝑙 = (
ℏ2

2 ∙ 𝑔 ∙ 𝑚2)

1
3

 

We get the energy units 𝜀: 

ℏ2

2 ∙ 𝑚 ∙ 𝑙2
∙ (

3

2
)

2
3

→
ℏ2

2 ∙ 𝑚 ∙ (
ℏ2

2 ∙ 𝑔 ∙ 𝑚2)

2
3

∙ (
3

2
)

2
3

= 

(ℏ
6
2 ∙ 2 ∙ 𝑔 ∙ 𝑚2 ∙

3
2)

2
3

(2
3
2 ∙ 𝑚

3
2 ∙ ℏ2)

2
3

=
(ℏ6 ∙ 22 ∙ 𝑔2 ∙ 𝑚4 ∙

9
4)

1
3

(23 ∙ 𝑚3 ∙ ℏ4)
1
3

= 
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(
ℏ6 ∙ 22 ∙ 𝑔2 ∙ 𝑚4 ∙

9
4

23 ∙ 𝑚3 ∙ ℏ4
)

1
3

= (
ℏ2 ∙ 𝑔2 ∙ 𝑚 ∙

9
4

2
)

1
3

= 

(ℏ2 ∙ 𝑔2 ∙ 𝑚 ∙
9

8
)

1
3

 

Result: 

𝜀 = (ℏ2 ∙ 𝑔2 ∙ 𝑚 ∙
9

8
)

1
3

 

We check units: 

[(ℏ2 ∙ 𝑔2 ∙ 𝑚)
1
3] = (

𝑘𝑔2 ∙ 𝑚4 ∙ 𝑚2 ∙ 𝑘𝑔

𝑠2 ∙ 𝑠4 )

1
3

= (
𝑘𝑔3 ∙ 𝑚6

𝑠6 )

1
3

=
𝑘𝑔 ∙ 𝑚2

𝑠2
= 𝐽𝑜𝑢𝑙𝑒 

For electrons we get: 

𝜀𝑒𝑙 ≈ ((1.055 ∙ 10−34)2 ∙ 9.812 ∙ 9.109 ∙ 10−31 ∙
9

8
)

1
3

= 1.032 ∙ 10−32 𝐽𝑜𝑢𝑙𝑒 

If 𝑛 becomes big we have 𝑧 ≫ 1. In this case the particle reaches the point of return, the highest 

point in the allowed area in our solution, meaning 𝑥 → 0. 

We take the solution for 𝑢(𝑥): 

𝑢(𝑥) = (
𝑥 − 𝑥0

𝑙
)

−
1
4

∙
𝐴

𝑠𝑖𝑛 (
𝜋
3

)
∙ √

3

𝜋
∙ (𝑐𝑜𝑠 (

2

3
∙ (

𝑥0 − 𝑥

𝑙
)

3
2

−
5 ∙ 𝜋

12
) + 𝑐𝑜𝑠 (

2

3
∙ (

𝑥0 − 𝑥

𝑙
)

3
2

−
𝜋

12
)) 

We apply the zero condition and 𝑥 = 0 and get the condition for 𝑓(𝑧) = 0: 

𝑐𝑜𝑠 (
2

3
∙ (

𝑥0

𝑙
)

3
2

−
5 ∙ 𝜋

12
) + 𝑐𝑜𝑠 (

2

3
∙ (

𝑥0

𝑙
)

3
2

−
𝜋

12
) = 0 

Trigonometric identities give: 

𝑐𝑜𝑠 (
2

3
∙ (

𝑥0

𝑙
)

3
2

−
𝜋

4
) = 0 

We get: 

𝑧𝑛 = (
2

3
∙ 𝜆𝑛)

3
2

= (
2

3
∙

𝑥0

𝑙
)

3
2

=
𝜋

4
+ (2 ∙ 𝑛 + 1) ∙

𝜋

2
 

We get energy levels 𝐸𝑛: 

𝐸𝑛 = 𝜀 ∙ ((2 ∙ 𝑛 +
3

2
) ∙

𝜋

2
)

2
3

 


