Hilbert Space

This paper deals with the space quantum mechanics takes place.
Related information you may find at:

https://math.mit.edu/~rbm/18-102-514/Chapter3.pdf

https://mathweb.ucsd.edu/~bdriver/231-02-03/Lecture Notes/Hilbert-Spaces.pdf

Tutorium Quantenmechanik, J.-M. Schwindt, Springer, ISBN 978-3-642-37791-4. (... written in
German...)

Hope | can help you with learning quantum mechanics.

D. Kriesell page 1 of 22


https://math.mit.edu/~rbm/18-102-S14/Chapter3.pdf
https://mathweb.ucsd.edu/~bdriver/231-02-03/Lecture_Notes/Hilbert-Spaces.pdf

Hilbert Space

Contents

o L1 1 T o A o - [ol YU 3
LV 4=To1 o] g o T- ol =N 3
(00T 00 o] 1= Q0T8T 0 4] o 1T 3 RSP TTPP 3
LV A=Tol o] g o T- Yol =N 3
B Lo Yl o] o e 11 ] o1 USSR 4
[ 111 7= Y o - [ol YU 5
(0] ¢ =T =) o] TP PTPPPPRPRE 6
IVTETICES ..ttt ettt ettt ettt s et e e st e e s aa et e e s bt e e e s a bt e e e e b e e e e re e e e e b e e e e e nre e e s e reneeeanrenas 6
HErMITIaN MatriX et e s st e s s e s e e e s s enre e e s e nreees 7
1Yo o] gl AeY o 1< - o1 £ 8
BIZENVAIUE .. et e e e et e e e e ettt e e e e e beee e eeabaee e e abaeeeeanbaeeeeanbeeeeennteeeeennrenas 8
[T =T 01T (o] ST PP PPPPPPPPPN 9
U] o1 o - [ o] L PP PPP 13

Y= Eo] U g N 15
PAUL MATIICES .ttt et b e s bt st sat e sttt e bt e b e e sbeesbeesate et e enbeenbeesneesnnenas 15
Measuring the z-component of the SPIN .......c.uei it 15
(o FoT1=T o1 4 o] o IF TSP PTP R RPPPPPI 16
(010 013 - 01 A o] o - <RSP 17
Projection operators in detail........cc.eieccciiii e e e e et e e e et e e e e e araeaeeanes 17
(o] 1 d ¥ i ul o T-4 o] o] [=]o o] a1o] o =T -1 o] &= PN 18
Measuring the x-component of the SPIN ....cccuviii i 18
Measuring the y-component of the SPIN .......eeiiiiiiiiii e s 20
EXPECLAtION VAIUE ...uviiiciiee ettt ettt e e et e e e et e e e s bt e e e e sbaeeessbaeeeesbeaeeessteeeesnnes 21
L 0Tt o - 1 0 N 22

D. Kriesell page 2 of 22



Hilbert Space

Hilbert space

Vector space
Imagine a particle that can move in one dimension. The particle has position
and speed. We describe this particle and its state best by taking position and
speed as independent coordinates and build a 2D coordinate system.

Every point (vector) in the plane represents a particle in a unique state with
position and velocity. A free particle can have any position in this space.

dufdt

If we fix the particle with a spring to the origin, give it constant mass and

energy, the particle is restricted to a path in the plane. Every position on the
path is possible, all other positions are impossible, given mass, energy and
spring parameters does not change.

N

™
—

If we have friction the energy will decay, and the particle come to rest.

m

“Measuring” in this picture mathematically takes place by projecting the vector
to one of its basis axes, a task performed by matrix operations. In our example: If we want to extract
the position out of the vector, we must project it to the x-axis.

If we work with more particles, more parameters, the vector space will get more dimensions, but
properties like subspace, orthogonality, projection, norm, basis will remain and help imagine the
behavior of the system.

Complex numbers
Every complex number has a complex conjugated companion. We chose a, b € R, i the imaginary
unit and write:

In cartesian style In polar style
z=a+ib-oz"=a—ib z=qe? - z*=qe ¥
Note: * denotes complex conjugation.

Vector space
Real space vector in column or row presentation:

1
(2) or (123)
3

0 1
This vector can be visualized as an arrow, starting at the origin (0) and ending at (2)
0 3

The representation of a vector always is made upon a basis. Throughout this text we use the

0 1
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Hilbert Space

1
We take the variable a € R. All vectors a - <2> build a line in space, a 1D subspace.
3

Dot product
In real space we use the scalar product or dot product.

1 3
a==(2),b==(4),a-b=1-3+2-4+3-6
3 5

n
a'b:= Z a;b;
=1

2

In general:

Note: the presentation depends on the basis we are working with. We use the orthonormal basis.
Complex space vector:
a 1+i-3
W =(az]|=(2—i-4|oru=(1-i-3)Q+i-49)3—-i-2)
as 3+i-2
Note: |u) is called a ket, {u| its corresponding bra.

Note: switching from column vector to row vector resp. from ket |u) to bra (u| is requires complex
conjugation.

A second vector |v):

B1 4+
|v) = <ﬂ2>=(5—i-5>or(v|=((4—i)(5+i-5)(6—i-6))
B3 6+i-6

Note: switching from column vector to row vector needs complex conjugation.

The scalar product or dot product:

n

(ulv) = Z a;"B;

i=1
Note: a; and f3; are complex numbers.
We get:
(uv)y=01-i-3)4+)+2+i-4)5-i-5+@B—-i-2)(6+i-6)=
7—i-114+30+i-10+30+i-6=
67 + 5i
wuy=l-DA+i-3)+G+i-5Q-i-4)+6—-i-6)3+i-2)=
67 — 5i
Note: (u|v) = (v|u)*

Note: the dot product gives a (complex) number.
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Hilbert Space

Note: this requires a basis of the vector space. Different bases will give different results.

The dot product of a vector with itself will give a real number, the square of the absolute value:

n

ey =) a'a; = ull

i=1
We check with our example:
(uluy=>1-i-3)1+i-3)+2+i-49)2—-i-49)+B—-i-2)3+i-2) =
104+ 20+ 13 =43

Hilbert space

Hilbert space H is a complete vector space over complex numbers C. “Complete” means that every
Cauchy sequence converges. This is a mathematical property that guarantees mathematics in this
space is working properly.

The dot product denotes a function H X H — C with the following properties:
1. The dot product is antilinear in the first argument:
(aulv) = a*(ulv)
2. The dot product is linear in the second argument:
(ulav) = alulv)
3. The dot product is Hermitian:
(ulv) = (vlu)*
Note:

(vlv) eR
(vlv) =0
(wlv) =0 |v)=0

A Hilbert space of finite dimension has a finite number of orthonormal basis vectors |e;).

We rewrite |v):

[v) = ime»
i=1

Note: different bases will give different representations of the same vector |v).
Note: 3; are complex numbers.
Note: We use the standard orthonormal basis.

We can disassemble the vector |v):
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Hilbert Space

We can identify the components:

[v)i = Bi
If we chose an orthonormal basis the dot product of the basis vectors becomes simple:
(eilej) = o5

Note: §;; is the Kronecker §:

s _{1fori=j
U0 fori#j

In case we have an orthonormal basis, the dot product simplifies:

(ulv) = (X1, aie; | X7, Bjeg) =

n n
5 cenin - 3, v
i,j=1 i,j=1

n

2.h

i=1

Note: a;* because of antilinearity of the dot product in the first argument.

The norm or absolute value of |v):

vl = (v|v)

For the norm we have two inequalities.

The Schwarz inequality The triangle inequality
(ulv)(wlu) < (ulu)vlv)
or lu + vl < lull + vl
[(ulv)] < [[ullllv]]

Operators
Operators extract observables.

Matrices
Quantum mechanics uses operators. Operators constitute (extract) observables. The position of a
particle e. g. is an observable.

In a Hilbert space with finite dimension operators are matrices.

The real valued 3D matrix A:

™~
Il
RS
ARG
0 U1 N
O O W
N—————

We can transpose the matrix 4 and get AT
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Hilbert Space

The Hilbert space is a vector space over complex numbers C. The complex valued matrix B:

a b c
B:=<d e f)
g h k

Note: a,b,c,d,e, f, g, h, k can be complex numbers.

We can complex conjugate the matrix B:

a* b* c*
. (d* o f*>

We call a matrix M hermitian if it has the following shape:
a d e
M = <d* b f)
e* f* ¢

Note: for a Hermitian matrix we have: a;; = a;;".

Note:a,b,c ER,d,e, f € C.

Note: the diagonal entries are real numbers.
If we transpose M and complex conjugate it, we call the result the adjoint matrix M1.

Hermitian matrices survive this process unchanged:

a d e a d e
M = (d* b f)—)MT:<d* b f)
e* f* ¢ e* f* ¢

Note: a real number does not change by complex conjugation.

Any explicit representation of a matrix uses a specific basis. If the basis changes, the representation
of the matrix changes. This holds for vectors too.

Hermitian matrix
A (Hermitian) matrix M applied to a vector ¥ produces a new vector w:

M-v=w

We calculate the example above:

a d e 4410
M-ﬁ:(d* b f><5_i.5):
e* f* ¢/ \6+i-6

a-(4+)+d-(5—i-5) +e-(6+i-6)
A (4+0D)+b-G—i-5+f (6+i-6) |=
e (4+)+f - (5—i-5+c-(6+i-6)

(4a + 5d + 6e) + i(a — 5d + 6¢e)
(4d* +5b+ 6f) +i(d*—5b + 6f)
(4e*+5f*+6¢c)+i(e* —5f"+ 6¢)

D. Kriesell page 7 of 22



Hilbert Space

Result:
(4a +5d + 6e) + i(a — 5d + 6e)
w=| (4d* +5b+6f)+i(d* —5b + 6f)
(4e* +5f*+6c)+i(e* —5f"+6¢C)
We calculate:
a d e
ﬁ*-M:((4—i)(5+i-5)(6—i-6))(d* b f):
e* f* ¢
4-i)ra+GB+i-5)-d+(6—-i"6)€e"
4-i)d+GB+i-5b+(6—-i-6)-f"]|=
4—-i)-e+GB+i'5-f+(6—-i"6)'C
(4a +5d* + 6e*) —i(a — 5d* + 6e*)
(4d +5b + 6f*) —i(d —5b+ 6f™)
(4e +5f + 6¢) —i(e —5f + 6¢)
Result:

VM =w"*
In the bra-ket notation we write for any Hermitian matrix M:
Mlv) = |w) & (vIM = (w|

Adjoint operators
For any operator (matrix) A, B and any complex number a we have:

(4N =4
(a-A)T =a* At
(A+B)t =4t + Bt
(A.B)Jr:B’r.AT
Note: the factor a goes out with its complex conjugated.

Note: for Hermitian matrices A, B this gives commutativity: A-B =B - A

Eigenvalue
Results of measurements are eigenvalues of a Hermitian operator:

M|v) = A|v)
Note: A traditionally used for eigenvalues.
Note: for a Hermitian operator, eigenvalues are real numbers.
We calculate eigenvalues A:
det(A-id—A)=0

Note: det is the determinant of a matrix, id is the identity matrix.

D. Kriesell
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WechooseA=(2_13i 2:31’):
det(1-id — A) =
10 1 2430\ _
d6t<(0 J Rl O )>_
A—1 —2-3i\_
det(—2+3i ;1—4)_
A-1D(1-4)—-(-2-3)(-2+4+3i) =
12-51-9 >
5++61 5 —-+61
b= o =—

Eigenvector
We choose the first eigenvalue A; and calculate its eigenvector:

(5+\/6_1

-1 -2-3i
i () =0
54461 b
\ —2+3i z —4/

3++61
z -2-3i | o
=0
. —3++61 (b)
—2+3i ————
2
(3+\/ﬁ —4—6i)():
4460 —3++61/\D

We get two equations:

I.3++V61)-a—(4+6)b=0

I.(-4+6)-a+(-3+V61)b=0

_, @+6D _,(53+461) _, (3-V6D)
=ph—— a=
(3++61) ( 4 + 6i) ( 4 + 6i)
We check whether the factor with b is the same (and it is):
(4 + 60)
(3+V61)  (4+60) (—4+6i)
(3—+V61)  (3++61) (3-+61)
(=4 +60)
—16 +24i—24i—36 —52
9—-3v61+3V61—-61 —52
page 9 of 22
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Hilbert Space

5+61,
o

(((;4:\/66%)))

1

We get the eigenvectors to eigenvalue 1; =

We check whether the matrix A applied to this vector reproduces it by the factor A;:

N ((%)) s +2\/a (((;4: \/66%>> ?
1 1

/{ (4+6D)
(, 5 2231)<<(3+@))=
1

((g‘”ﬁ)ﬂmﬂ

\(2_ (4+6l) 4/_

( 4+6i) @+ 3i)(3 + x/ﬁ)\

Left side:

(3+\/ﬁ)+ (3+61)
(2 —30)(4 + 60) . 4(3 ++/61)
(3+61) (3 ++61)

1 ((4+6i)+(2+3i)(3+\/a)>_
(3+V61)\(2 - 30)(4 + 60) + 4(3 +V61)/

1 (4+6i+6+2\/ﬁ+9i+i3x/a)=
(3 ++61) 8+ 18+ 12 + 461

1 (10+2x/a+ 15i+i3\/6_1) _
(3 ++61) 38 + 461

1 <10 +2vV61 +i(15 + 3@))
(3 +/61) 38 + 461

5 4+ 6T ((4+6i)>
> (3++V61)) | =
1

1 5+\/ﬁ(4+6i)_
(3+v61) 2 \3+V61/

Right side:

2+3i
(3+\/_)(5+\/_)<3+\/_>

D. Kriesell
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Hilbert Space

(5+V61)(2 + 30)
1 34 V6T | =
(3 +o1) (s+«ﬁ)( . )
1 10 + 2v/61 + i(15 + 3V61)
m 15+ 8V61 + 61 =
2
1 10 + 2v/61 + i(15 + 3V61)
m 76 + 861 =
2
1 <10 +2vV61 +i(15+ 3@))
(3 +61) 38 + 461
Right side and left side are equal. Result:
The vector is eigenvector to the matrix with (real) eigenvalue.
< (4 + 60) )
(3+V61) (L. 23 5 + 61
2—3i 4
1 2
We choose the second eigenvalue A;:
5—-+v61
/ 2\/_—1 —2-3i \(a)
=0
5 — V61 b
k -2+ 3i -4
2
3—+61
—2-3i a
i (5) =0
. —3—+61 |\b
—2+4+3i —
2
(3—\/6_1 —4 — 6i )(a)=o
—4+6i —3—+61/\b
1.(3=V61)-a—(4+60)b=0 I.(-4+6)-a—(3+V61)b=0
4+ 60
0z EHED RN CERGY
(3 —+61) (—4 + 6i)

We check whether the factor with b is the same (and it is):

(4 + 60)
(3-v61)  (4+60) (-4t 6D)
(3++v61) (3-+61) (3++61)

(—4 + 61)
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~16+24i —24i—36 _ —52 _
9—-3v61+3V61—61 —52
5—v61

5

()
1

We get the eigenvectors to eigenvalue 1, =

We check whether the matrix A applied to this vector reproduces it by the factor 4,:

=(8)

()

Left side:
L 243 <(4+6i))
l
(223 )<(3 «a))=
(4 + 60) ,
(3 ()+(2;I-31) i
4+ 61
(2 —3i )(3 r)
(4 + 60) +(2+3i)(3—x/ﬁ)
B—Ve1)  (3-VeD)
(2 —30)(4 + 60) s 4(3 ++/61)
(3-Ve1)  (3-VeD)
1 ((4+6i)+(2+3i)(3—\/ﬁ)>_
(3—61) \(2 - 30)(4 + 60) + 4(3 —V61)/)
1 (4+6i+6—2x/ﬁ+9i—i3x/ﬁ)=
(3-61) 8+ 18+ 12 — 461
1 (10—2\/6_1+15i—i3xfﬁ)=
(3-+61) 38 — 461
1 <10—2\/6_1+i(15—3\/6_1)>
(3—+61) 38 — 461
Right side:
5_\/6—1<(4+6i)>
2 (3-ve61)/ | =
1
1 5—\/5(4+6i)_
(3-+v61) 2 \3-V61/
D. Kriesell page 12 of 22
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(3

1

G-ven | (s- r)(3 r> -

(3-e1)

(3-e1)

1

(—Ve1)

Right side and left side are equal. Result:

2+ 3i
(5- \/_)3 V61
2

(5—-v61)(2 +30)

V61)

10 — 2v/61 + i(15 — 3v61)

15— 8vV61 + 61
2
10 — 2v61 + i(15 — 3V61)
76 — 8V61
2
<10 —2v61 +i(15 — 3V61)
38 — 461

)

The vector

is eigenvector to the matrix

with (real) eigenvalue.

< (4 + 60) >
_ 1 24+ 3i 5—+/61
(3-ve1) (2=s 7% S
1 2
We have two eigenvectors with two different eigenvalues:
_5+\/6_1, <(4+61)> . _5—\/5_ <(4+61)>
1 =—— [\3+Ve1) :=——: (\(3 r)
1

Subspaces

The optimal case concerning eigenvector and eigenvalue: if a n X n-matrix has n eigenvectors with
different eigenvalues. The eigenvectors are spanning the whole space.

In our example the vector space is C X C and has two dimensions.

We got two eigenvectors with two different eigenvalues. We have a Hermitian matrix, the
eigenvectors should span the whole space.

Every eigenvector spans a 1D subspace. Together they span the whole space if they are linear

independent:
<(4+6i)> <(4+6i))
(3 +61) (3—61) ©a=b=0
1 1
D. Kriesell page 13 of 22
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We check linear independency by calculating the determinant of both vectors.

(4 + 60) (4 + 60)
det <(3 + x/ﬁ)) ((3 — x/ﬁ)> =
1 1

(4460 \ (6D
((3+ﬁ)> <(3—\/ﬁ)> -
(4+60)  (4+60) _
(3+v61) (3-v61)

(4+60)(3—V61)— (4+6)(3+V6l)
(3 +61)(3 —V61) -

12 — 461 + 18i — 6iv61 — (12 + 461 + 18i + 6iV61)

9—61
12 — 461 + 18i — 6iV61 — 12 — 4V61 — 18i — 6iV61 _
~52 B
—8v61 —12ivV61  2v61 + 3iV61
—52 - 13

The determinant is not equal zero, both vectors are linear independent. They span the whole 2D
space.

We check orthogonality with the dot product:

4 6) <(4+6i))
(rean)@ )| \@ - Ve )=
(4—-6i) (4+6iQ)

G+veD) G-veD) |

16+36+1_ 52+1_0
9-61 52 N

Note: switching from column to row vectors requires complex conjugation.

Result: the vectors are orthogonal.

We check the size of the first vector by remembering ||v|| = +/(v|v):

(4 — 60) (M)
)

(=6) Grod
(3+61)(3+V61)

52

——— +1=%1
70 + 6v61
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Note: the same holds for the second eigenvector.

Result: the eigenvectors are orthogonal but not orthonormal. By dividing them by their size we can
build an orthonormal basis.

Note: it is an advantage of Hermitian matrices that their eigenvectors can easily be used to build an
orthonormal basis of the whole space.

Measuring

The spin of an electron is an observable fitting well with a 2-dimensional Hilbert space. The spin itself
is a spatial 3-dimensional vector with components in x, y and z direction. This information is
condensed in a 2-dimensional vector in Hilbert space.

Pauli matrices
We have three Pauli-matrices:

=1 oiov=(] )ie=( 2

The Pauli-matrices have eigenvectors and eigenvalues:

matrix eigenvalues eigenvectors normalized
0 1 - (1 ! !
=) o D) [ 5050
o= ) - () (2) ﬁ(%)ﬁ(—lz)
=0 °) o () () (o) ()

Note: Pauli-matrices are Hermitian.
The spatial components of spin, the observables:

Sx» Sy, Sz
The operators resp. matrices:

h
Sx = EO'X; Sy = EO'y; SZ = EO'Z

A . .
Note: Sisa factor needed to be dimensionally correct.

. R R
Note: all operators have eigenvalues + 2y

Measuring the z-component of the spin
Quantum mechanics postulates that the outcome of a measurement (the observation) are the
eigenvalues of g,.

. . h h .
We will obtain the value + Zor—=o No mixture.

After the measurement, the spin orients in the direction ((1)) or ((1)) if the system previously was

undisturbed.
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Traditionally the eigenvectors are written as:

() =1z+),

1z =)

HE

The spin itself, before we measure it, has any orientation:

(a
b
Note: a, b are complex numbers.

Projection

If we repeatedly measure the undisturbed spin, we will get a series of results ((1)) and ((1)) in the

relation to a and b.
Mathematically this is done by projection.

We assume the state of the spin:
|v) =

Note: a, b are complex numbers.

)

()

The projection operator P,
1
onto (0) resp. |z +)

The projection operator P, _

onto (2) resp. |z —)

el 9

e )

The effect of the projection
operator P,, onto |v)

The effect of the projection
operator P,_ onto |v)

Py = (5 o) () =(0)

P =g 9)()

(b)

Note: the origin of P,, and P,_ follows later ...

We get the probabilities for the outcome p of a measurement:

p(z +) :1(v|(1)32+|c1l]> =
(@ b7) (o 0) (b) -
(a* b") (g) =a‘a

p(z —) =O<vlé’_|;) =
(a”b7) (0 1) (b) =
(a* b*) (2) = b*b

Note: p(z +) is ||al|?, p(z =) is||b]|%.

The sum of the probabilities p(z +) and p(z +):

pz+H)+pz-)=aa+b'h=1

. a .
Note: normalization of |[v) = (b) guarantees the statistically correct result.

D. Kriesell
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Constant phase

If we multiply |v) by a constant (time independent) phase e? we get the same probabilities:

(ei‘/’v|ei‘pv) = e~ Wel?(v|v) = (v|v)
Note: the dot product is antilinear in the first component.
Note: e!?v # v, only the probability (dot product) remains unchanged.

Projection operators in detail

We use orthonormal basis vectors written as |i). The vector space is finite with n dimensions.

We remember: a vector |v) can be written as (using the orthonormal basis ...):
lv) = Z a;|i) = ZIi)ai
i i
Note: multiplication by a (complex) number is commutative.
The components a;|i) are result of a projection of |v) onto a basis vector |i).
The coefficients a; we get by the dot-product with the basis vector (i|:
a; = (i|lv)

We rewrite the sum:

[v) = Y 1i)ilv) = -

L

Note: id is the identity matrix.

(ilv) is the dot product of a basis vector (i| with |v). (i|v) gives the coefficient a;.

zlixilv) = (Zm(u) v)

Note: we can draw out |v) of all elements of the sum.

Z|i)(i| —id

4

What we get is:

We have a sum of projection operators P; that project |v) onto the basis vector |i):
Py = [i)(i]

We can insert the identity matrix into every dot-product:

(ulv) = (ulidlv) = > uli)ilv)

i

Note: this is called “resolving the identity” and frequently used in quantum mechanics.

D. Kriesell
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By resolving the identity, we can disassemble operators A:

A=id-A-id = Zu)(ilAlj)(iI =
i

Z|i>Aij(j|

iJ

We calculate (u|A|v). We chose |u) := Y; a;|i), |v) == X; b;|i):

lAlv) = ) (ulpAyjlv) =
Lj

> vy iv) =

Z ai*Aijbj

ij

ij

Constructing projection operators

The projection operator that projects |v) onto the basis vector |i):

Py = [iNi]

We apply this to the spin example:

P =|z+)Nz+|= (é) (10) = ((1) 8)

Po=lz-z-1=()on=(3 9)

1

Note: P,, + P,_ = (0 1

Measuring the x-component of the spin
We use eigenvectors:

%(}) = x +),

0). This is the identity matrix.

a
The spin before we measure it has any orientation: (b)

Note: a, b are complex numbers.

a
Note: the vector (b) is normalized.

The projection operator P, .

ono (1)
resp. |x +):

The projection operator P,_

oo (1)
resp. [x —):

P = Ix Hx+ | = = (D=1 1) =
NEASNG:

1
50 1)

P == 1= = (1 D) =( 1) -

1 _
E(—11 11)

D. Kriesell
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The effect of the projection The effect of the projection
operator P, onto |v): operator P,_ onto |v):
1 1y _lra+by _ 1,1 —1yray _ 1/ a=-b \ _
Peilv) = 5(1 1) (b) B E(a + b) - Pe-lv) = E(—1 1 )(b) - E(—(a - b)) -
a+b a-b 1
() ()
Note: P, + P,_ = (1 O) This is the identity matrix
. x+ x_ 0 1 . .
We build the dot product of P, |v) and P,_|v):
(V|PysPr-|v) =
a* + b* -b/1
(a*+b*)(a—Db) 1
T an(5)=
a*+b")(a—b
(@+p)@=b)
4
The projection operator produces a pair of orthogonal vectors.
We get the probabilities for the outcome p of a measurement:
p(x +)1= (W|Pyylv) = p(x ) = (V|P-v) =
* Ik 1 1 a — —_
i )6)- @z 6)-
1w (a+by_ 1 ( b ) _
1 5@ (Gy)= 5@ (L6 )=
E(a*(a+b)+b*(a+b))= E(a*(a—b)—b (a—b)) =
1 * * 1
5 (@ + b)(a+b)) 5@ = b)(a=-b)

The probability of p(x +) or p(x —):
p(x+) +px—) =

1 1
E(a* + b*)(a+b) +§(a* — b*)(a—-b) =
1
E((a* + b Ya+b)+ (a*— b*)(a— b)) =
1
E(a*a +a'b+b*a+b'b+a‘a—a'b—b*a+b*b) =

1
E(a*a +b'b+a*a+b*b) =

D. Kriesell page 19 of 22




Hilbert Space

atfa+b'h=1

.. a ..
Note: Normalization of |v) = (b) guarantees the statistical correct result.

Measuring the y-component of the spin
We use eigenvectors:

%G) =y +),

1
()=

a
The spin itself, before we measure it, has any orientation: (b)

Note: a, b are complex numbers.

a
Note: the vector (b) is normalized.

The projection operator Py,

onto \/—15(3) resp. |y +):

The projection operator P, _

onto % (—11) resp. |y —):

Pyy =1y +Xy+1=
1

1) 1 .
— | )=0-0)=
V2 (11 ) V2
1 —i
E(i 1 )
Note: switching from ket to bra needs complex
conjugation.

y =ly-Xy—|=
%( )T(m_
1 .
E(—li D

Note: switching from ket to bra needs complex
conjugation.

The effect of the projection
operator P, onto|v):

The effect of the projection
operator P,_ onto |v):

1 _i 1,0
=30 00) =507

1 ; 1 :
=3 D630
iy
2 (—i%a +l ib)) -

ib
a-;l (_11)

Note:P +P 0 1

We build the dot product of P, |v) and P,_|v):

(1 0) This is the identity matrix.

<|y+y|v)

a’ +zb( e l))<a+lb( ))

(a* +ib* )(a +ib)

(10)(2) =

(a*+ib*)(a +ib)

4

1-1=0
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Hilbert Space

The projection operator produces a pair of orthogonal vectors. It projects the vector |v) onto an

eigenvector with eigenvalue A.

We get the probabilities for the outcome p of a measurement:

p(y +)1= (v|Py+|v) =
* 7% 1 —i a
(alb )E(i 11) (b) =
E(a b )(?a +lb) -
1
5 (a*(a —ib) + b*(ia + b)) =

1
E(a*a —ia*b +iab* + bb*) =

1

E(a*a + bb* + i(ab* — a*b)) =

1 i(ab*—a'b

1, %

Note: (ab® — a*b) is a pure imaginary number
— i(ab* — a*b) is a real number.

p(y —)1= (v|B-|v) =
@vz(2 D)=

1 .
7@ b)) (—ai;ribb) =

1
E(a*(a +ib) + b*(—ia + b)) =
1
E(a*a +ia*b —iab* + b*b) =

1 .
E(a*a + bb* +i(a*h — ab*))
1 i(a*h—ab*)
27" 2
Note: (a*b — ab*) is a pure imaginary number
- i(a*bh — ab®) is a real number.

Remark: please note that the probability p(y +) has an interesting shape:

2

1 i(ab*—a*b)

2

The range of the component i(ab* — a*b) extends from —1 to 1. Analog for p(y —).

We calculate the sum of probabilities:

p(y+)+ply—) =

1 1
E(a*a + bb* + i(ab* — a*b)) + E(a*a +bb* +i(a*h —ab*)) =

1
E(a*a +bb* +a*a+ bb") =

atfa+b'h=1

a

Note: Normalization of |[v) = (b) guarantees the statistical correct result.

Expectation value

If we perform a series of measurements A on an undisturbed state |v) (or parallel on a multiple of
identical states), we get an expectation value for the result:

), = ) padA

Note: this is the arithmetic average.

The probabilities p(4;) are the effect of the projection operator P;,- The projection operator P,

onto |v) results in an eigenvector with eigenvalue A;:

ziP(li)/li = Zi(v|Pﬂi|v)1i _
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Hilbert Space

D ol v)

The projection operator P, consist of eigenvectors of the operator A. The operator A4 applied to the

projection operator P;, reproduces it by multiples of eigenvalues 4;:

APAL- = Aiplli

We can rewrite:

D lupale) =) (v]ars Jo)

The sum over the projections operators results in the identity matrix:

ZPAL. =id
i

We get the expectation value:

(A), = (v|A|v)

Note: The expectation value depends on the state the operator is applicated to.

Uncertainty
The standard deviation or uncertainty:

(A4), = vV ((A - <A)v)2)v =

J(AZ = 2A(4), +(4),"), =

\/<A2>,, — 2A(A))y + (AN, %), =

Note: A(A), = (A)y%, ((A)y2)y = (A)y?

(AA)V = 1’(142)17 - (A)vz

If the vector |v) is eigenvector to the operator A with eigenvalue :

We get:

(A2), = 22 = (4),°

In this case the uncertainty is zero.

)
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