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Time-independent vs. time-dependent operators. 

Related information you may find at:  

https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Advanced_Quantum_Mechanics_(Kok

)/03%3A_Schrodinger_and_Heisenberg_Pictures 

https://ocw.mit.edu/courses/8-05-quantum-physics-ii-fall-2013/resources/mit8_05f13_chap_05/ 

Griffiths, 6.8.1 The Heisenberg Picture 

Tutorium Quantenmechanik, J.-M. Schwindt, Springer, ISBN 978-3-642-37791-4. (… written in 

German…) 

 

Hope I can help you with learning quantum mechanics. 
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Operators in the Schroedinger picture are time independent. An exception from this is the time 

dependent Hamiltonian that comes into account if we change the entire system in time, e. g. change 

the potential, apply magnetic fields. In these cases, the Hamiltonian becomes explicit time dependent. 

We must distinguish this kind of time dependency from the time dependency in the Heisenberg 

picture. 

Throughout this text we use the subscript S for states and operators in the Schroedinger picture, the 

subscript H for those in the Heisenberg picture. 

Heisenberg picture 
We have the Schroedinger time development operator 𝑈(𝑡, 𝑡0): 

|𝑣𝑠(𝑡)⟩ = 𝑈(𝑡, 𝑡0)|𝑣𝑠(𝑡0)⟩ 

We neutralize the effect of the Schroedinger time development operator by applying the transposed: 

|𝑣𝑠(𝑡0)⟩ = 𝑈†(𝑡, 𝑡0)𝑈(𝑡, 𝑡0)|𝑣𝑠(𝑡0)⟩ 

We name this: 

|𝑣𝐻⟩ = 𝑈†(𝑡, 𝑡0)𝑈(𝑡, 𝑡0)|𝑣𝑠(𝑡0)⟩ 

Note: |𝑣𝐻⟩ is time independent.  

The corresponding bra: 

⟨𝑣𝐻| = ⟨𝑣𝑠(𝑡0)|𝑈†(𝑡, 𝑡0)𝑈(𝑡, 𝑡0) 

If the states are time independent, we need time dependent operators 𝐴: 

𝐴𝐻(𝑡) ≔ 𝑈†(𝑡, 𝑡0)𝐴𝑆𝑈(𝑡, 𝑡0) 

Note: The operator 𝐴𝑆 is time independent. 

With these definitions we get that the expectation values do not change: 

⟨𝑢𝐻|𝐴𝐻(𝑡)|𝑣𝐻⟩ = ⟨𝑢𝑆(𝑡)|𝐴𝑆|𝑣𝑆(𝑡)⟩ 

Note: 𝑢𝐻 , 𝑣𝐻 , 𝐴𝑆 are time independent. 𝑢𝑆, 𝑣𝑆 , 𝐴𝐻 are time dependent. 

We check this: 

⟨𝑢𝐻|𝐴𝐻(𝑡)|𝑣𝐻⟩ = ⟨𝑢𝐻|𝑈†(𝑡, 𝑡0)𝐴𝑆𝑈(𝑡, 𝑡0)|𝑣𝐻⟩ = 

⟨𝑢𝑠(𝑡0)|𝑈†(𝑡, 𝑡0)𝑈(𝑡, 𝑡0)|𝑈†(𝑡, 𝑡0)𝐴𝑆𝑈(𝑡, 𝑡0)|𝑈†(𝑡, 𝑡0)𝑈(𝑡, 𝑡0)|𝑣𝑠(𝑡0)⟩ = 

⟨𝑢𝑠(𝑡0)𝑈†(𝑡, 𝑡0)|𝐴𝑆|𝑈(𝑡, 𝑡0)𝑣𝑠(𝑡0)⟩ = 

⟨𝑢𝑆(𝑡)|𝐴𝑆|𝑣𝑆(𝑡)⟩ 

An example might be a magnetic field and a rotating spin.  

The Schroedinger picture works with the state of the spin rotating within the 𝑥, 𝑦-plane. The spin 

changes from |𝑥 +⟩ to |𝑥 +⟩ to |𝑥 −⟩ to |𝑦 −⟩ to … 
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Heisenberg operator 
In the Heisenberg picture the state remains constant e. g. |𝑥 +⟩. The operators are changing: 

(𝑆𝑥)𝐻 ≠
ℏ

2
𝜎𝑥 

Instead 𝜎𝑥 becomes a matrix constantly changing from 𝜎𝑥 to −𝜎𝑦 to −𝜎𝑥 to 𝜎𝑦 to … 

We check this with the spin in a constant magnetic field, oriented in z-direction. 

We know the unitary time development operator: 

𝑈(𝑡, 0) = 𝑒−𝑖𝜔𝑡𝜎𝑧 

Note: 𝜔 =
𝑎𝐵𝑧

2
, 𝑎 is a positive real number representing the strength of the magnetic field. 

We expand the Pauli matrix: 

𝑈(𝑡, 0) = 𝑒−𝑖𝜔𝑡𝜎𝑧 = 𝑒
−𝑖𝜔𝑡(

1 0
0 −1

)
= (𝑒−𝑖𝜔𝑡 0

0 𝑒𝑖𝜔𝑡
) 

We need the adjoint: 

𝑈†(𝑡, 0) = 𝑒𝑖𝜔𝑡𝜎𝑧 = 𝑒
𝑖𝜔𝑡(

1 0
0 −1

)
= (𝑒𝑖𝜔𝑡 0

0 𝑒−𝑖𝜔𝑡
) 

Note: for diagonal matrices we can exchange the exponential of a matrix with the matrix of the 

exponentials.  

We know (𝑆𝑥)𝑆: 

(𝑆𝑥)𝑆 =
ℏ

2
𝜎𝑥 

Our rule to make operators time dependent: 

𝐴𝐻(𝑡) ≔ 𝑈†(𝑡, 0)𝐴𝑆𝑈(𝑡, 0) 

We transform (𝑆𝑥)𝑆 to the time dependent (𝑆𝑥)𝐻: 

(𝑆𝑥)𝐻 = 𝑈†(𝑡, 0)(𝑆𝑥)𝑆𝑈(𝑡, 0) = 

𝑈†(𝑡, 0)
ℏ

2
𝜎𝑥𝑈(𝑡, 0) = 

ℏ

2
((𝑒𝑖𝜔𝑡 0

0 𝑒−𝑖𝜔𝑡
) (

0 1
1 0

) (𝑒−𝑖𝜔𝑡 0
0 𝑒𝑖𝜔𝑡

)) = 

ℏ

2
(( 0 𝑒𝑖𝜔𝑡

𝑒−𝑖𝜔𝑡 0
) (𝑒−𝑖𝜔𝑡 0

0 𝑒𝑖𝜔𝑡
)) = 

ℏ

2
(( 0 𝑒2𝑖𝜔𝑡

𝑒−2𝑖𝜔𝑡 0
)) 

We transform (𝑆𝑦)
𝑆
 to the time dependent (𝑆𝑦)

𝐻
: 

(𝑆𝑦)
𝐻

= 𝑈†(𝑡, 0)(𝑆𝑦)
𝑆

𝑈(𝑡, 0) = 
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𝑈†(𝑡, 0)
ℏ

2
𝜎𝑦𝑈(𝑡, 0) = 

ℏ

2
((𝑒𝑖𝜔𝑡 0

0 𝑒−𝑖𝜔𝑡
) (

0 −𝑖
𝑖 0

) (𝑒−𝑖𝜔𝑡 0
0 𝑒𝑖𝜔𝑡

)) = 

ℏ

2
(( 0 𝑒𝑖𝜔𝑡+

3
2

𝜋

𝑒−𝑖𝜔𝑡+
1
2

𝜋 0
) (𝑒−𝑖𝜔𝑡 0

0 𝑒𝑖𝜔𝑡
)) = 

ℏ

2
(( 0 𝑒2𝑖𝜔𝑡+

3
2

𝜋

𝑒−2𝑖𝜔𝑡+
1
2

𝜋 0
)) 

Note: −𝑖 = 𝑒𝑖
3

2
𝜋, 𝑖 = 𝑒𝑖

1

2
𝜋 

Result: the operators in the Heisenberg picture are “rotating.” 

We take 𝜔 ≔
2∙𝜋

𝑇
 and calculate for various times 𝑡: 

For 𝑡 = 0: 

(𝑆𝑥)𝐻(𝑡 = 0) =
ℏ

2
(( 0 𝑒2𝑖

2∙𝜋
𝑇

𝑡

𝑒−2𝑖
2∙𝜋
𝑇

𝑡 0
)) = 

ℏ

2
((

0 1
1 0

)) =
ℏ

2
𝜎𝑥 = (𝑆𝑥)𝑆 

For 𝑡 =
𝑇

8
: 

(𝑆𝑥)𝐻 (𝑡 =
𝑇

4
) =

ℏ

2
(( 0 𝑒2𝑖

2∙𝜋∙𝑇
𝑇∙8

𝑒−2𝑖
2∙𝜋∙𝑇

𝑇∙8 0

)) 

ℏ

2
(( 0 𝑒𝑖

𝜋
2

𝑒−𝑖
𝜋
2 0

)) =
ℏ

2
((

0 𝑖
−𝑖 0

)) = 

−
ℏ

2
𝜎𝑦 = −(𝑆𝑦)

𝑆
 

For 𝑡 =
𝑇

4
: 

(𝑆𝑥)𝐻 (𝑡 =
𝑇

4
) =

ℏ

2
(( 0 𝑒2𝑖

2∙𝜋∙𝑇
𝑇∙4

𝑒−2𝑖
2∙𝜋∙𝑇

𝑇∙4 0
)) 

ℏ

2
(( 0 𝑒2𝑖

𝜋
2

𝑒−2𝑖
𝜋
2 0

)) =
ℏ

2
(( 0 𝑒𝑖𝜋

𝑒−𝑖𝜋 0
)) = 

ℏ

2
((

0 −1
−1 0

)) = −
ℏ

2
((

0 1
1 0

)) = 
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−
ℏ

2
𝜎𝑥 = −(𝑆𝑥)𝑆 

For 𝑡 =
3∙𝑇

8
: 

(𝑆𝑥)𝐻 (𝑡 =
𝑇

4
) =

ℏ

2
(( 0 𝑒2𝑖

2∙𝜋∙3∙𝑇
𝑇∙8

𝑒−2𝑖
2∙𝜋∙3∙𝑇

𝑇∙8 0
)) 

ℏ

2
(( 0 𝑒𝑖

3∙𝜋
2

𝑒−𝑖
3∙𝜋

2 0
)) =

ℏ

2
((

0 −𝑖
𝑖 0

)) = 

ℏ

2
𝜎𝑦 = −(𝑆𝑦)

𝑆
 

For 𝑡 =
𝑇

2
: 

(𝑆𝑥)𝐻 (𝑡 =
𝑇

2
) =

ℏ

2
(( 0 𝑒2𝑖

2∙𝜋∙𝑇
𝑇∙2

𝑒−2𝑖
2∙𝜋∙𝑇

𝑇∙2 0
)) = 

ℏ

2
(( 0 𝑒2𝑖𝜋

𝑒−2𝑖𝜋 0
)) =

ℏ

2
((

0 1
1 0

)) = 

ℏ

2
𝜎𝑥 = (𝑆𝑥)𝑆 

Please note the double angle effect. We get a full rotation in time 𝑡 =
𝑇

2
. 

Heisenberg equation 
We take the Schroedinger equation: 

𝑖ℏ
𝑑

𝑑𝑡
|𝑣𝑆(𝑡)⟩ = 𝐻(𝑡)|𝑣𝑆(𝑡)⟩ 

We use: 

|𝑣𝑆(𝑡)⟩ = 𝑈(𝑡, 𝑡0)|𝑣𝑆(𝑡0)⟩ 

We get: 

𝑖ℏ
𝑑

𝑑𝑡
|𝑣𝑆(𝑡)⟩ = 𝑖ℏ

𝑑

𝑑𝑡
(𝑈(𝑡, 𝑡0)|𝑣𝑆(𝑡0)⟩) 

Note: |𝑣𝑆(𝑡0)⟩ = 𝑐𝑜𝑛𝑠𝑡: 

𝑖ℏ
𝑑

𝑑𝑡
𝑈(𝑡, 𝑡0)|𝑣𝑆(𝑡0)⟩ = 𝐻(𝑡)𝑈(𝑡, 𝑡0)|𝑣𝑆(𝑡0)⟩ 

Note again: |𝑣𝑆(𝑡0)⟩ = 𝑐𝑜𝑛𝑠𝑡. 

We get: 

𝑖ℏ
𝑑

𝑑𝑡
𝑈(𝑡, 𝑡0) = 𝐻(𝑡)𝑈(𝑡, 𝑡0) 

This is a differential equation with initial condition 𝑈(𝑡0, 𝑡0) = 1.  
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We apply it to an arbitrary Heisenberg operator 𝐴𝐻.  

Note: We omit the factor 𝑖ℏ and add it in the end: 

𝑑

𝑑𝑡
𝐴𝐻(𝑡) =

𝑑

𝑑𝑡
(𝑈†(𝑡)𝐴𝑆𝑈(𝑡)) = 

(
𝑑

𝑑𝑡
𝑈†(𝑡)) 𝐴𝑆𝑈(𝑡) + 𝑈†(𝑡) (

𝑑

𝑑𝑡
𝐴𝑆) 𝑈(𝑡) + 𝑈†(𝑡)𝐴𝑆 (

𝑑

𝑑𝑡
𝑈(𝑡)) = 

𝐻𝑆(𝑡)𝑈†(𝑡)𝐴𝑆𝑈(𝑡) + 𝑈†(𝑡) (
𝑑

𝑑𝑡
𝐴𝑆) 𝑈(𝑡) + 𝑈†(𝑡)𝐴𝑆𝐻𝑆(𝑡)𝑈(𝑡) = 

−𝑈†(𝑡)𝐻𝑆(𝑡)𝐴𝑆𝑈(𝑡) + 𝑈†(𝑡) (
𝑑

𝑑𝑡
𝐴𝑆) 𝑈(𝑡) + 𝑈†(𝑡)𝐴𝑆𝐻𝑆(𝑡)𝑈(𝑡) = 

𝑈†(𝑡)𝐴𝑆𝐻𝑆(𝑡)𝑈(𝑡) − 𝑈†(𝑡)𝐻𝑆(𝑡)𝐴𝑆𝑈(𝑡) + 𝑈†(𝑡) (
𝑑

𝑑𝑡
𝐴𝑆) 𝑈(𝑡) =; 

Note: (
𝑑

𝑑𝑡
𝐴𝑆) might be an explicit time dependency of the Schrödinger operator due to e. g. time 

varying potentials. If there is no such dependency, this term becomes zero. 

Note: 

𝑈†(𝑡) (
𝑑

𝑑𝑡
𝐴𝑆) 𝑈(𝑡) ≔

𝜕

𝜕𝑡
𝐴𝐻 

We resolve the difference: 

𝑈†(𝑡)𝐴𝑆𝐻𝑆(𝑡)𝑈(𝑡) − 𝑈†(𝑡)𝐻𝑆(𝑡)𝐴𝑆𝑈(𝑡) = 

𝑈†(𝑡)𝐴𝑆𝑈(𝑡)𝑈†(𝑡)𝐻𝑆(𝑡)𝑈(𝑡) − 𝑈†𝐻𝑆(𝑡)𝐴𝑆𝑈(𝑡)𝑈†(𝑡)𝑈(𝑡) = 

𝐴𝐻𝐻𝐻 − 𝐻𝐻𝐴𝐻 = 

[𝐴𝐻 , 𝐻𝐻] 

Result: We get the Heisenberg equation (now with the added 𝑖ℏ): 

𝑖ℏ
𝑑

𝑑𝑡
𝐴𝐻(𝑡) = [𝐴𝐻 , 𝐻𝐻] + 𝑖ℏ

𝜕

𝜕𝑡
𝐴𝐻 

We can rewrite this: 

𝑑

𝑑𝑡
𝐴𝐻(𝑡) = −

𝑖

ℏ
[𝐴𝐻 , 𝐻𝐻] +

𝜕

𝜕𝑡
𝐴𝐻 

Ehrenfest 
Dot product and expectation values are the same whether we work with the Schroedinger or the 

Heisenberg picture: 

〈𝐴〉𝑣 = ⟨𝑣𝑆|𝐴𝑆|𝑣𝑆⟩ = ⟨𝑣𝐻|𝐴𝐻|𝑣𝐻⟩ 

We check this. The operator 𝐴 has no explicit time dependency: 𝑖ℏ
𝜕

𝜕𝑡
𝐴𝐻 = 0. 

We begin with the Heisenberg equation: 

𝑑

𝑑𝑡
〈𝐴〉𝑣 =

𝑑

𝑑𝑡
⟨𝑣𝐻|𝐴𝐻|𝑣𝐻⟩ =; 
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Note: in the Heisenberg picture the states are constant. 

𝑑

𝑑𝑡
⟨𝑣𝐻|𝐴𝐻|𝑣𝐻⟩ = ⟨𝑣𝐻|

𝑑
𝑑𝑡

𝐴𝐻|𝑣𝐻⟩ = 

−
𝑖

ℏ
⟨𝑣𝐻|[𝐴𝐻 , 𝐻𝐻]|𝑣𝐻⟩ 

Note: the expectation value is independent of the picture we choose: 

⟨𝑢𝐻|𝐴𝐻(𝑡)|𝑣𝐻⟩ = ⟨𝑢𝑆(𝑡)|𝐴𝑆|𝑣𝑆(𝑡)⟩ 

We can omit the indices 𝑆, 𝐻 and write: 

𝑑

𝑑𝑡
〈𝐴〉𝑣 = −

𝑖

ℏ
〈[𝐴, 𝐻]〉𝑣 

Note: The index 𝑣 is a reminder to the basis the representation takes place.  

Result: We got the Ehrenfest theorem: 

𝑑

𝑑𝑡
〈𝐴〉𝑣 = −

𝑖

ℏ
〈[𝐴, 𝐻]〉𝑣 

The expectation value does not change if the operator 𝐴 commutes with the Hamiltonian, its 

expectation value is conserved.  

We can make this claim stronger: 

[𝐴, 𝐻] = 0 → [𝐴𝑛, 𝐻] = 0 → [𝑓(𝐴), 𝐻] = 0 

Note: 𝑓(𝐴) can be any reasonable function of 𝐴. 

Note: this claim not proved here. 

Note: [𝐻, 𝐻] = 0, the energy of the system is conserved. 

We check the Ehrenfest theorem with the rotating spin in a magnetic field. 

We chose the Hamiltonian for a constant magnetic field in 𝑧-direction: 

𝐻 = 𝐵𝑧 (
1 0
0 −1

) 

We know the spin operator: 

𝑆𝑧 ≔
ℏ

2
(

1 0
0 −1

) 

We build the commutator: 

[𝑆𝑧, 𝐻] = 𝑆𝑧𝐻 − 𝐻𝑆𝑧 = 

ℏ

2
(

1 0
0 −1

) 𝐵𝑧 (
1 0
0 −1

) − 𝐵𝑧 (
1 0
0 −1

)
ℏ

2
(

1 0
0 −1

) = 

𝐵𝑧ℏ

2
((

1 0
0 1

) − (
1 0
0 1

)) = 0 

Result: The spin in direction 𝑧 is conserved.  
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Energy time uncertainty 
We use an operator 𝐴 and the Hamiltonian 𝐻, both without explicit time dependencies.  

The Heisenberg uncertainty relation: 

(∆𝐴)𝑣(∆𝐵)𝑣 ≥
1

2
|⟨𝑣|[𝐴, 𝐵]|𝑣⟩| 

We replace the operator 𝐵 by the Hamiltonian and remember that the uncertainty ∆𝐻 usually is 

written as ∆𝐸: 

(∆𝐴)𝑣(∆𝐸)𝑣 ≥
1

2
|⟨𝑣|[𝐴, 𝐻]|𝑣⟩| =

1

2
|〈[𝐴, 𝐻]〉𝑣| 

Note: The index 𝑣 is a reminder to the dependency of a chosen basis … 

We use the Ehrenfest theorem: 

𝑑

𝑑𝑡
〈𝐴〉𝑣 = −

𝑖

ℏ
〈[𝐴, 𝐻]〉𝑣 → −

ℏ

𝑖

𝑑

𝑑𝑡
〈𝐴〉𝑣 = 〈[𝐴, 𝐻]〉𝑣 

We get: 

(∆𝐴)𝑣(∆𝐸)𝑣 ≥
1

2
|〈[𝐴, 𝐻]〉𝑣| =

ℏ

2
|

𝑑

𝑑𝑡
〈𝐴〉𝑣| 

Note: We lost the 𝑖 by help of the absolute value.  

We examine the expression  

(∆𝐴)𝑣(∆𝐸)𝑣 ≥
ℏ

2
|

𝑑

𝑑𝑡
〈𝐴〉𝑣| 

On the right side we have up to a factor |
𝑑

𝑑𝑡
〈𝐴〉𝑣|. This is the time needed by the expectation value of 

𝐴𝑣 to change by the quantity (∆𝐴)𝑣 because (∆𝐸)𝑣 should be constant in time. 

Note: if (∆𝐸)𝑣 = 0 we have 0 ≥
ℏ

2
|

𝑑

𝑑𝑡
〈𝐴〉𝑣| and therefore 〈𝐴〉𝑣 = 𝑐𝑜𝑛𝑠𝑡. The system is in an energy 

eigenstate. 

We divide both sides of the inequality by |
𝑑

𝑑𝑡
〈𝐴〉𝑣|: 

(∆𝐴)𝑣

|
𝑑
𝑑𝑡

〈𝐴〉𝑣|
(∆𝐸)𝑣 ≥

ℏ

2
 

We define: 

(∆𝜏)𝑣 =
(∆𝐴)𝑣

|
𝑑
𝑑𝑡

〈𝐴〉𝑣|
 

Note: (∆𝜏)𝑣 has the dimension of time. 

We get the energy-time-uncertainty: 

(∆𝜏)𝑣(∆𝐸)𝑣 ≥
ℏ

2
 

Interpretation: The smaller (∆𝐸)𝑣 the bigger (∆𝜏)𝑣 and thus the smaller |
𝑑

𝑑𝑡
〈𝐴〉𝑣|.  



Commutators and Uncertainty 

D. Kriesell  page 10 of 10 

The change of the average 〈𝐴〉𝑣, |
𝑑

𝑑𝑡
〈𝐴〉𝑣| is reciprocal to the uncertainty of the energy (∆𝐸)𝑣. 

For small (∆𝐸)𝑣 we have only slow variation of 〈𝐴〉𝑣. 

The magnetic interaction between the spins actually breaks this degeneracy and produces the 

so-called “hyperfine” splitting. This is a very tiny split: 5,88 ∙ 10−6 𝑒𝑣 (compare with about 

13.6 𝑒𝑣 for the ground state energy). For a hyperfine atomic transition, the emitted photon 

carries the energy difference: 𝐸𝑦 = 5,88 ∙ 10−6 𝑒𝑣 resulting in a wavelength of 21.1 𝑐𝑚 and a 

frequency 𝜈 = 1420.405751786(30)𝑀𝐻𝑧. The eleven significant digits of this frequency 

attest to the sharpness of the emission line. 

The issue of uncertainty arises because the excited state of the hyperfine splitting has a 
lifetime 𝜏𝐻 for decay to the ground state and emission of a photon. This lifetime is extremely 
long, in fact 𝜏𝐻~ 11 million years (= 3.4 1014

 sec, recalling that a year is about 𝜋 × 107  sec, 
accurate to better than 1% ). This lifetime can be viewed as the time that takes some 
observable of the electron-proton system to change significantly (its total spin angular 
momentum, perhaps) so by the uncertainty principle it must be related to some energy 

uncertainty ∆𝐸~
ℏ

𝜏𝐻
≅ 2 × 10−30 𝑒𝑣 of the original excited state of the hydrogen atom. 
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