Tensor Product

Tensor products in quantum mechanics.
Related information you may find at:
Susskind & Friedman, Quantum Mechanics, Penguin Science, ISBN 978-0-141-97781-2

http://www.math.ucdenver.edu/~rrosterm/q-clans/node5.html

Tutorium Quantenmechanik, J.-M. Schwindt, Springer, ISBN 978-3-642-37791-4. (... written in German
..

A comprehensive discussion concerning tensors that goes far beyond our purpose you may find at

https://kconrad.math.uconn.edu/blurbs/linmultialg/tensorprod.pdf

Hope | can help you with learning quantum mechanics.
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Tensor Product

“Disclaimer”
There often is a confusion between “entanglement” and “correlation”. Maybe the following citation
helps.

“Correlations are a property of a set of measurements. Two measurement outcomes are correlated if
the associated probability distribution cannot be factorized, that is, when the outcome of one
measurement gives information about the outcome of the other measurement. The concept of
"correlations", in this sense, is not inherently quantum, although quantum mechanics can make for
correlations stronger than those allowed by classical probability theory.

On the other hand, entanglement is a property of a state, with respect to some partition on the
underlying space. A bipartite state p is said to be entangled if it cannot be written as a convex
combination of product states, that is, if it cannot be written in the form p = ¥ prpi & pE for
some py = 0,Y, Pk = 1 and states p#, pZ. The bipartite structure is usually, although not
necessarily, taken to refer to degrees of freedom of spatially separated particles. It can however refer
to any pair of degrees of freedom of a quantum system.”

glS (https.//physics.stackexchange.com/users/58382/gls), Correlation vs. entanglement for composite quantum system, URL
(version: 2020-01-09): https.//physics.stackexchange.com/q/524010

Tensor product
We have a state of phase, a Hilbert space H; of dimension d. If we combine two Hilbert spaces 3
and H, of dimension D each, we get a Hilbert space H of dimension d?:

.7'[ == }[1@}[2
Example
a11 Q12 Q13 bi1 b1z b1z
Let A and B be two 3 X 3 matrices: A :=| Q21 Qa2 Q3 |,B:=|by; by, by
a31 a32 a33 b31 b32 b33

The matrix version of the tensor product, sometimes called the Kronecker product:

a1 Q12 di3 by1 bz b3
A®B=<a21 azz a23)®(b21 bz b23)=

az; Qazz Az b3y b3y b33
bi1 b1z b3 byy b1z b3 byy bz b3
aii <b21 b, b23> aip (b21 by, b23> s <b21 by, bzs)
bsy b3y b33 bs; b3y bsz b3y b3y bs3
biy b1z b3 bi1 b1y biz bi1 b1y bi3
az1 <b21 by, b23) Qazz <b21 by b23> azs <b21 by, b23> =
bs; b3y b33 bsy b3y b33 bsy b3y b33
bi1 b1z bi3 bi1 b1z bi3 bi1 b1z bi3
as; <b21 by, b23) asz <b21 by, b23> ass <b21 by, b23>
bs; bz b33 b3y b3y b33 b3y b3y b33

D. Kriesell page 3 of 18


https://physics.stackexchange.com/q/524010

Tensor Product

ay1b11 ay1biz  aiibis agpbyy agabi; aipbiz agzbyy agzby; agzbis
A11b21 @u1baz  @11ba3 Aizbzy Ggabay  @i2baz Agzbay agzba;  izbas
A11b31 Q11b3z a11b3z  aipbzy Ggabsy aiabzz agzbzy agzbs;  aizbss
Az1b11  Gz1b1z  ap1biz aAgpbyy Gxabin  azpbiz Agzbyy Gxzbiy  ap3bis
Az1ba1  Gz1by;  ap1by3  Agpbyy  Ggoby;  Apabaz Agzbyy Agzby;  a3bas
A21b31  Gz1b3;  ap1b3z Agpbszy Ggabs;  Gzpbzz Azzbsy  axzbs;  ag3baz
az1byy  azibiz  azibiz azpbyy aszabiz  azpbiz azzbyy azsbiz  aszsbys
az1by1  az1by;  azibyz  aAzpbyy Asaby;  aspbyz aszbyy aszsby;  assbys
az1bs1  azibs; asibszz  aspbzy aspbs;  asybszz aszbzy  aszsbs;  assbss

Direct sum
We compare this with classical physics. The direct sum of two matrices A and B:

a;; iz 443 bi1 b1z by3
A®B = <a21 az2 a23) ® (bz1 by, b23) =
az1 043z 0433 b3y b3y bis
a1 a2 a3 0 0 0
(an a3 djz 0 0 0 \
azqy azp; azz O 0 0
0 0 0 by1 bz b3

Note the difference. We use V, as the vector space related to the matrix 4, Vg as the vector space
related to matrix Band V = V,®V5.

In classical physics any vector w € V can be written as direct sum of two vectors 4 € V, and ¥ € Vj:
W = udv

This establishes a principal difference between classical physics and quantum mechanics because not
all vectors of the combined space by tensor product can be expressed by vectors of the underlying
spaces. The quantum space is richer than the classical space.

Properties of the tensor product
Let 4, B, C, D be matrices and ¢, d, e, f (complex) constants, then:

(A®B)(C®D) = (AC®BD)
(A®B)T = AT®BT
(A®B)™ 1 = A" '®B~1
c(A®B) = (cAQB) = (AQcB)
(cA+dB)®(eC + fD) = ceAQC + cfAQD + deBQC + df BQD
Working with vectors 1, ¥, W and a, b being (complex) constants we get the distributive law:
U®(av + bw) = au®v + buw
Example:
W is a vector of the combined space and assembled by two basis vectors:
W = €11 ®6;; + €1,88;; — €,,08;1 — €118€;,

note: €, is the basis vector €; of space V,, €,, is the basis vector €; of space Vj etc.
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Tensor Product

We can represent w as U®v:

We check:

URV = (€11 — €12)R (€21 — €32) =

€11Q6;1 — €11Q8;; — €1,Q8;; + €1,Q¢é5;
Result:
The vector W as part of the space H; ®F, can be assembled by two vectors of space H; and H.
Counterexample:
X =6,,06; — €,8¢;

X is part of the space H; ®7{,. It cannot be represented by two vectors of space H; and H,.
We check this. Note: a, b, ¢ d are (complex) values.
We try to assemble the vector X by vectors of the underlying spaces:

X = (aé;q + bé1;)R(cé,q + déyy)
We resolve the tensor product:

X = acé;1®€,; + adé;1®¢€,, + bcé;,®é,; + bdé;,®¢e,,

We check the coefficients:

ac=1,bd = -1
ad =bc=0
From ac = 1 and bd = —1 we get that none of the factors can be zero.

From ad = bc = 0 we get that either a or d and b or ¢ must be zero.

This is a contradiction. The vector X = &,,®¢é,; — €;,®¢é,, cannot be assembled by vectors of the
underlying spaces via the tensor product.

1) and

We recall: any spin state can be represented by linear combination of basis vectors |z +) := (0

2= )

o=@ | el | =6
1 1 (0
lx =) = ﬁ(_ll) ly =) = NG (_11) |z —) = (1)

We use the Pauli matrices:

=1 o) v=( %) | = )
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Tensor Product

Measuring a spin state requires an operator:

h
S"ZEG" Syzzay S, ==o,

Tensor product of spin basis vectors
We build all possible tensor products of the basis vectors:

Tensor-Table:

?@; i |x+)1 a |x—1) . |y+>1 . Iy—% . |z +) - |z =)
X+
=00 | z0e=(Y) | sWex() | $Mes) | 500 | $0e()

2(9;2@ (e | Floeg0) gm;z(a) 2(1<1>®(é) 2<1<1>®<2>
I | 50050 | 20050 | £0on() | 200 | L0

ez

1z =)

Note: We will need this table in the end, so we name it Tensor-Table.

For the tensor product holds:

(A®B)(U®V) = Au®Bv

Note: The operator A is acting on the Hilbert space #, the operator B is acting on the Hilbert space
J,. Vector 1 is part of Hilbert space #;, vector ¥ is part of Hilbert space H,.

Note: This works for vectors w = ©i®% only. Remember that there are vectors in the combined space
that cannot be written as (U®V).
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Tensor Product

If we measure a single spin, the apparatus acts on this spin only. Accordingly, the Hermitian operator
acts on the Hilbert space H; resp. H, of that spin only. We achieve this effect by help of the tensor
product:

A, = AQid,

B, = id,®B
Note: A and B are the operators acting on the Hilbert spaces H; resp. H.
Note: id; and id, are the identity matrices in the Hilbert spaces H; resp. H,.

Note: Operators A; and B, are acting on the whole system but modify only their subsystem because
they are built with the tensor product.

With this we get:
[A4,B] =0
We check this by help of the definition of the tensor product:
(A®B)(i®v) = AU®Bv
[41, B;] = (A®id;)(id,®B)(U®V) — (id; ®B)(A®id,)(U®V) =
(A®id,) (U®BV) — (id,®B) (AUu®v) =
(Au®id,Bv) — (id; Aui®Bv) =
(AU®BV) — (AU®Bv) =0
A combination often used is:
C =A4,+B, =(A®id,) + (id;®B)

Examples for this:

In case of two spins the operator needed to measure the first spin only:
. oo
SZl == Sz®ld2 = EUZ®ld2
The operator for measuring the second spin only:
. o h
522 = ld1®SZ = ld1®§O-Z
If we want to measure the total spin in z-direction, given by the sum of the two spins:
Sz(142) = Sz1 + Sz = 5,Qid, +id,®S, =
h ) ) h
EO'Z®ld2 + ld1®§az

If both systems do not interact then the Hamiltonian of the combined system is given by the
sum of the Hamiltonians of the individual systems:
To simplify reading we use the bra-ket notation and mark by position:

Vectors in the dual space:
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Tensor Product

[uv) = [W)®|7)

(v = (||

Basis vectors are written as:

|5/} = 11)®1))
(ij] = (i|®(l

The scalar product in the combined space is defined as the product of two scalars of the individual

spaces:

(uvlxy) = (lX)v1y)

We assume the basis vectors orthonormal:

(kL) = ;56

Eigenvalues and eigenvectors of tensor products

We calculate eigenvalues and eigenvectors of
operator C built by the tensor product of two
operators, 4 acting on H, ¢, B actingon H ,,:

C:=AQ®B

We calculate eigenvalues and eigenvectors of
operator C built by the sum of two operators, A
actingon H, 4, B actingon H ,,:

We remember:

(A®B)(i®7) = Ai®BV

Eigenvalues of operator C are product of
eigenvalues of operator 4 and eigenvalues of
operator B.

Eigenvalues of operator C are sum of
eigenvalues of operator 4 and eigenvalues of
operator B.

Cluv) = (A[0)®B|V)) =
/1117@121_7) = /11/127.7@'1_7) =
A1 |uv)

We use:
Hy,, is eigenspace of H; to eigenvalue A, — Alid) = A,|1)
H;,, is eigenspace of H, to eigenvalue A, — B|V) = 4,|v)
We get: We get:

CIiw) = A|D)®id,|B) + id, [7)@B|P) =
A [D)®id, |B) + id, |[E)®A,| D) =
A1 [uv) + Az [uv) =
(A4 + A2) [uv)

In case the product A; - 4, is unique, Eigen
space to the product of eigenvalues
A = A1 - A, is the tensor product of the
eigenspace to eigenvalue 4, and eigenspace to
eigenvalue 1,:

Hy = H12,®@H3,,

In case the sum A; + 4, is unique , Eigen space
to the sum of eigenvalues A = 4 + A, is the
tensor product of the eigenspace to eigenvalue
A, and eigenspace to eigenvalue 4,:

Hy = Hia, ®Hy,,

In case the product A; - 4, is not unique, we
build the eigenspace by the direct sum of all
possible combinations:

}[l: @

/11, /12: Al . AZ = /1 (‘7{1/11 ®‘7-[2/12)

In case the sum 4; + 4, is not unique, we build
the eigenspace by the direct sum of all possible
combinations:

.7‘[1: @

AApii+A, =2 (7{1’11&7{2/12)

D. Kriesell
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Tensor Product

Example two spins:
The operator C = 0,&a, has eigenvalues:
{11 _1}
Any vector of the combined system
|Wy) = alz;zy) + b|z_z_)
is eigenvector to eigenvalue +1.
Any vector of the combined system
W_) == a|zyz_) + b|z_z})
is eigenvector to eigenvalue —1.
Note: W,, W_ are vectors of the combined
space.
Note: a, b are (complex) numbers.
We can combine eigenvalue 1:
Ah=1D-A=1)
A =-1)-(A;=-1)
Analog, we combine eigenvalue —1:
L =1-A=-1)
AL =-1D-A=1

Example two spins:
The operator C = 0,Qid, + id,®ad, has
eigenvalues:

{+2,0,—2}

Eigenvalues 42 and —2 are unique.

Eigenvalue 0 can be built by
=D+ @A =-1)
AL=-D+A=1)

Any vector of the combined system

[Wo) = alzxzZ) + b|z_zy)

is eigenvector to eigenvalue 0.

We get eigenspaces:

Hir = (7'[1,+1®~7'[2,+1)@(7{1,—1®~7{2,—1)

Ho1= (7'[1,+1®~7'[2,—1)@(7{1,—1®~7{2,+1)
H,y +1®H; 11 is a 1-D vector space built by
|z z5).

Hy _1®H;, 1 is a 1-D vector space built by
|z_z_).

Eigenspace H, 4 is a 2-D vector space, the
direct sum:

Hip = (7{1,+1®7{2,+1)@(7{1,—1®7{2,—1)
Any vector in this space can be written as the
sum of two independent vectors:

alzyzy) +blz_z_)

The same holds for H_;.

We get eigenspaces:
Hiz = (7'[1,1®~7'[2,1)
H = (7'[1,—1®7'[2,—1)
H,, and H_, are 1-D vector spaces built by
|Z+23) resp. |2-2_)

Eigenspace H, is a 2-D vector space, the direct
sum:

Ho = (-7'[1,+1®7'[2,—1)@(7'[1,—1®7{2,+1)
Any vector in this space can be written as the
sum of two independent vectors:

alzyz_) + blz_z;)

Correlation in tensor product states
Example

We work with a two-spin-system and the state |w):

/1 O\ 1

W)= =z + ) == | ]+ O] |= 5|
% =7 |zyzy) + |z_z_ —\/7\ 0 0 /_\/E 0
0 1 1

We can choose the basis and express the state |W) with the x-basis and the y-basis too:

) = -

V2

(1) + [X2x2))

S N ——
|w) -—ﬁ(|y+y_>+ly-y+>)

D. Kriesell
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1 1
11 1( _
Bl et P (S N (O
v2l2i1 ] 2\ -1
1 1
1
11fo
V210
1

Note: the state |[W) cannot be achieved by%(|y+y+) + |y=y2)):

1_\1

[
ﬁ'\z P

+
2

1

—1
—i
-1

/ V2

1

0

0
-1

For independent systems we calculate the probabilities for spin-up resp. spin-down by help of the
projection operators in the z;_ and z_ system:

— o or

— o oRr

Prz, = (12,2, N®id; = (((1)) a 0)) ®id, = (5 0)®(;
Pyz, = d1®(z4 {24 ) = id1®<(é) (1 0)> = (é 2) ® ((1)
Pr,_ = (12-)z-D®id, = ((2) © 1)) ®id, = () V)& (;
Py = idi®(|z-)z-) = id1®(((1)) © 1)> -5 e}
With this we get the expectation values with the vector |W) = %
(W|Pyz, [w) =
1 0 0 0
1 010 01
5(1001) 000 0]v3
0 0 0 0
1 0 0 0\ /1
1 010 o0l\[o
200D 5 0 oflo
0 0 0 0/ \1

OO0 OO0 OOORr OOoOOoORr
SO RO OO0 OOoOOOo ook Oo
SO OO OFrRPRrOO0C OFrRrROO OO OoOO0o

R OO QO RPRPOOO OO0OOCOC OO OoCo

D. Kriesell
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1
-(1001
S(100D)

S O O R

The other expectation values are the same:

1
(W|Prz, [w) = (w|Poz, [w) = (W|Py;_|w) = (w|Pz,_|w) =5
The expectation values, the probabilities for spin-up and spin-down are 50%.

Note: The probabilities for the result of a measurement in system 1 are not independent of the result
of a measurement in system 2:

(Wlplz_PZZ+|W> =

0 00 ON\/1L O O O 1
1(1001)0000 000 o0|1fo0])_
V2 001 0/Jl0 0 1 0/yzl\0
000 1/\0 0 0 O 1
0 0 0 0\ /1
1 0 00 ol\[o])_
5(1001)0010 0]~
0 0 0 0/\1
0
110010—0
2( )0_
0

Note: the order of the projection operators is irrelevant. Both are acting on different systems and thus
commute.

Conclusion:
If we measure “spin-up” in system 2 then we know that the spin in system 1 is up too.
If we measure “spin-down” in system 2 then we know that the spin in system 1 is down too.

We can express the state |w) in the x-basis and the y-basis. From this we can conclude that the
measurement of the spin in x-direction and y-direction is not independent too.

We check the x-basis:
<W|P1X+P2x—|w) =

We need the operators:

P, = (2 ), )®id; = %((}) ¢ 1)) @i, =>(1 He(! 9)=3

Por, = ()00, = 03 (D) =33 Dot 1)-3

corRr OoOrRroR
coRrRRr RORO
R P OO RORO

PP OO Ok O
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Pir_ = (Ix-)x-N®id, =%<(_11) (1—1)>®id2 -2(4 He 9
0 -1 0

1

0

:} 0 0 -1
2| -1 1 0
0O -1 0 1
. 11 (1 O\ o1lr1 -1
Py = id 1 ®(|x_Wx_|) = ld1®§<(_1) (1- 1)) - (0 1) ®§(—1 1 )
1 -1 O 0
:1 -1 1 0 0
21 0 0 1 -1
0 o -1 1
We calculate:
<W|P1x+P2x |W) =
1 01 O 1 -1 O 0 1
1 1 1
Laoopifo 10 1)lf-1 1 0 o)Llio)_
2 210 1 0J2l 0 o 1 -1]ylo0
01 0 1 0 0 -1 1 1
1 -1 1 -1 1
-1 1 -1 1 01 _
-1 1 -1 1 1
0
Lioon(9)=0
500D =
0
Conclusion

The spin in x-direction has the same behavior as the spin in z-direction. Measurement of the spin in x-
direction in system 1 will fix the spin in system 2 parallel.

The measurement of the spin in y-direction shows antiparallel behavior.
We check the y-basis:
<W|P1y+P2y_|W) =

We need the operators. We remember that switching from bra to ket needs complex conjugation:

1 0 i 0
_ (1IN Yoy 1 iyl 0y_1[0 1 0 i
Pm—(|y+><y+|>®ld2-<(_i)<1z))®ld2—5(_i e D=312 o 1 ¢
0 —i 0 1

1 i 0 0

. . 1 . 1 O\ 1l71 iy_1f-i 1 0 0
PZY+:‘d1®(|y+)<y+|)=ld1®((—i)(1‘)>=(o D@7 V=300 o 1
0 0 —i 1
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1 0 —i O
_ (1 . N 5 e 1 0y_1{0o 1 0o —i
Ply_—(|y_><y_|)®ld2_((i)(1 l)>®ld2—2(i oG D=3 0 1 %
0 i 0 1
1 —-i 0 0
iy . 1(n1 Y /1 oyl -y _Ifi 1 0 o0
0 0 i 1
We do this in depth and calculate the expectation value of all possible combinations:
(W|P1y+P2y+|W) (W|P1y+P2y_|W>
(w|Pry_Pay, |w) (W|Pry_Pay_|w)
(W|P1y+P2y+|W> = <W|P1y+P2y-|W) =
. . 1 0 i 0 . 1 i 0 0 . 1 . . 1 0 i 0 . 1 -i 0 0 . 1
0 1 0 i i 1 0 0 0 0 1 0 i i 1.0 0 0
5(1001)E<—i 0 1 0)5(0 0 1 i>5<0 5(10015(—1' 0 1 0>E<0 0 1 —i>ﬁ<o
0 —i 0 1 0 0 —i 1 1 0 —i 0 1/ \o 0 i 1 1
1 i i -1 1 1 —i i 1 1
1 -i 1 1 il}\[o 1 i 1 -1 i |\fo
g00DL 7 1 o7 g0ODL L 5 1 Siflo])7
-1 —i —i 1 1 —-i i 1 1
0 2
Loon(9)=o Loon| 2 |21
8 0/ 8 —2i] 8 2
0 2
(W|P1y-P2y+|W> = (W|P1y_Pyy_|w) =
. 110—1‘0111'0011 . 110—1‘011—10011
01 0 —i|\lf-i 1 0 o0 0 01 0 —i i 1.0 0 0
5(1001)E<i 0 1 0)5(0 0 1 i>ﬁ<0 ﬁ(lool)i<i 0 1 0>E<0 0 1 —i>ﬁ<o
0 i 0 1 0 0 —i 1 1 0 i 0 1 00 i 1 1
1 i —-i 1 1 1 —-i —-i -1\ /1
1 —-i 1 -1 —il[o i 1 1 —=illo
g(oonl - 1 i lo]T g(00Dl 1 1 i lo]T
1 A | 1 -1 i 1 1
2 0
1 —2i 4 1 1 0
—-(1001 — == —(1o001 =0
8( ) 2i 8 2 8( ) 0
2 0
Conclusion

Measurement of the spin in y-direction in system 1 will fix the spin in system 2 antiparallel. The
expectation value of <W|P1y+P2y_ |w) and <W|P1y_P2y+ |w) is 50% each but the expectation values of

<W|P1y+P2y+|W) and <W|P1y_P2y_|W) are zero.

D. Kriesell
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Note: The systems are correlated.

Statistical correlation

The conditional probability P(A|B) describes the probability for an event A occurring, given that
another event B has already occurred:

P(ANB)

P(A|B) = )

Note: P(A N B) is the probability that both A and B are occurring. P(B) is the probability that B

OocCcurs.

We can express the conclusion above by help of conditional probability.

We write P22+(Z1 +) as the probability for measuring spin-up in System 1. With the conditional
probability we get that the probability to measure spin-up in system 2, given that we measured spin-

up in system 1:

P(z,z,) _

Py, (21 +) = )

—_

<W|P12+PZZ+|W)

<W|P22+|W) 1

The conditional probability that we measure spin-up in system 2, given that we measured spin-up in

system 1, is one or 100%.

Time development of a correlated system
Given a systemis at time t = 0 in a tensor product state |[W) = |u)®|v). Given further we have a time

independent Hamiltonian H.

We examine two cases the system remaining in a non-superposition state.

Case 1: |W) is an eigenstate of the Hamiltonian H:

Case 2: The Hamiltonian is the sum of the Hamiltonians of the subsystems:

WD) = e R (B[P

H = H11 + H22 = H1®ld2 + ld1®H2

In this case H;; and H,, are commuting and we get:

W(0) = e [W(0)) =

e h T w(0)=

( _iHllt _inz
e

Hte ) [ (0) =

.H H.
—i 11t 224 _,

(e_i%t®id2) (id1®e_i%t) ([D)Q|5)) =

D. Kriesell
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Interaction
We choose a system of two spins.

The Energy of a two-spin system:
E=a-s{'5;, =
a(sleZx + SlySZy + 512522)
Note: a is a (complex) number.
The Hamiltonian:

ah?
H= e (0x®0x +0,Q0, + JZ®JZ) =;

We need the tensor products of the Pauli matrices:

a®b Oy ay o,
Oy 0 0 01 0 0 0 —i 0 0 1 O
0 01 O0 0 0 i O 0 0 0 -1
01 0O 0 —i 0 O 1 0 0 O
1 0 0 O i 0 0 O 0 -1 0 O
ay 00 0 —i 0 0 0 -1 0 0 —-i O
0 0 —i O 0 01 O 0 0 0 1
0 i 0 O 0 1 .0 0 i 0 0 O
i 0 0 O -1 0 0 O 0 —-i 0 O
0, 01 0 O 0 —i 0 O 1 0 0 0
1 0 0 O i 0 0 O 0 -1 0 O
0 0 0 -1 0 0 0 i 0 0 -1 0
0 0 -1 O 0 0 —-i O 0 0 0 1

Note: all products are unique.

The Hamiltonian becomes:

ah?
H = e (0x®ax + ay®ay + O'Z®O'Z) =
X 0 0 0 1 0 0 0 -1 1 0 0 O
an’tfo o 10}, (0 01 0) [0 -1 0 Off_
4 01 0 O 0 1 0 O 0 0 -1 0
1 0 0 O -1 0 0 O 0 O 0 1
5 1 0 0 O
ah”fo -1 2 0
410 2 -1 0
0 O 0 1
We calculate the eigenvalues:
1-4 0 0 0
0 -1-2 2 0 _
det| 2 -1-2 o0 |~
0 0 0 1-1
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Tensor Product

A-D((-1-D(-1-DA-1)—-2-21-21) =
Q- ((-1-D(-1-1)—-4)=
1-D¥((-1-D*-49 =

1-1)%(%*+21-3) =;
Note:12+21—-3=A—-1)(1+3)
Note: (1 — 1)? = (1 — 1)?
We get:

A-DA-1D)A-1)A1+3)

We get eigenvalues A; = 1and 1, = —3.
Eigenvalue A, is threefold degenerate, eigenvalue 4, is straight.
The eigenspace to eigenvalue 1 has 3 dimensions, the eigenspace to eigenvalue 2 has 1 dimension.

The eigenvalues of the Hamiltonian:

E_ah2
17 4
_ 3ak?
27 4
Eigen space to eigenvalue 1:
0 O 0 0\ sa 0
0 -2 2 0}\[b _(0
0 2 -2 0 o 0
0 O 0 0/ M 0
—2b+2c=0
2b—2c=0
We get:
b=c

This is a 3-D Eigen space. A possible orthonormal basis for this:

1 0 0
0 0 1
o)’fo/'\1
0 1 0

We refer to the tensor product table above and identify the basis vectors:

= |z3zy) = |e7)

SO O O R
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Tensor Product

0
O P— —
o | =172 = 1e)
1
0
1 1 _
1= E(|Z+Z—> +1z-zy)) == |e3)
0
Eigen space to eigenvalue —3:
4 0 0 0\ sa 0
0 2 2 0}\[b)_[0O
0 2 2 0 c|] \o0
0 0 0 4/ \d 0
4a=0->a=0

2b+2c=0->c=-b
2b+2c=0->c=-b
4d=0->d=0

We get:

This is a 1-D Eigen space. We refer to the tensor product table above and identify the basis vector as
the combination:

0
1 )1_ L 0 .
4 =R Em - = )
0

Superposition by interaction
We use our two-spin-system:

ah?
H= v (ax®ax +0,&Q0, + az®az)
We can describe every state in this system by four basis vectors:

le1), le2), |e3), lex)

At time t = 0 from the tensor product space we use the state |[wW(0)):

W(0)) = [7:2) = %Ue_z)) e

3ah?
2% of the Hamiltonian we get:

2
By using the eigenvalues E; = % and E;, = —

- 1 . 1 h —3ahZ
w(t) = ﬁ(lez) + les) = \/7( Iy + e |€4)>
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Tensor Product

To simplify writing we use:

We rewrite:
= 1 iw itz iw,t 15>
[w(t)) :_\/E(e 1le;) + e'“2 |e4))

We can factor out the exponentials if:

eiwlt — eiwzt

eiwlt—iwzt =1
lwit — iwyt = 2nm
Note: n € Z
t(w, —wy) =2nm

2nm
t=——
w1 — Wy

For these times t the system is the state |z, z_).
With the basis vectors |e;) and |e;) we can build another state of the tensor product space:
1
V2

1z-z7) = =(le2) — les)

For this we need:
plw1t — _giwyt
plwit—iwpt — _q
iw it —iwyt =2n+ Dm
Note: n € Z
t(w, —wy) =0Q2n+
. 2n+Dr

W1 — Wy
For these times t the system is the state |z_z;).

For all other times the system is in a superposition state:

W) = a(®)|zyz2) + b()|z2Z)

Note: a and b are (complex) constants.
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