This paper deals with commutators, using functions of operators. It is based on "Commutation relations for functions of operators", Mark K. Transtrum and Jean-Francois S. Van Huele.

The original paper can be found at:

https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1371&context=facpub

Hope I can help you with learning quantum mechanics.

Symbol	Name	Effect
â	Position operator	Multiplication by x
	The position operator can be expressed in terms of lowering operator \hat{a} and raising operator \hat{a}^{\dagger} :	$\hat{x} = \sqrt{rac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^{\dagger})$
$\hat{\chi}^2$	Position operator squared	Multiplication by x^2
\hat{x}^n	Position operator to <i>n</i> -th power	Multiplication by x^n
ĝ	Momentum operator	$-i\hbar \frac{\partial}{\partial x}$
	The momentum operator can be expressed in terms of lowering operator \hat{a} and raising operator \hat{a}^{\dagger} :	$\hat{p} = \sqrt{\frac{m\omega\hbar}{2}}(\hat{a}^{\dagger} - \hat{a})$
\hat{p}^2	Momentum operator squared	$-\hbar^2 \frac{\partial^2}{\partial x^2}$
\hat{p}^n	Momentum operator to <i>n</i> -th power	Note: $(-i)^{n}\hbar^{n}\frac{\partial^{2}}{\partial x^{2}}$ $(-i)^{1} = -i, (-i)^{2} = -1$ $(-i)^{3} = i, (-i)^{4} = +1$ $(-i)^{5} = -i, \dots$
$\hat{T} \coloneqq \frac{\hat{p}^2}{2m}$	Kinetic energy	$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial r^2}$
$\hat{V}(x)$	Potential energy	Multiplication by $V(x)$
Ĥ	Hamiltonian, total energy, kinetic plus potential energy	$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V(x)$
â	Lowering operator	Reduces the <i>n</i> -th state wave function of the harmonic oscillator by one: $\hat{a}\psi_n = \sqrt{n} \psi_{n-1}$
	The lowering operator can be expressed in terms of \hat{x} and \hat{p} :	$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + i \frac{1}{m\omega} \hat{p} \right)$
â†	Raising operator	Increments the <i>n</i> -th state wave function of the harmonic oscillator by one: $\hat{a}^{\dagger}\psi_n = \sqrt{n+1} \psi_{n+1}$
	The raising operator can be expressed in terms of \hat{x} and \hat{p} :	$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - i \frac{1}{m\omega} \hat{p} \right)$
Ñ	Number operator: $\widehat{N} = \widehat{a}^{\dagger} \widehat{a}$	Gives back the <i>n</i> -th state wave function of the harmonic oscillator multiplied by <i>n</i> : $\widehat{N}\psi_n = n \psi_n$

List of often used operators:

Note: The ground state wave function of the harmonic oscillator:

$$\psi_0 = N_0 e^{-\frac{m\omega x^2}{2\hbar}}$$

Note: N_0 , N_1 , N_2 , ... are normalizing constants.

Commuting Operators describe quantities that can simultaneously be measured exactly.

Operators that do not commute describe quantities that cannot be measured simultaneously exact.

In one-dimensional problems the position operator \hat{x} and the momentum operator \hat{p} are an example.

We have the commutation relation:

$$[\hat{x}, \hat{p}_x] = (\hat{x}\hat{p}_x - \hat{p}_x\hat{x}) = i\hbar$$

The position operator \hat{x} is realized by multiplying with x, the momentum operator \hat{p}_x by applying the partial derivation $-i\hbar \frac{\partial}{\partial x}$.

For 3-dimensional spatial systems the commutation relations are generalized to:

$$\left[\hat{x}_{i},\hat{p}_{j}\right]=\delta_{ij}i\hbar$$

Note: δ_{ij} is the Kronecker delta.

Independent dimensions are simultaneously measurable because $\delta_{ij} = 0$ for $i \neq j$.

If we do not have the plain operators \hat{x} and \hat{p} , but reasonable functions of them, then the commutators change.

If we have $[\hat{x}, \hat{p}] = i\hbar$, then we get:

$$[\hat{x}, f(\hat{p})] = i\hbar \frac{df(\hat{p})}{d\hat{p}}$$
$$[\hat{p}, f(\hat{x})] = -i\hbar \frac{df(\hat{x})}{d\hat{x}}$$

In general:

If:

Then:

$$[\hat{x}_1, f(\hat{x}_2)] = c \frac{df(\hat{x}_2)}{d\hat{x}_2}$$

 $[\hat{x}_1, \hat{x}_2] = c$

Note: *c* is a constant.

Note: $f(\hat{x}_2)$ must be an analytic function that allows Taylor expansion, so it must be infinitely differentiable.

Examples with lowering and raising operators.

$$\left[\hat{a}, \hat{a}^{\dagger}\right] = \hat{1}$$

Note: $\hat{1}$ often written as 1 is the unit operator.

$$[\widehat{N}, \widehat{a}] = -\widehat{a}$$
$$[\widehat{N}, \widehat{a}^{\dagger}] = \widehat{a}^{\dagger}$$
$$[\widehat{a}, (\widehat{a}^{\dagger})^{k}] = k(\widehat{a}^{\dagger})^{k-1}$$
$$[\widehat{a}^{\dagger}, (\widehat{a})^{k}] = -k(\widehat{a})^{k-1}$$

$$\begin{bmatrix} \widehat{N}, (\widehat{a})^k \end{bmatrix} = -k(\widehat{a})^k$$
$$\begin{bmatrix} \widehat{N}, (\widehat{a}^{\dagger})^k \end{bmatrix} = k(\widehat{a}^{\dagger})^k$$

Linear example

We shift the operator \hat{x}_2 by a linear function:

$$f(\hat{x}_2) = a \cdot \hat{x}_2 + \hat{b}$$

Note: a is a real number, \hat{b} an appropriate operator.

By assumption $[\hat{x}_1, \hat{x}_2] = c$ we get:

$$[\hat{x}_1, f(\hat{x}_2)] = c \frac{df(\hat{x}_2)}{d\hat{x}_2} = c \cdot a$$

Power example

We shift the second operator to its second power:

$$f(\hat{x}_2) = (\hat{x}_2)^2 = \hat{x}_2 \cdot \hat{x}_2$$

By assumption $[\hat{x}_1, \hat{x}_2] = c$ we get:

$$[\hat{x}_1, f(\hat{x}_2)] = c \cdot \frac{df(\hat{x}_2)}{d\hat{x}_2} = c \cdot \frac{d}{d\hat{x}_2} (\hat{x}_2)^2 = c \cdot 2 \cdot \hat{x}_2$$

The general case $[f(\hat{x}_1), g(\hat{x}_2)]$ leads to complex results – please look at the original paper if you need to deal with.

Mixed example

By assumption $[\hat{x}_1, \hat{x}_2] = c$ we get:

$$[(\hat{x}_1)^2, f(\hat{x}_2)] = 2 \cdot c \cdot \hat{x}_1 \frac{df(\hat{x}_2)}{d\hat{x}_2} - c^2 \cdot \frac{d^2 f(\hat{x}_2)}{d\hat{x}_2^2}$$

This can be generalized to any power of (\hat{x}_1) :

$$[(\hat{x}_1)^n, f(\hat{x}_2)] = \sum_{k=1}^n (-1)^{k+1} \cdot \binom{n}{k} \cdot c^k \cdot \hat{x}_1^{n-k} \cdot \frac{d^k f(\hat{x}_2)}{d\hat{x}_2^k}$$