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This paper deals with commutators, using functions of operators. It is based on “Commutation 

relations for functions of operators”, Mark K. Transtrum and Jean-Francois S. Van Huele.  

The original paper can be found at: 

https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1371&context=facpub  

 

Hope I can help you with learning quantum mechanics. 

  

https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1371&context=facpub
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List of often used operators: 

𝑆𝑦𝑚𝑏𝑜𝑙 Name Effect 

𝑥 Position operator Multiplication by 𝑥 

 The position operator can be 
expressed in terms of lowering 

operator �̂� and raising operator �̂�†: 
𝑥 = √

ℏ

2𝑚𝜔
(�̂� + �̂�†) 

𝑥2 Position operator squared Multiplication by 𝑥2 

𝑥𝑛 Position operator to 𝑛-th power Multiplication by 𝑥𝑛 

�̂� Momentum operator 
−𝑖ℏ

𝜕

𝜕𝑥
 

 The momentum operator can be 
expressed in terms of lowering 

operator �̂� and raising operator �̂�†: 
�̂� = √

𝑚𝜔ℏ

2
(�̂�† − �̂�) 

�̂�2 Momentum operator squared 
−ℏ2

𝜕2

𝜕𝑥2
 

�̂�𝑛 Momentum operator to 𝑛-th power 
(−𝑖)𝑛ℏ𝑛

𝜕2

𝜕𝑥2
 

Note:  
(−𝑖)1 = −𝑖, (−𝑖)2 = −1 
(−𝑖)3 = 𝑖, (−𝑖)4 = +1 

(−𝑖)5 = −𝑖, … 
 

�̂� ≔
�̂�2

2𝑚
 

Kinetic energy 
−

ℏ2

2𝑚

𝜕2

𝜕𝑥2
 

�̂�(𝑥) Potential energy Multiplication by 𝑉(𝑥) 
 

�̂� Hamiltonian, total energy, kinetic plus 
potential energy −

ℏ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥) 

�̂� Lowering operator Reduces the 𝑛-th state wave function of the 
harmonic oscillator by one: 

�̂�𝜓𝑛 = √𝑛 𝜓𝑛−1 
 The lowering operator can be 

expressed in terms of 𝑥 and �̂�: �̂� = √
𝑚𝜔

2ℏ
(𝑥 + 𝑖

1

𝑚𝜔
�̂�) 

�̂�† Raising operator Increments the 𝑛-th state wave function of 
the harmonic oscillator by one: 

�̂�†𝜓𝑛 = √𝑛 + 1 𝜓𝑛+1 
 The raising operator can be expressed 

in terms of 𝑥 and �̂�: �̂� = √
𝑚𝜔

2ℏ
(𝑥 − 𝑖

1

𝑚𝜔
�̂�) 

�̂� Number operator: 

�̂� = �̂�†�̂� 

Gives back the 𝑛-th state wave function of 
the harmonic oscillator multiplied by 𝑛: 

�̂�𝜓𝑛 = 𝑛 𝜓𝑛 
Note: The ground state wave function of the harmonic oscillator: 

𝜓0 = 𝑁0𝑒−
𝑚𝜔𝑥2

2ℏ  

Note: 𝑁0, 𝑁1, 𝑁2, … are normalizing constants. 

Commuting Operators describe quantities that can simultaneously be measured exactly.  

Operators that do not commute describe quantities that cannot be measured simultaneously exact. 
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In one-dimensional problems the position operator 𝑥 and the momentum operator �̂� are an 

example. 

We have the commutation relation: 

[𝑥, �̂�𝑥] = (𝑥�̂�𝑥 − �̂�𝑥�̂�) = 𝑖ℏ 

The position operator 𝑥 is realized by multiplying with 𝑥, the  momentum operator �̂�𝑥  by applying 

the partial derivation −𝑖ℏ
𝜕

𝜕𝑥
. 

For 3-dimensional spatial systems the commutation relations are generalized to: 

[𝑥𝑖, �̂�𝑗] = 𝛿𝑖𝑗𝑖ℏ 

Note: 𝛿𝑖𝑗  is the Kronecker delta. 

Independent dimensions are simultaneously measurable because 𝛿𝑖𝑗 = 0 for 𝑖 ≠ 𝑗. 

If we do not have the plain operators 𝑥 and �̂�, but reasonable functions of them, then the 

commutators change.  

If we have [𝑥, �̂�] = 𝑖ℏ, then we get: 

[𝑥, 𝑓(�̂�)] = 𝑖ℏ
𝑑𝑓(�̂�)

𝑑�̂�
 

[�̂�, 𝑓(𝑥)] = −𝑖ℏ
𝑑𝑓(𝑥)

𝑑𝑥
 

In general: 

If: 

[𝑥1, 𝑥2] = 𝑐 

Then: 

[𝑥1, 𝑓(𝑥2)] = 𝑐
𝑑𝑓(𝑥2)

𝑑𝑥2
 

Note: 𝑐 is a constant. 

Note: 𝑓(𝑥2) must be an analytic function that allows Taylor expansion, so it must be infinitely 

differentiable. 

Examples with lowering and raising operators. 

[�̂�, �̂�†] = 1̂ 

Note: 1̂ often written as 1 is the unit operator. 

[�̂�, �̂�] = −�̂� 

[�̂�, �̂�†] = �̂�† 

[�̂�, (�̂�†)
𝑘

] = 𝑘(�̂�†)
𝑘−1

 

[�̂�†, (�̂�)𝑘] = −𝑘(�̂�)𝑘−1 



Commutation Relations for Functions of Operators 

 

D. Kriesell  page 4 of 4 

[�̂�, (�̂�)𝑘] = −𝑘(�̂�)𝑘  

[�̂�, (�̂�†)
𝑘

] = 𝑘(�̂�†)
𝑘

 

Linear example 

We shift the operator 𝑥2 by a linear function: 

𝑓(𝑥2) = 𝑎 ∙ 𝑥2 + �̂� 

Note: 𝑎 is a real number, �̂� an appropriate operator.  

By assumption [𝑥1, 𝑥2] = 𝑐 we get: 

[𝑥1, 𝑓(𝑥2)] = 𝑐
𝑑𝑓(𝑥2)

𝑑𝑥2
= 𝑐 ∙ 𝑎 

Power example 

We shift the second operator to its second power: 

𝑓(𝑥2) = (𝑥2)2 = 𝑥2 ∙ 𝑥2 

 

 

By assumption [𝑥1, 𝑥2] = 𝑐 we get: 

[𝑥1, 𝑓(𝑥2)] = 𝑐 ∙
𝑑𝑓(𝑥2)

𝑑𝑥2
= 𝑐 ∙

𝑑

𝑑𝑥2

(𝑥2)2 = 𝑐 ∙ 2 ∙ 𝑥2 

The general case [𝑓(𝑥1), 𝑔(𝑥2)] leads to complex results – please look at the original paper if you 

need to deal with. 

Mixed example 

By assumption [𝑥1, 𝑥2] = 𝑐 we get: 

[(𝑥1)2, 𝑓(𝑥2)] = 2 ∙ 𝑐 ∙ 𝑥1

𝑑𝑓(𝑥2)

𝑑𝑥2
− 𝑐2 ∙

𝑑2𝑓(𝑥2)

𝑑𝑥2
2  

This can be generalized to any power of (𝑥1): 

[(𝑥1)𝑛, 𝑓(𝑥2)] = ∑(−1)𝑘+1 ∙ (
𝑛
𝑘

) ∙ 𝑐𝑘 ∙ 𝑥1
𝑛−𝑘 ∙

𝑑𝑘𝑓(𝑥2)

𝑑𝑥2
𝑘

𝑛

𝑘=1

 

 


