This paper deals with commutators, using functions of operators. It is based on "Commutation relations for functions of operators", Mark K. Transtrum and Jean-Francois S. Van Huele.

The original paper can be found at:
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1371\&context=facpub

Hope I can help you with learning quantum mechanics.

List of often used operators:

| Symbol | Name | Effect |
| :---: | :---: | :---: |
| $\hat{x}$ | Position operator | Multiplication by $x$ |
|  | The position operator can be expressed in terms of lowering operator $\hat{a}$ and raising operator $\hat{a}^{\dagger}$ : | $\hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}+\hat{a}^{\dagger}\right)$ |
| $\hat{x}^{2}$ | Position operator squared | Multiplication by $x^{2}$ |
| $\hat{x}^{n}$ | Position operator to $n$-th power | Multiplication by $x^{n}$ |
| $\hat{p}$ | Momentum operator | $-i \hbar \frac{\partial}{\partial x}$ |
|  | The momentum operator can be expressed in terms of lowering operator $\hat{a}$ and raising operator $\hat{a}^{\dagger}$ : | $\hat{p}=\sqrt{\frac{m \omega \hbar}{2}}\left(\hat{a}^{\dagger}-\hat{a}\right)$ |
| $\hat{p}^{2}$ | Momentum operator squared | $-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}$ |
| $\hat{p}^{n}$ | Momentum operator to $n$-th power | $(-i)^{n} \hbar^{n} \frac{\partial^{2}}{\partial x^{2}}$ <br> Note: $\begin{gathered} (-i)^{1}=-i,(-i)^{2}=-1 \\ (-i)^{3}=i,(-i)^{4}=+1 \\ (-i)^{5}=-i, \ldots \end{gathered}$ |
| $\hat{T}:=\frac{\hat{p}^{2}}{2 m}$ | Kinetic energy | $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}$ |
| $\widehat{V}(x)$ | Potential energy | Multiplication by $V(x)$ |
| $\widehat{H}$ | Hamiltonian, total energy, kinetic plus potential energy | $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)$ |
| $\hat{a}$ | Lowering operator | Reduces the $n$-th state wave function of the harmonic oscillator by one: $\hat{a} \psi_{n}=\sqrt{n} \psi_{n-1}$ |
|  | The lowering operator can be expressed in terms of $\hat{x}$ and $\hat{p}$ : | $\hat{a}=\sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}+i \frac{1}{m \omega} \hat{p}\right)$ |
| $\hat{a}^{\dagger}$ | Raising operator | Increments the $n$-th state wave function of the harmonic oscillator by one: $\hat{a}^{\dagger} \psi_{n}=\sqrt{n+1} \psi_{n+1}$ |
|  | The raising operator can be expressed in terms of $\hat{x}$ and $\hat{p}$ : | $\hat{a}=\sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}-i \frac{1}{m \omega} \hat{p}\right)$ |
| $\widehat{N}$ | Number operator: $\widehat{N}=\hat{a}^{\dagger} \hat{a}$ | Gives back the $n$-th state wave function of the harmonic oscillator multiplied by $n$ : $\widehat{N} \psi_{n}=n \psi_{n}$ |

Note: The ground state wave function of the harmonic oscillator:

$$
\psi_{0}=N_{0} e^{-\frac{m \omega x^{2}}{2 \hbar}}
$$

Note: $N_{0}, N_{1}, N_{2}, \ldots$ are normalizing constants.
Commuting Operators describe quantities that can simultaneously be measured exactly.
Operators that do not commute describe quantities that cannot be measured simultaneously exact.

In one-dimensional problems the position operator $\hat{x}$ and the momentum operator $\hat{p}$ are an example.

We have the commutation relation:

$$
\left[\hat{x}, \hat{p}_{x}\right]=\left(\hat{x} \hat{p}_{x}-\hat{p}_{x} \hat{x}\right)=i \hbar
$$

The position operator $\hat{x}$ is realized by multiplying with $x$, the momentum operator $\hat{p}_{x}$ by applying the partial derivation $-i \hbar \frac{\partial}{\partial x}$.

For 3-dimensional spatial systems the commutation relations are generalized to:

$$
\left[\hat{x}_{i}, \hat{p}_{j}\right]=\delta_{i j} i \hbar
$$

Note: $\delta_{i j}$ is the Kronecker delta.
Independent dimensions are simultaneously measurable because $\delta_{i j}=0$ for $i \neq j$.
If we do not have the plain operators $\hat{x}$ and $\hat{p}$, but reasonable functions of them, then the commutators change.

If we have $[\hat{x}, \hat{p}]=i \hbar$, then we get:

$$
\begin{aligned}
{[\hat{x}, f(\hat{p})] } & =i \hbar \frac{d f(\hat{p})}{d \hat{p}} \\
{[\hat{p}, f(\hat{x})] } & =-i \hbar \frac{d f(\hat{x})}{d \hat{x}}
\end{aligned}
$$

In general:
If:

$$
\left[\hat{x}_{1}, \hat{x}_{2}\right]=c
$$

Then:

$$
\left[\hat{x}_{1}, f\left(\hat{x}_{2}\right)\right]=c \frac{d f\left(\hat{x}_{2}\right)}{d \hat{x}_{2}}
$$

Note: $c$ is a constant.
Note: $f\left(\hat{x}_{2}\right)$ must be an analytic function that allows Taylor expansion, so it must be infinitely differentiable.

Examples with lowering and raising operators.

$$
\left[\hat{a}, \hat{a}^{\dagger}\right]=\hat{1}
$$

Note: $\hat{1}$ often written as 1 is the unit operator.

$$
\begin{gathered}
{[\widehat{N}, \hat{a}]=-\hat{a}} \\
{\left[\widehat{N}, \hat{a}^{\dagger}\right]=\hat{a}^{\dagger}} \\
{\left[\hat{a},\left(\hat{a}^{\dagger}\right)^{k}\right]=k\left(\hat{a}^{\dagger}\right)^{k-1}} \\
{\left[\hat{a}^{\dagger},(\hat{a})^{k}\right]=-k(\hat{a})^{k-1}}
\end{gathered}
$$

$$
\begin{gathered}
{\left[\widehat{N},(\hat{a})^{k}\right]=-k(\hat{a})^{k}} \\
{\left[\widehat{N},\left(\hat{a}^{\dagger}\right)^{k}\right]=k\left(\hat{a}^{\dagger}\right)^{k}}
\end{gathered}
$$

Linear example
We shift the operator $\hat{x}_{2}$ by a linear function:

$$
f\left(\hat{x}_{2}\right)=a \cdot \hat{x}_{2}+\hat{b}
$$

Note: $a$ is a real number, $\hat{b}$ an appropriate operator.
By assumption $\left[\hat{x}_{1}, \hat{x}_{2}\right]=c$ we get:

$$
\left[\hat{x}_{1}, f\left(\hat{x}_{2}\right)\right]=c \frac{d f\left(\hat{x}_{2}\right)}{d \hat{x}_{2}}=c \cdot a
$$

## Power example

We shift the second operator to its second power:

$$
f\left(\hat{x}_{2}\right)=\left(\hat{x}_{2}\right)^{2}=\hat{x}_{2} \cdot \hat{x}_{2}
$$

By assumption $\left[\hat{x}_{1}, \hat{x}_{2}\right]=c$ we get:

$$
\left[\hat{x}_{1}, f\left(\hat{x}_{2}\right)\right]=c \cdot \frac{d f\left(\hat{x}_{2}\right)}{d \hat{x}_{2}}=c \cdot \frac{d}{d \hat{x}_{2}}\left(\hat{x}_{2}\right)^{2}=c \cdot 2 \cdot \hat{x}_{2}
$$

The general case $\left[f\left(\hat{x}_{1}\right), g\left(\hat{x}_{2}\right)\right.$ ] leads to complex results - please look at the original paper if you need to deal with.

Mixed example
By assumption $\left[\hat{x}_{1}, \hat{x}_{2}\right]=c$ we get:

$$
\left[\left(\hat{x}_{1}\right)^{2}, f\left(\hat{x}_{2}\right)\right]=2 \cdot c \cdot \hat{x}_{1} \frac{d f\left(\hat{x}_{2}\right)}{d \hat{x}_{2}}-c^{2} \cdot \frac{d^{2} f\left(\hat{x}_{2}\right)}{d \hat{x}_{2}{ }^{2}}
$$

This can be generalized to any power of $\left(\hat{x}_{1}\right)$ :

$$
\left[\left(\hat{x}_{1}\right)^{n}, f\left(\hat{x}_{2}\right)\right]=\sum_{k=1}^{n}(-1)^{k+1} \cdot\binom{n}{k} \cdot c^{k} \cdot \hat{x}_{1}^{n-k} \cdot \frac{d^{k} f\left(\hat{x}_{2}\right)}{d \hat{x}_{2}{ }^{k}}
$$

