From classical physics to quantum mechanics via the Ehrenfest theorem.
Related information you may find at:
https://farside.ph.utexas.edu/teaching/qmech/Quantum/node36.html

Hope I can help you with learning quantum mechanics.

## Contents

Prerequisite ..... 3
Position and momentum classical ..... 3
Position and momentum quantum ..... 4
Ehrenfest ..... 4

## Prerequisite

The commutator of two operators (matrices) $A, B$ :

$$
[A, B]:=A B-B A
$$

The position operator $X$ multiplies any functions applied to by $x$ :

$$
X f(x)=x \cdot f(x)
$$

The differentiation operator $D$ derives any functions with respect to x :

$$
D f(x)=\frac{d}{d x} f(x)
$$

The commutator of $D$ and $X$ :

$$
\begin{gathered}
{[X, D] f(x)=} \\
X D f(x)-D X f(x)= \\
x \frac{d}{d x} f(x)-\frac{d}{d x}(x f(x))= \\
x \frac{d}{d x} f(x)-f(x)-x \frac{d}{d x} f(x)=-f(x)
\end{gathered}
$$

In other words:

$$
[X, D]=-1
$$

## Position and momentum classical

A particle moving along the $x$-axis has position $x$ and momentum $p$.
The particle is moving on the $x$-axis in a potential $V(x)$.
We use the potential:

$$
V(x)=a \cdot x^{2}
$$

Note: This is the potential of the harmonic oscillator.
The Hamiltonian $h(x, p)$ describes the total energy of the particle, the sum of kinetic energy and potential energy:

$$
h(x, p)=\frac{p^{2}}{2 m}+V(x)
$$

The speed of the particle:

$$
\frac{d x}{d t}=\frac{\partial h}{\partial p}=\frac{p}{m}
$$

The force acting on the particle:

$$
\frac{d p}{d t}=-\frac{\partial h}{\partial x}=-\frac{d V(x)}{d x}
$$

Note: $x$ and $p$ are observables that can be measured (exactly).

## Position and momentum quantum

$X$ and $P$ are operators. The state of the particle becomes a vector $|\psi\rangle$ in Hilbert space of square integrable functions $L^{2}(\mathbb{R}, \mathbb{C})$. The function $\psi(x)$ is named wave function.

The operator $X$ corresponds to the observable $x$, the operator $P$ to the observable $p$.
The set of eigenfunctions of the operator $X$ are elements $\{|x\rangle, x \in \mathbb{R}\}$. The corresponding eigenvalues are the position of the particle, $x$.
$|x\rangle$, the position of the particle, is not part of the Hilbert space of square integrable functions $L^{2}(\mathbb{R}, \mathbb{C})$. This causes that the position of the particle cannot be measured exactly. The position after measurement (after the application of the operator) must be a more or less sharp localized square integrable function - a wave function.

## Ehrenfest



We transform the Classical Hamiltonian into the Quantum one:

$$
h(x, p)=\frac{p^{2}}{2 m}+V(x) \rightarrow H=\frac{P^{2}}{2 m}+V(X)
$$

The Ehrenfest Theorem states:

$$
\frac{d}{d t}\langle A\rangle=\frac{1}{i \hbar}\langle[A, H]\rangle
$$

Note: $\langle A\rangle$ denotes the expectation value (average).
Note: The operator $A$ has no explicit time dependency.
Note: If $A$ commutes with $H$, the expectation value of $A$ does not change with time.
From the Ehrenfest Theorem we get the Ehrenfest equations:

$$
\begin{gathered}
\frac{d\langle X\rangle}{d t}=\left\langle\frac{\partial H}{\partial P}\right\rangle=\frac{\langle P\rangle}{m} \\
\frac{d\langle P\rangle}{d t}=-\left\langle\frac{\partial H}{\partial X}\right\rangle=-\frac{d}{d x}\langle V(X)\rangle
\end{gathered}
$$

We combine the Ehrenfest Theorem and the Ehrenfest equations:

$$
\begin{gathered}
\frac{d\langle X\rangle}{d t}=\frac{\langle P\rangle}{m}, \frac{d\langle X\rangle}{d t}=\frac{1}{i \hbar}\langle[X, H]\rangle \rightarrow \frac{\langle P\rangle}{m}=\frac{1}{i \hbar}\langle[X, H]\rangle \\
\frac{d\langle P\rangle}{d t}=-\frac{d}{d x}\langle V(X)\rangle, \frac{d\langle P\rangle}{d t}=\frac{1}{i \hbar}\langle[P, H]\rangle \rightarrow-\frac{d}{d x}\langle V(X)\rangle=\frac{1}{i \hbar}\langle[P, H]\rangle
\end{gathered}
$$

We take the first equation:

$$
\frac{\langle P\rangle}{m}=\frac{1}{i \hbar}\langle[X, H]\rangle
$$

We check the commutator.

$$
[X, H]=X H-H X=
$$

$$
\begin{gathered}
X\left(\frac{P^{2}}{2 m}+V(X)\right)-\left(\frac{P^{2}}{2 m}+V(X)\right) X= \\
\frac{X P^{2}}{2 m}+X V(X)-\frac{P^{2} X}{2 m}-V(X) X= \\
\frac{X P^{2}}{2 m}-\frac{P^{2} X}{2 m}+X V(X)-V(X) X
\end{gathered}
$$

We examine the second part $X V(X)-V(X) X$ :

$$
\begin{gathered}
X V(X)=x V(X)=x a x^{2}=a x^{3} \\
V(X) X=a x^{2} x=a x^{3} \\
X V(X)-V(X) X=0
\end{gathered}
$$

We get:

$$
[X, H]=\frac{1}{2 m}\left[X, P^{2}\right]
$$

We disassemble this:

$$
\frac{1}{2 m}\left[X, P^{2}\right]=\frac{1}{2 m}[X, P] P+P[X, P]
$$

We go back to the first equation:

$$
\frac{\langle P\rangle}{m}=\frac{1}{i \hbar}\langle[X, H]\rangle \rightarrow \frac{\langle P\rangle}{m}=\frac{1}{i \hbar} \frac{1}{2 m}\langle[X, P] P+P[X, P]\rangle
$$

This equation is valid if:

$$
[X, P]=i \hbar \cdot i d
$$

Note: we work with operators (matrices), $i d$ is the identity matrix.
From the prerequisite we have:

$$
[X, D]=-1
$$

If we assign: $P:=-i \hbar D$ we get:

$$
\frac{\langle P\rangle}{m}=\frac{1}{i \hbar}\langle[X, H]\rangle
$$

We check whether the second equation holds with this $P$ :

$$
-\frac{d}{d x}\langle V(X)\rangle=\frac{1}{i \hbar}\langle[P, H]\rangle
$$

We check the commutator:

$$
\begin{gathered}
{[P, H]=P H-H P=} \\
P\left(\frac{P^{2}}{2 m}+V(X)\right)-\left(\frac{P^{2}}{2 m}+V(X)\right) P= \\
P \frac{P^{2}}{2 m}+P V(X)-\frac{P^{2}}{2 m} P-V(X) P=
\end{gathered}
$$

$$
P \frac{P^{2}}{2 m}-\frac{P^{2}}{2 m} P+P V(X)-V(X) P=
$$

Note: $P P^{2}=P^{2} P$

$$
\begin{gathered}
P V(X)-V(X) P= \\
-i \hbar D V(X)-V(X)(-i \hbar D)=
\end{gathered}
$$

Note: we need a function $f(x)$ the operators are applied to:

$$
\begin{gathered}
-i \hbar\left(\frac{d}{d x}\left(a x^{2}\right)-\left(a x^{2}\right)\left(\frac{d}{d x}\right)\right) f(x)= \\
-i \hbar\left(\frac{d}{d x}\left(\left(a x^{2}\right) f(x)\right)-\left(a x^{2}\right)\left(\frac{d}{d x} f(x)\right)\right)= \\
-i \hbar\left(2 a x f(x)+a x^{2} \frac{d}{d x} f(x)-a x^{2} \frac{d}{d x} f(x)\right)= \\
-i \hbar 2 a x f(x)
\end{gathered}
$$

In other words:

$$
[P, H]=-i \hbar 2 a x=-i \hbar \frac{d}{d x}\langle V(X)\rangle
$$

We check the second equation:

$$
\begin{gathered}
-\frac{d}{d x}\langle V(X)\rangle=\frac{1}{i \hbar}\langle[P, H]\rangle \rightarrow \\
-\frac{d}{d x}\langle V(X)\rangle=\frac{1}{i \hbar}\left\langle-i \hbar \frac{d}{d x}\langle V(X)\rangle\right\rangle \rightarrow \\
\frac{d}{d x}\langle V(X)\rangle=\frac{d}{d x}\langle\langle V(X)\rangle\rangle
\end{gathered}
$$

Note: the average of an average remains the same.
Note: This will work with every potential that can be expressed in polynomial functions of $x$.
Result: If we set $P:=-i \hbar D$ the Ehrenfest equations for our scenario are valid. The momentum operator, the equivalence to the classical momentum becomes the differentiation operator, multiplied by $-i \hbar$.

We can treat results of classical processes as averages of quantum processes and try to find the corresponding quantum operators. This may work but must not work in every case.

