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From classical physics to quantum mechanics via the Ehrenfest theorem. 

Related information you may find at:  

https://farside.ph.utexas.edu/teaching/qmech/Quantum/node36.html 

 

Hope I can help you with learning quantum mechanics. 

 

  

https://farside.ph.utexas.edu/teaching/qmech/Quantum/node36.html


Ehrenfest Theorem 

D. Kriesell  page 2 of 6 

Contents 
Prerequisite ......................................................................................................................................... 3 

Position and momentum classical ....................................................................................................... 3 

Position and momentum quantum ..................................................................................................... 4 

Ehrenfest ............................................................................................................................................. 4 

 

  



Ehrenfest Theorem 

D. Kriesell  page 3 of 6 

Prerequisite 
The commutator of two operators (matrices) 𝐴, 𝐵: 

[𝐴, 𝐵] ≔ 𝐴𝐵 − 𝐵𝐴 

The position operator 𝑋 multiplies any functions applied to by 𝑥: 

𝑋𝑓(𝑥) = 𝑥 ∙ 𝑓(𝑥) 

The differentiation operator 𝐷 derives any functions with respect to x: 

𝐷𝑓(𝑥) =
𝑑

𝑑𝑥
𝑓(𝑥) 

The commutator of 𝐷 and 𝑋: 

[𝑋, 𝐷]𝑓(𝑥) = 

𝑋𝐷𝑓(𝑥) − 𝐷𝑋𝑓(𝑥) = 

𝑥
𝑑

𝑑𝑥
𝑓(𝑥) −

𝑑

𝑑𝑥
(𝑥𝑓(𝑥)) = 

𝑥
𝑑

𝑑𝑥
𝑓(𝑥) − 𝑓(𝑥) − 𝑥

𝑑

𝑑𝑥
𝑓(𝑥) = −𝑓(𝑥) 

In other words: 

[𝑋, 𝐷] = −1 

 

Position and momentum classical 
A particle moving along the 𝑥-axis has position 𝑥 and momentum 𝑝.  

The particle is moving on the 𝑥-axis in a potential 𝑉(𝑥). 

We use the potential: 

𝑉(𝑥) = 𝑎 ∙ 𝑥2 

Note: This is the potential of the harmonic oscillator.  

The Hamiltonian ℎ(𝑥, 𝑝) describes the total energy of the particle, the sum of kinetic energy and 

potential energy: 

ℎ(𝑥, 𝑝) =
𝑝2

2𝑚
+ 𝑉(𝑥) 

The speed of the particle: 

𝑑𝑥

𝑑𝑡
=

𝜕ℎ

𝜕𝑝
=

𝑝

𝑚
 

The force acting on the particle: 

𝑑𝑝

𝑑𝑡
= −

𝜕ℎ

𝜕𝑥
= −

𝑑𝑉(𝑥)

𝑑𝑥
 

Note: 𝑥 and 𝑝 are observables that can be measured (exactly). 
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Position and momentum quantum 
𝑋 and 𝑃 are operators. The state of the particle becomes a vector |𝜓⟩ in Hilbert space of square 

integrable functions 𝐿2(ℝ, ℂ). The function 𝜓(𝑥) is named wave function. 

The operator 𝑋 corresponds to the observable 𝑥, the operator 𝑃 to the observable 𝑝. 

The set of eigenfunctions of the operator 𝑋 are elements {|𝑥⟩, 𝑥 ∈ ℝ}. The corresponding 

eigenvalues are the position of the particle, 𝑥. 

|𝑥⟩, the position of the particle, is not part of the Hilbert space 

of square integrable functions 𝐿2(ℝ, ℂ). This causes that the 

position of the particle cannot be measured exactly. The 

position after measurement (after the application of the 

operator) must be a more or less sharp localized square 

integrable function – a wave function. 

Ehrenfest 
We transform the Classical Hamiltonian into the Quantum one: 

ℎ(𝑥, 𝑝) =
𝑝2

2𝑚
+ 𝑉(𝑥) → 𝐻 =

𝑃2

2𝑚
+ 𝑉(𝑋) 

The Ehrenfest Theorem states: 

𝑑

𝑑𝑡
〈𝐴〉 =

1

𝑖ℏ
〈[𝐴, 𝐻]〉 

Note: 〈𝐴〉 denotes the expectation value (average). 

Note: The operator 𝐴 has no explicit time dependency. 

Note: If 𝐴 commutes with 𝐻, the expectation value of 𝐴 does not change with time. 

From the Ehrenfest Theorem we get the Ehrenfest equations: 

𝑑〈𝑋〉

𝑑𝑡
= 〈

𝜕𝐻

𝜕𝑃
〉 =

〈𝑃〉

𝑚
 

𝑑〈𝑃〉

𝑑𝑡
= − 〈

𝜕𝐻

𝜕𝑋
〉 = −

𝑑

𝑑𝑥
〈𝑉(𝑋)〉 

We combine the Ehrenfest Theorem and the Ehrenfest equations: 

𝑑〈𝑋〉

𝑑𝑡
=

〈𝑃〉

𝑚
,
𝑑〈𝑋〉

𝑑𝑡
=

1

𝑖ℏ
〈[𝑋, 𝐻]〉  →  

〈𝑃〉

𝑚
=

1

𝑖ℏ
〈[𝑋, 𝐻]〉 

𝑑〈𝑃〉

𝑑𝑡
= −

𝑑

𝑑𝑥
〈𝑉(𝑋)〉,

𝑑〈𝑃〉

𝑑𝑡
=

1

𝑖ℏ
〈[𝑃, 𝐻]〉  →  −

𝑑

𝑑𝑥
〈𝑉(𝑋)〉 =

1

𝑖ℏ
〈[𝑃, 𝐻]〉 

We take the first equation: 

〈𝑃〉

𝑚
=

1

𝑖ℏ
〈[𝑋, 𝐻]〉 

We check the commutator. 

[𝑋, 𝐻] = 𝑋𝐻 − 𝐻𝑋 = 
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𝑋 (
𝑃2

2𝑚
+ 𝑉(𝑋)) − (

𝑃2

2𝑚
+ 𝑉(𝑋)) 𝑋 = 

𝑋𝑃2

2𝑚
+ 𝑋𝑉(𝑋) −

𝑃2𝑋

2𝑚
− 𝑉(𝑋)𝑋 = 

𝑋𝑃2

2𝑚
−

𝑃2𝑋

2𝑚
+  𝑋𝑉(𝑋) − 𝑉(𝑋)𝑋 

We examine the second part 𝑋𝑉(𝑋) − 𝑉(𝑋)𝑋: 

𝑋𝑉(𝑋) = 𝑥𝑉(𝑋) = 𝑥𝑎𝑥2 = 𝑎𝑥3 

𝑉(𝑋)𝑋 = 𝑎𝑥2𝑥 = 𝑎𝑥3 

𝑋𝑉(𝑋) − 𝑉(𝑋)𝑋 = 0 

We get: 

[𝑋, 𝐻] =
1

2𝑚
[𝑋, 𝑃2] 

We disassemble this: 

1

2𝑚
[𝑋, 𝑃2] =

1

2𝑚
[𝑋, 𝑃]𝑃 + 𝑃[𝑋, 𝑃] 

We go back to the first equation: 

〈𝑃〉

𝑚
=

1

𝑖ℏ
〈[𝑋, 𝐻]〉 →

〈𝑃〉

𝑚
=

1

𝑖ℏ

1

2𝑚
〈[𝑋, 𝑃]𝑃 + 𝑃[𝑋, 𝑃]〉 

This equation is valid if: 

[𝑋, 𝑃] = 𝑖ℏ ∙ 𝑖𝑑 

Note: we work with operators (matrices), 𝑖𝑑 is the identity matrix. 

From the prerequisite we have: 

[𝑋, 𝐷] = −1 

If we assign: 𝑃 ≔ −𝑖ℏ𝐷 we get: 

〈𝑃〉

𝑚
=

1

𝑖ℏ
〈[𝑋, 𝐻]〉 

We check whether the second equation holds with this 𝑃: 

−
𝑑

𝑑𝑥
〈𝑉(𝑋)〉 =

1

𝑖ℏ
〈[𝑃, 𝐻]〉 

We check the commutator: 

[𝑃, 𝐻] = 𝑃𝐻 − 𝐻𝑃 = 

𝑃 (
𝑃2

2𝑚
+ 𝑉(𝑋)) − (

𝑃2

2𝑚
+ 𝑉(𝑋)) 𝑃 = 

𝑃
𝑃2

2𝑚
+ 𝑃𝑉(𝑋) −

𝑃2

2𝑚
𝑃 − 𝑉(𝑋)𝑃 = 
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𝑃
𝑃2

2𝑚
−

𝑃2

2𝑚
𝑃 + 𝑃𝑉(𝑋) − 𝑉(𝑋)𝑃 =; 

Note: 𝑃𝑃2 = 𝑃2𝑃 

𝑃𝑉(𝑋) − 𝑉(𝑋)𝑃 = 

−𝑖ℏ𝐷𝑉(𝑋) − 𝑉(𝑋)(−𝑖ℏ𝐷) =; 

Note: we need a function 𝑓(𝑥) the operators are applied to: 

−𝑖ℏ (
𝑑

𝑑𝑥
(𝑎𝑥2) − (𝑎𝑥2) (

𝑑

𝑑𝑥
)) 𝑓(𝑥) = 

−𝑖ℏ (
𝑑

𝑑𝑥
((𝑎𝑥2)𝑓(𝑥)) − (𝑎𝑥2) (

𝑑

𝑑𝑥
𝑓(𝑥))) = 

−𝑖ℏ (2𝑎𝑥𝑓(𝑥) + 𝑎𝑥2
𝑑

𝑑𝑥
𝑓(𝑥) − 𝑎𝑥2

𝑑

𝑑𝑥
𝑓(𝑥)) = 

−𝑖ℏ2𝑎𝑥𝑓(𝑥) 

In other words: 

[𝑃, 𝐻] = −𝑖ℏ2𝑎𝑥 = −𝑖ℏ
𝑑

𝑑𝑥
〈𝑉(𝑋)〉 

We check the second equation: 

−
𝑑

𝑑𝑥
〈𝑉(𝑋)〉 =

1

𝑖ℏ
〈[𝑃, 𝐻]〉 → 

−
𝑑

𝑑𝑥
〈𝑉(𝑋)〉 =

1

𝑖ℏ
〈−𝑖ℏ

𝑑

𝑑𝑥
〈𝑉(𝑋)〉〉 → 

𝑑

𝑑𝑥
〈𝑉(𝑋)〉 =

𝑑

𝑑𝑥
〈〈𝑉(𝑋)〉〉 

Note: the average of an average remains the same. 

Note: This will work with every potential that can be expressed in polynomial functions of 𝑥. 

Result: If we set 𝑃 ≔ −𝑖ℏ𝐷 the Ehrenfest equations for our scenario are valid. The momentum 

operator, the equivalence to the classical momentum becomes the differentiation operator, 

multiplied by −𝑖ℏ.  

We can treat results of classical processes as averages of quantum processes and try to find the 

corresponding quantum operators. This may work but must not work in every case. 


