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This short paper presents a translation of the article of P. Ehrenfest (from 1927). 

In the appendix you find the original German text and two comments marked as (a) and (b). 

 

Hope I can help you learning quantum mechanics. 

  

https://link.springer.com/article/10.1007/BF01329203
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Remarks on the approximate validity of classical mechanics within quantum mechanics. By P. 

Ehrenfest in Leiden, Holland. Received September 5, 1927 

The following relationship can be derived from Schrödinger's equation using a short elementary 

calculation without neglect: 

𝑚
𝑑2

𝑑𝑡2
∭ 𝑑𝜏 ∙ ΨΨ∗ ∙ 𝑥 = ∭ 𝑑𝜏 ∙ ΨΨ∗ (−

𝜕𝑉

𝜕𝑥
) 

For a small and remaining small wave packet (m of the order of 1 gram) the acceleration of its 

position coordinates matches the local force −
𝜕𝑉

𝜕𝑥
 according to Newton's equation of motion. 

It is desirable to be able to answer the following question as elementary as possible: What 

perspective does Newton's basic equations of classical mechanics have from the view of quantum 

mechanics?  

A number of recent publications1 have essentially clarified that and to what extent classical 

mechanics remain correct for macroscopic processes to a high degree of approximation. 

But it is permissible to briefly point out a particular elementary relation that follows exactly from 

Schrödinger's equation without any neglect, perhaps it makes understanding the connection 

between wave mechanics and classical mechanics a little easier. 

It is sufficient to present the formulas for the case of a single degree of freedom, i.e. for the following 

form of the Schrödinger equation: 

−
ℎ2

2𝑚

𝜕2Ψ

𝜕𝑥2
+ 𝑉(𝑥)Ψ = ih

𝜕Ψ

𝜕𝑡
 

−
ℎ2

2𝑚

𝜕2Ψ∗

𝜕𝑥2
+ 𝑉(𝑥)Ψ∗ = −ih

𝜕Ψ∗

𝜕𝑡
 

Then define: 

∫ 𝑑𝑥 𝑥 ΨΨ∗
∞

−∞

≡ 𝑄(𝑡) 

      𝑖ℎ ∫ 𝑑𝑥 Ψ 
𝜕Ψ∗

𝜕𝑥

∞

−∞

≡ 𝑃(𝑡)          2 

Now by using (1) and (2) calculate 
𝑑𝑄

𝑑𝑡
 and 

𝑑𝑃

𝑑𝑡
. 

Substitution and partial integration results immediately (and without neglect): 

𝑑𝑄

𝑑𝑡
=

1

𝑚
𝑃 

𝑚
𝑑2𝑄

𝑑𝑡2
=

𝑑𝑃

𝑑𝑡
= ∫ 𝑑𝑥ΨΨ∗ (−

𝜕𝑉

𝜕𝑥
) 

                                                           
1 Louis de Broglie, Thèse 1924; Journ. de phys. et le Rad. (6) 7, 1,32,1926; C. R. 180, 498, 1925; 183,272,1926. – 
L. Brillouin, Journ. de phys. et le Rad. 7, 353,1926. – E Schrödinger, Naturwiss. 14, 664, 1926. – P. Debye, Phys. 
ZS. 28, 170, 1927. – W. Heisenberg, ZS. f. Phys. 43, 172, 1927. – E. H. Kennard, ZS. f. Phys. 44, 326, 1927. 

2 Expansion of Ψ according to the eigenfunctions Ψ = ∑ 𝑐𝑛𝑒
𝑖𝐸𝑛

ℎ
𝑡𝜑𝑛(𝑥) provides the relationship to the matrices 

𝑞𝑛𝑚 = 𝑒
𝑖

ℎ
(𝐸𝑛−𝐸𝑚)𝑡

∫ 𝑑𝑥 ∙ 𝑥 𝜑𝑛𝜑𝑚 and 𝑝𝑛𝑚 

(1) 

(1*) 

(2) 

(3) 

(4) 

(5) 

(a) 

(b) 
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Equation (5) obviously says: Every time the width of the (probability) wave packet ΨΨ∗ is quite small 

(in relation to macroscopic distances), the acceleration (of the center of gravity 𝑄) of the wave 

packet matches the “dominant force at the location of the wave packet” (−
𝜕𝑉

𝜕𝑥
) in the sense of 

Newton's equations. 

Remarks: The gradual divergence of a wave packet has been discussed by Heisenberg, loc. cit. in 

detail. His calculation for the force-free movement of a mass point in one-dimensional space can 

perhaps be made a little more familiar with the help of an obvious connection to well-known 

calculations about heat conduction. For 𝑉(𝑥) = 0, the Schrödinger equation has the structure of the 

heat conduction equation: 

𝜕Ψ

𝜕𝑡
= 𝑎2

𝜕2Ψ

𝜕𝑥2
 

𝑎2 = 𝑖
ℎ

2𝑚
 

Substitute into the general solution (cf. e. g. Riemann-Weber, Bd. II): 

Ψ(𝑥, 𝑡) =
1

2𝑎√𝜋𝑡
∫ 𝑑𝜉 𝑒

−
(𝑥−𝜉)2

4𝑎2𝑡 Ψ(0, 𝜉)
∞

−∞

 

the following for the initial state: 

Ψ(0, 𝜉) = 𝐶𝑒
−

𝜉2

2𝜔2+𝑖𝜇𝜉
 

Then: 

(ΨΨ∗)𝑡=0 = 𝐶2 ∙ 𝑒
−

𝜉2

𝜔2  

(with 𝜇 being an arbitrary real constant), just like Heisenberg one finds the position and distribution 

of the “wave packet”: 

ΨΨ∗ = 𝑐(𝑡) ∙ 𝑒
−

(𝑥−
ℎ𝜇
𝑚

𝑡)
2

Ω2  

with 

Ω2 = 𝜔2 +
ℎ2𝑡2

𝑚2𝜔2
 

a displacement of the wave packet with the speed 
ℎ𝜇

𝑚
 and an increasing dissolution over time. A 

doubling of the initial width (Ω2 = 4𝜔2) occurs after the following time: 

𝑇 = √3
𝑚𝜔2

ℎ
 (ℎ =

6.6 × 10−27

2𝜋
) 

For 𝑚 = 1 𝑔, 𝜔 = 10−3 𝑐𝑚 we get 𝑇 = 1021 𝑠𝑒𝑐; however, for = 1.7 × 10−24 𝑔, 𝜔 = 10−8 𝑐𝑚 we 

get 𝑇 = 10−13 𝑠𝑒𝑐. 

  

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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Remark (a) 

∭ 𝑑𝜏 ∙ ΨΨ∗ ∙ 𝑥 is the expectation value of the position in 𝑅3, written as 〈𝑥〉. 

𝑚
𝑑2

𝑑𝑡2 ∭ 𝑑𝜏 ∙ ΨΨ∗ ∙ 𝑥 corresponds to 𝑚〈�̈�〉. 

∭ 𝑑𝜏 ∙ ΨΨ∗ (−
𝜕𝑉

𝜕𝑥
) is the expectation value of the force, written as −〈𝑉′(𝑥)〉 or maybe as 〈𝐹(𝑥)〉. 

We interpret  

𝑚
𝑑2

𝑑𝑡2
∭ 𝑑𝜏 ∙ ΨΨ∗ ∙ 𝑥 = ∭ 𝑑𝜏 ∙ ΨΨ∗ (−

𝜕𝑉

𝜕𝑥
) 

as Newton’s equation: 

𝑚〈�̈�〉 = −〈𝑉′(𝑥)〉 

First time derivative of 〈𝑥〉. Second time derivative of 〈𝑥〉. 

We calculate: 
𝑑〈𝑥〉

𝑑𝑡
=

𝑖

ℏ
〈[𝐻, 𝑥]〉 + 〈

𝜕𝑥

𝜕𝑡
〉 

We calculate: 
𝑑〈𝑝𝑥〉

𝑑𝑡
=

𝑖

ℏ
〈[𝐻, 𝑝𝑥]〉 + 〈

𝜕𝑝

𝜕𝑡
〉 

The position operator 〈𝑥〉 has no explicit time 
dependency: 

〈
𝜕𝑥

𝜕𝑡
〉 = 0 

The momentum operator 〈𝑝〉 has no explicit 
time dependency: 

〈
𝜕𝑝

𝜕𝑡
〉 = 0 

We get: 
𝑑〈𝑥〉

𝑑𝑡
=

𝑖

ℏ
〈[𝐻, 𝑥]〉 

Note: [𝐻, 𝑥] is the commutator relation: 

We get: 
𝑑〈𝑝〉

𝑑𝑡
=

𝑖

ℏ
〈[𝐻, 𝑝]〉 

Note: [𝐻, 𝑝] is the commutator relation: 

We write the Hamiltonian: 

𝐻 =
𝑝2

2𝑚
+ 𝑉(𝑥) 

We write the Hamiltonian: 

𝐻 =
𝑝2

2𝑚
+ 𝑉(𝑥) 

We get the commutator: 

[𝐻, 𝑥] = [(
𝑝2

2𝑚
+ 𝑉(𝑥)) , 𝑥]

=
1

2𝑚
[(𝑝𝑥

2 + 𝑝𝑦
2 + 𝑝𝑧

2), 𝑥] =

=
1

2𝑚
[𝑝𝑥

2, 𝑥]

=
1

2𝑚
(𝑝𝑥[𝑝𝑥 , 𝑥] + [𝑝𝑥 , 𝑥]𝑝𝑥)

=
1

2𝑚
(−𝑖ℏ𝑝𝑥 + (−𝑖ℏ𝑝𝑥))

= −
𝑖ℏ

𝑚
𝑝𝑥 

Note: Any function of 𝑥 commutes with 𝑥. 
Note: 𝑝𝑦 and 𝑝𝑧 commute with 𝑥. 

We get the commutator: 

〈[𝐻, 𝑝𝑥]〉 = 〈[(
𝑝2

2𝑚
+ 𝑉(𝑥)) , 𝑝𝑥]〉

= 〈[𝑉(𝑥), 𝑝𝑥]〉 =
𝑖

ℏ
〈
𝜕𝑉

𝜕𝑥
〉 

Note: Any function of 𝑝 commutes with 𝑝. 
Note: 𝑝𝑥 , 𝑝𝑦 and 𝑝𝑧 commute with 𝑝𝑥. 

 

We get: 
𝑑〈𝑥〉

𝑑𝑡
=

𝑖

ℏ
(−

𝑖ℏ

𝑚
〈𝑝𝑥〉) =

1

𝑚
〈𝑝𝑥〉 

 

We get: 
𝑑〈𝑝𝑥〉

𝑑𝑡
= 𝑖ℏ

𝑖

ℏ
〈
𝜕𝑉

𝜕𝑥
〉 = − 〈

𝜕𝑉

𝜕𝑥
〉 
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There is a difference in this derivation of Newton’s law and the classic Newton: 

classic quantum 

𝑚〈�̈�〉 = −𝑉′〈𝑥〉 𝑚〈�̈�〉 = −〈𝑉′(𝑥)〉 
 

If the potential is quadratic, 𝑉(𝑥)~𝑥2, then 𝑉′(𝑥)~𝑥 and 〈𝑉′(𝑥)〉 = 𝑉′〈𝑥〉.  

In all other cases we have: 

〈𝑉′(𝑥)〉 ≈ 𝑉′〈𝑥〉 

The bigger the uncertainty in 𝑥, the bigger the difference between 〈𝑉′(𝑥)〉 and 𝑉′〈𝑥〉. 

Remark (b) 

We calculate �̇� =
𝑑𝑄

𝑑𝑡
: 

𝑑𝑄

𝑑𝑡
=

𝑑

𝑑𝑡
(∫ 𝑑𝑥 𝑥 ΨΨ∗

∞

−∞

) = ∫
𝑑𝑥

𝑑𝑡
 ΨΨ∗𝑑𝑥

∞

−∞

+ ∫ 𝑥 
𝑑Ψ

𝑑𝑡
Ψ∗𝑑𝑥

∞

−∞

+ ∫ 𝑥 Ψ
𝑑Ψ∗

𝑑𝑡
𝑑𝑥

∞

−∞

= 

∫
𝑑𝑥

𝑑𝑡
 ΨΨ∗𝑑𝑥

∞

−∞

+ ∫ 𝑥 (
𝑑Ψ

𝑑𝑡
Ψ∗ +  Ψ

𝑑Ψ∗

𝑑𝑡
) 𝑑𝑥

∞

−∞

= 

Note: We use partial integration for the second integral. 

∫
𝑑𝑥

𝑑𝑡
 ΨΨ∗𝑑𝑥

∞

−∞

+ 𝑥 ∫ (
𝑑Ψ

𝑑𝑡
Ψ∗ +  Ψ

𝑑Ψ∗

𝑑𝑡
) 𝑑𝑥

∞

−∞

− ∫ (
𝑑Ψ

𝑑𝑡
Ψ∗ +  Ψ

𝑑Ψ∗

𝑑𝑡
) 𝑑𝑥

∞

−∞

= 

∫
𝑑𝑥

𝑑𝑡
 ΨΨ∗𝑑𝑥

∞

−∞

+ 𝑥 ∫
𝑑Ψ

𝑑𝑡
Ψ∗𝑑𝑥 +

∞

−∞

𝑥 ∫ Ψ
𝑑Ψ∗

𝑑𝑡
𝑑𝑥

∞

−∞

− ∫
𝑑Ψ

𝑑𝑡
Ψ∗𝑑𝑥

∞

−∞

− ∫ Ψ
𝑑Ψ∗

𝑑𝑡
𝑑𝑥

∞

−∞

= 

Note: We use ∫ 𝑓 ∙ 𝑔′∞

−∞
= − ∫ 𝑓′ ∙ 𝑔

∞

−∞
 

∫
𝑑𝑥

𝑑𝑡
 ΨΨ∗𝑑𝑥

∞

−∞

+ 𝑥 ∫
𝑑Ψ

𝑑𝑡
Ψ∗𝑑𝑥 −

∞

−∞

𝑥 ∫
𝑑Ψ

𝑑𝑡
Ψ∗𝑑𝑥

∞

−∞

− ∫
𝑑Ψ

𝑑𝑡
Ψ∗𝑑𝑥

∞

−∞

+ ∫
𝑑Ψ

𝑑𝑡
Ψ∗𝑑𝑥

∞

−∞

= 

∫
𝑑𝑥

𝑑𝑡
 ΨΨ∗𝑑𝑥

∞

−∞

= 〈�̇�〉 

We calculate �̇� =
𝑑𝑃

𝑑𝑡
: 

𝑑𝑃

𝑑𝑡
= 𝑖ℎ

𝑑

𝑑𝑡
(∫ Ψ 

𝜕Ψ∗

𝜕𝑥

∞

−∞

𝑑𝑥 ) = 

𝑖ℎ (∫ (
𝑑

𝑑𝑡
Ψ) ∙

𝜕Ψ∗

𝜕𝑥
𝑑𝑥

∞

−∞

+ ∫  Ψ ∙
𝑑

𝑑𝑡

𝜕

𝜕𝑥
Ψ∗𝑑𝑥

∞

−∞

) = 

𝑖ℎ (∫ (
𝑑

𝑑𝑡
Ψ) ∙

𝜕Ψ∗

𝜕𝑥
𝑑𝑥

∞

−∞

+ ∫  Ψ ∙
𝜕

𝜕𝑥

𝑑

𝑑𝑡
Ψ∗𝑑𝑥

∞

−∞

) = 

𝑖ℎ (∫ (
−

ℎ2

2𝑚
𝜕2Ψ
𝜕𝑥2 + 𝑉(𝑥) ∙ Ψ

𝑖ℎ
) ∙

𝜕Ψ∗

𝜕𝑥
𝑑𝑥

∞

−∞

+ ∫  Ψ ∙
𝜕

𝜕𝑥

ℎ2

2𝑚
𝜕2Ψ∗

𝜕𝑥2 − 𝑉(𝑥) ∙ Ψ∗

𝑖ℎ
𝑑𝑥

∞

−∞

) = 
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∫ (−
ℎ2

2𝑚

𝜕2Ψ

𝜕𝑥2
+ 𝑉(𝑥) ∙ Ψ) ∙

𝜕Ψ∗

𝜕𝑥
𝑑𝑥

∞

−∞

+ ∫  Ψ ∙
ℎ2

2𝑚
∙

𝜕

𝜕𝑥

𝜕2Ψ∗

𝜕𝑥2
− Ψ ∙

𝜕

𝜕𝑥
(𝑉(𝑥) ∙ Ψ∗)𝑑𝑥

∞

−∞

= 

∫ (−
ℎ2

2𝑚

𝜕2Ψ

𝜕𝑥2
+ 𝑉(𝑥) ∙ Ψ) ∙

𝜕Ψ∗

𝜕𝑥
𝑑𝑥

∞

−∞

+ ∫ Ψ ∙
ℎ2

2𝑚
∙

𝜕3Ψ∗

𝜕𝑥3
− Ψ ∙

𝜕

𝜕𝑥
(𝑉(𝑥) ∙ Ψ∗)𝑑𝑥

∞

−∞

= 

∫ (−
ℎ2

2𝑚

𝜕2Ψ

𝜕𝑥2
+ 𝑉(𝑥) ∙ Ψ) ∙

𝜕Ψ∗

𝜕𝑥
𝑑𝑥

∞

−∞

+ ∫ Ψ ∙
ℎ2

2𝑚
∙

𝜕3Ψ∗

𝜕𝑥3
− Ψ ∙ (

𝜕𝑉(𝑥)

𝜕𝑥
∙ Ψ∗ + 𝑉(𝑥) ∙

𝜕Ψ∗

𝜕𝑥
) 𝑑𝑥

∞

−∞

= 

∫ (−
ℎ2

2𝑚

𝜕2Ψ

𝜕𝑥2
+ 𝑉(𝑥) ∙ Ψ) ∙

𝜕Ψ∗

𝜕𝑥
𝑑𝑥

∞

−∞

+ ∫  Ψ ∙
ℎ2

2𝑚

𝜕3Ψ∗

𝜕𝑥3
−

𝜕𝑉(𝑥)

𝜕𝑥
∙ Ψ ∙ Ψ∗ − 𝑉(𝑥) ∙ Ψ ∙

𝜕Ψ∗

𝜕𝑥
𝑑𝑥

∞

−∞

= 

∫ (−
ℎ2

2𝑚

𝜕2Ψ

𝜕𝑥2
+ 𝑉(𝑥) ∙ Ψ) ∙

𝜕Ψ∗

𝜕𝑥

∞

−∞

+ Ψ ∙
ℎ2

2𝑚

𝜕3Ψ∗

𝜕𝑥3
−

𝜕𝑉(𝑥)

𝜕𝑥
∙ Ψ ∙ Ψ∗ − 𝑉(𝑥) ∙ Ψ ∙

𝜕Ψ∗

𝜕𝑥
𝑑𝑥 = 

∫ −
ℎ2

2𝑚

𝜕2Ψ

𝜕𝑥2
∙

𝜕Ψ∗

𝜕𝑥
+ 𝑉(𝑥) ∙ Ψ ∙

𝜕Ψ∗

𝜕𝑥

∞

−∞

+ Ψ ∙
ℎ2

2𝑚

𝜕3Ψ∗

𝜕𝑥3
−

𝜕𝑉(𝑥)

𝜕𝑥
∙ Ψ ∙ Ψ∗ − 𝑉(𝑥) ∙ Ψ ∙

𝜕Ψ∗

𝜕𝑥
𝑑𝑥 = 

∫ −
ℎ2

2𝑚

𝜕2Ψ

𝜕𝑥2
∙

𝜕Ψ∗

𝜕𝑥

∞

−∞

+ Ψ ∙
ℎ2

2𝑚

𝜕3Ψ∗

𝜕𝑥3
−

𝜕𝑉(𝑥)

𝜕𝑥
∙ Ψ ∙ Ψ∗𝑑𝑥 = 

∫ −
𝜕𝑉(𝑥)

𝜕𝑥
∙ Ψ ∙ Ψ∗𝑑𝑥

∞

−∞

 

Note: Integration by parts gives: 

∫ −
ℎ2

2𝑚

𝜕2Ψ

𝜕𝑥2
∙

𝜕Ψ∗

𝜕𝑥
+ Ψ ∙

ℎ2

2𝑚

𝜕3Ψ∗

𝜕𝑥3
𝑑𝑥

∞

−∞

= 

−
ℎ2

2𝑚
(∫

𝜕2Ψ

𝜕𝑥2
∙

𝜕Ψ∗

𝜕𝑥
𝑑𝑥

∞

−∞

− ∫ Ψ ∙
𝜕3Ψ∗

𝜕𝑥3
𝑑𝑥

∞

−∞

) = 

−
ℎ2

2𝑚
(− ∫

𝜕Ψ

𝜕𝑥
∙

𝜕2Ψ∗

𝜕𝑥2
𝑑𝑥

∞

−∞

− ∫ Ψ ∙
𝜕3Ψ∗

𝜕𝑥3
𝑑𝑥

∞

−∞

) = 

−
ℎ2

2𝑚
(∫ Ψ ∙

𝜕3Ψ∗

𝜕𝑥3
𝑑𝑥

∞

−∞

− ∫ Ψ ∙
𝜕3Ψ∗

𝜕𝑥3
𝑑𝑥

∞

−∞

) = 0 

Conclusion: 

𝑑𝑄

𝑑𝑡
= ∫

𝑑𝑥

𝑑𝑡
 ΨΨ∗𝑑𝑥

∞

−∞

= 〈�̇�〉 

𝑑𝑃

𝑑𝑡
= ∫ −

𝜕𝑉(𝑥)

𝜕𝑥
∙ Ψ ∙ Ψ∗𝑑𝑥

∞

−∞

= 〈𝐹〉 

The change in momentum results from the expectation value of the force. 
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