This paper deals with expressions like:

$$e^{i\frac{1}{2}\varphi\sigma_3}\sigma_1e^{-i\frac{1}{2}\varphi\sigma_3}$$

Note:  $\sigma_i$  are the Pauli matrices.

The solution can be expressed either with trigonometric functions or exponentials.

We will work through this problem with exponential and trigonometric approach. A third and a fourth approach are shown in the end.

More information you find at

https://www.math.utah.edu/~gustafso/2250matrixexponential.pdf

Hope I can help you with learning quantum mechanics.

D. Kriesell page 1 of 5

## Prerequisite

The following trigonometric identities hold:



Note: blue functions shifted upwards.

The Pauli-matrices:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
,  $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ ,  $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 

Note: The identity matrix could be regarded as a Pauli matrix:  $\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 

Note: Pauli-matrices are Hermitian.

For Pauli-matrices holds:

$$\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = id$$

Note: *id* is the identity matrix

$$\sigma_{i}\sigma_{j} = -\sigma_{j}\sigma_{i} \text{ for } i \neq j$$
$$\left[\sigma_{i},\sigma_{j}\right] = 2i\epsilon_{ijk}\sigma_{k}$$
$$\sigma_{i}\sigma_{j} = \delta_{ij}id + i\epsilon_{ijk}\sigma_{k}$$

 $\epsilon_{ijk}$  is the Levi-Civita symbol that controls the  $\mp$ -sign:

$$\epsilon_{ijk} = \begin{cases} +1 \ if \ ijk \ is \ an \ even \ permutation \ of \ 123 \\ -1 \ if \ ijk \ is \ an \ odd \ permutation \ of \ 123 \\ 0 \ if \ two \ indices \ are \ the \ same \end{cases}$$

Note: Even permutations of  $\{123\}$  are  $\{123\}$ ,  $\{231\}$ ,  $\{312\}$ . Odd permutations are  $\{132\}$ ,  $\{321\}$ ,  $\{213\}$ 

For a quadratic matrix A holds:

$$\frac{d}{d\varphi}e^{A\varphi} = A \cdot e^{A\varphi}$$

End prerequisite

D. Kriesell page 2 of 5

We treat the expression  $e^{i\frac{1}{2}\varphi\sigma_3}\sigma_1e^{-i\frac{1}{2}\varphi\sigma_3}$  as function of  $\varphi$ :

$$f(\varphi) = e^{i\frac{1}{2}\varphi\sigma_3}\sigma_1 e^{-i\frac{1}{2}\varphi\sigma_3}$$

Note:  $f(0) = \sigma_1$ 

We derivate the function twice to get a differential equation.

First derivative:

$$\begin{split} \frac{d}{d\varphi}f(\varphi) &= e^{i\frac{1}{2}\varphi\sigma_3} \left(i\frac{1}{2}\sigma_3\right) \sigma_1 e^{-i\frac{1}{2}\varphi\sigma_3} + e^{i\frac{1}{2}\varphi\sigma_3} \sigma_1 e^{-i\frac{1}{2}\varphi\sigma_3} \left(-i\frac{1}{2}\sigma_3\right) = \\ & \frac{i}{2} e^{i\frac{1}{2}\varphi\sigma_3} \sigma_3 \sigma_1 e^{-i\frac{1}{2}\varphi\sigma_3} - \frac{i}{2} e^{i\frac{1}{2}\varphi\sigma_3} \sigma_1 \sigma_3 e^{-i\frac{1}{2}\varphi\sigma_3} = \\ & \frac{i}{2} e^{i\frac{1}{2}\varphi\sigma_3} i\sigma_2 e^{-i\frac{1}{2}\varphi\sigma_3} - \frac{i}{2} e^{i\frac{1}{2}\varphi\sigma_3} (-i\sigma_2) e^{-i\frac{1}{2}\varphi\sigma_3} = \\ & \frac{i}{2} \left( e^{i\frac{1}{2}\varphi\sigma_3} i\sigma_2 e^{-i\frac{1}{2}\varphi\sigma_3} + e^{i\frac{1}{2}\varphi\sigma_3} i\sigma_2 e^{-i\frac{1}{2}\varphi\sigma_3} \right) = \\ & - e^{i\frac{1}{2}\varphi\sigma_3} \sigma_2 e^{-i\frac{1}{2}\varphi\sigma_3} \end{split}$$

Note:  $f'(0) = -\sigma_2$ 

Second derivative:

$$\begin{split} \frac{d^2}{d\varphi^2}f(\varphi) &= \frac{d}{d\varphi} \bigg( \frac{d}{d\varphi} f(\varphi) \bigg) = -e^{i\frac{1}{2}\varphi\sigma_3} \bigg( i\frac{1}{2}\sigma_3 \bigg) \sigma_2 e^{-i\frac{1}{2}\varphi\sigma_3} - e^{i\frac{1}{2}\varphi\sigma_3} \sigma_2 e^{-i\frac{1}{2}\varphi\sigma_3} \bigg( -i\frac{1}{2}\sigma_3 \bigg) = \\ &- \frac{i}{2} e^{i\frac{1}{2}\varphi\sigma_3} \sigma_3 \sigma_2 e^{-i\frac{1}{2}\varphi\sigma_3} + \frac{i}{2} e^{i\frac{1}{2}\varphi\sigma_3} \sigma_2 \sigma_3 e^{-i\frac{1}{2}\varphi\sigma_3} = \\ &\frac{i}{2} e^{i\frac{1}{2}\varphi\sigma_3} i\sigma_1 e^{-i\frac{1}{2}\varphi\sigma_3} + \frac{i}{2} e^{i\frac{1}{2}\varphi\sigma_3} i\sigma_1 e^{-i\frac{1}{2}\varphi\sigma_3} = \\ &- \frac{1}{2} e^{i\frac{1}{2}\varphi\sigma_3} \sigma_1 e^{-i\frac{1}{2}\varphi\sigma_3} - \frac{1}{2} e^{i\frac{1}{2}\varphi\sigma_3} \sigma_1 e^{-i\frac{1}{2}\varphi\sigma_3} = \\ &- e^{i\frac{1}{2}\varphi\sigma_3} i\sigma_1 e^{-i\frac{1}{2}\varphi\sigma_3} \end{split}$$

Note:  $f''(0) = -\sigma_1$ 

This resembles the derivation chain of sin and cos.

We get the differential equation:

$$f''(\varphi) = -f(\varphi)$$

D. Kriesell

| Solution with exponential functions                                                                                                                                            | Solution with trigonometric functions                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| $f(\varphi) = Ae^{i\varphi} + Be^{-i\varphi}$<br>$f'(\varphi) = iAe^{i\varphi} - iBe^{-i\varphi}$                                                                              | $f(\varphi) = \mathcal{A}sin(\varphi) + \mathcal{B}cos(\varphi)$<br>$f'(\varphi) = \mathcal{A}cos(\varphi) - \mathcal{B}sin(\varphi)$ |
| $f''(\varphi) = -Ae^{i\varphi} - Be^{-i\varphi}$                                                                                                                               | $f''(\varphi) = -A\sin(\varphi) - B\cos(\varphi)$                                                                                     |
| We use:                                                                                                                                                                        | We use:                                                                                                                               |
| $f(0) = \sigma_1$ $\sigma_1 = Ae^{i0} + Be^{-i0}$ $\sigma_1 = A + B$                                                                                                           | $f(0) = \sigma_1 \to \\ \sigma_1 = \mathcal{B}$                                                                                       |
| $f'(0) = -\sigma_2$<br>$\sigma_2 = iB - iA$                                                                                                                                    | $f'(0) = -\sigma_2 \to -\sigma_2 = \mathcal{A}$                                                                                       |
| We get for $A$ and $B$ :                                                                                                                                                       |                                                                                                                                       |
| $A = \sigma_1 - B$ $B = \frac{\sigma_2 + iA}{i} = \frac{\sigma_2 + i(\sigma_1 - B)}{i}$ $B = \frac{\sigma_2}{i} + \sigma_1 - B$ $B = \frac{\sigma_2}{2i} + \frac{\sigma_1}{2}$ |                                                                                                                                       |
| $A = \sigma_1 - \frac{\sigma_2}{2i} - \frac{\sigma_1}{2} = \frac{\sigma_1}{2} - \frac{\sigma_2}{2i}$                                                                           |                                                                                                                                       |
| Solution: $f(\varphi) = \left(\frac{\sigma_1}{2} - \frac{\sigma_2}{2i}\right)e^{i\varphi} + \left(\frac{\sigma_2}{2i} + \frac{\sigma_1}{2}\right)e^{-i\varphi}$                | Solution: $f(\varphi) = \sigma_1 cos(\varphi) - \sigma_2 sin(\varphi)$                                                                |

We check whether the solutions are different and rewrite the exponential solution in the cartesian representation. For simplicity we use:

$$a \coloneqq \left(\frac{\sigma_1}{2} - \frac{\sigma_2}{2i}\right)$$

$$b \coloneqq \left(\frac{\sigma_2}{2i} + \frac{\sigma_1}{2}\right)$$

$$f(\varphi) = ae^{i\varphi} + be^{-i\varphi} =$$

$$a \cdot \cos(\varphi) + i \cdot a \cdot \sin(\varphi) + b \cdot \cos(\varphi) - i \cdot b \cdot \sin(\varphi) =$$

$$(a+b)\cos(\varphi) + i(a-b)\sin(\varphi) =;$$

We replace a and b by their originals:

$$\left( \frac{\sigma_1}{2} - \frac{\sigma_2}{2i} + \frac{\sigma_2}{2i} + \frac{\sigma_1}{2} \right) cos(\varphi) + i \left( \frac{\sigma_1}{2} - \frac{\sigma_2}{2i} - \frac{\sigma_2}{2i} - \frac{\sigma_1}{2} \right) sin(\varphi) =$$

$$\sigma_1 cos(\varphi) - \sigma_2 sin(\varphi)$$

The Ansatz with exponential functions gives the same result – the trigonometric way is faster in this case.

D. Kriesell page 4 of 5

Third approach: For involutory matrices *P* like the Pauli matrices holds:

$$e^{iP\varphi} = cos(\varphi) \cdot id + i \cdot P \cdot sin(\varphi)$$

Note: an involutory matrix is its own inverse.

Note: *id* is the identity matrix.

With this we can work through our problem:

$$e^{i\frac{1}{2}\varphi\sigma_3}\sigma_1e^{-i\frac{1}{2}\varphi\sigma_3} \to \left(\cos\left(\frac{\varphi}{2}\right)\cdot id + i\cdot\sigma_3\cdot\sin\left(\frac{\varphi}{2}\right)\right)\sigma_1\left(\cos\left(\frac{\varphi}{2}\right)\cdot id - i\cdot\sigma_3\cdot\sin\left(\frac{\varphi}{2}\right)\right)$$

After some lengthy calculation and use of the trigonometric identities of the prerequisite we will arrive at the known result:

$$e^{i\frac{1}{2}\varphi\sigma_3}\sigma_1e^{-i\frac{1}{2}\varphi\sigma_3} = \sigma_1cos(\varphi) - \sigma_2sin(\varphi)$$

Fourth approach: For diagonal matrices holds:

$$e^{\begin{pmatrix} a & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & n \end{pmatrix}} = \begin{pmatrix} e^{a} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{n} \end{pmatrix}$$

 $\sigma_3$  is a diagonal matrix:

$$\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

In this case we get:

$$e^{i\frac{1}{2}\varphi\sigma_{3}}\sigma_{1}e^{-i\frac{1}{2}\varphi\sigma_{3}} =$$

$$e^{i\frac{1}{2}\varphi\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} e^{-i\frac{1}{2}\varphi\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}} =$$

$$\begin{pmatrix} e^{i\frac{1}{2}\varphi} & 0 \\ 0 & e^{-i\frac{1}{2}\varphi} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} e^{-i\frac{1}{2}\varphi} & 0 \\ 0 & e^{i\frac{1}{2}\varphi} \end{pmatrix} =$$

$$\dots =$$

$$\begin{pmatrix} 0 & e^{i\varphi} \\ e^{-i\varphi} & 0 \end{pmatrix} =$$

$$\begin{pmatrix} 0 & \cos(\varphi) + i \cdot \sin(\varphi) \\ e^{-i\varphi} & 0 \end{pmatrix} =$$

$$\begin{pmatrix} 0 & \cos(\varphi) + i \cdot \sin(\varphi) \\ -i \cdot \sin(\varphi) & 0 \end{pmatrix} =$$

$$\cos(\varphi) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} - \sin(\varphi) \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} =$$

$$\cos(\varphi)\sigma_{1} - \sin(\varphi)\sigma_{2}$$

D. Kriesell page 5 of 5