In working with spin operators, we often have the expression $e^{i \theta \sigma_{n}}$ with σ_{n} standing for the pauli matrices $\sigma_{x}, \sigma_{y}, \sigma_{z}$, especially when working with unitary time evolution. This short paper shows how to transform them from exponential form into cartesian format with sin/cos:

$$
e^{i \theta \sigma_{n}} \rightarrow \cos (\theta) \cdot i d+i \cdot \sigma_{n} \cdot \sin (\theta)
$$

Note: id is the identity matrix.

Hope I can help you with learning quantum mechanics.

The Pauli matrices:

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \sigma_{2}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right) \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Note: the identity matrix could be named the fourth Pauli matrix:

$$
\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Note:

$$
\begin{aligned}
\sigma_{1}^{2} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)=i d \\
\sigma_{2}^{2} & =\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)=i d \\
\sigma_{3}^{2} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=i d
\end{aligned}
$$

When working with unitary time development operators, we have something like:

$$
U \sim e^{i \theta \sigma_{n}}
$$

The "official" definition of power series (Taylor) means development at a starting point x_{0} :

$$
T_{f, x_{0}}(x)=\sum_{i=0}^{\infty} \frac{f^{i}\left(x_{0}\right)}{i!}\left(x-x_{0}\right)^{i}
$$

Note: f^{i} is the i-th derivation of f with respect to x.
Written out we get:

$$
T_{f, x_{0}}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\frac{f^{\prime \prime \prime}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3}+\cdots
$$

Note: not all function shows convergence, meaning they cannot be developed into power series.
For real numbers, the power series of an exponential around $x_{0}=0$:

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

We apply this procedure to the pauli matrices:

$$
e^{i \theta \sigma_{1}}=i d+i \theta \sigma_{1}-\frac{\theta^{2}}{2!} i d-i \frac{\theta^{3}}{3!} \sigma_{1}+\frac{\theta^{4}}{4!} i d+i \frac{\theta^{5}}{5!} \sigma_{1} \ldots=
$$

We rearrange:

$$
e^{i \theta \sigma_{1}}=i d \cdot\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots\right)+i \sigma_{1}\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots\right)=
$$

We recognize the power series expansion of \sin and cosin :

$$
e^{i \theta \sigma_{1}}=i d \cdot \cos (\theta)+i \sigma_{1} \cdot \sin (\theta)=\left(\begin{array}{cc}
\cos (\theta) & -i \cdot \sin (\theta) \\
-i \cdot \sin (\theta) & \cos (\theta)
\end{array}\right)
$$

The same holds for the other Pauli matrices too.

