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This paper deals with Fourier series.  

Fourier series are a prerequisite for Fourier transformation. 

It follows: 

Fourier-Analysis, Glatz, Grieb, Hohloch, Kümmerer, Mohr, Cornelsen 1996, ISBN 3-464-41327-6 
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Fourier series 

Periodic functions 
Definition 

A function 𝑓(𝑥) is periodic if ∀𝑥 ∈ ℝ: 𝑓(𝑥 + 𝑃) = 𝑓(𝑥).  

The smallest positive value 𝑃 is the period of the function. 

Examples: 

a) 𝑠𝑖𝑛(𝑥) = 𝑠𝑖𝑛(𝑥 + 2𝜋) … 𝑝𝑒𝑟𝑖𝑜𝑑 2𝜋 

b) 𝑠𝑖𝑛(𝑘𝑥) = 𝑠𝑖𝑛(𝑘𝑥 + 2𝜋) = 𝑠𝑖𝑛 (𝑘 (𝑥 +
2𝜋

𝑘
)) … 𝑝𝑒𝑟𝑖𝑜𝑑 

2𝜋

𝑘
 

c) 𝑠𝑖𝑛(𝜔𝑡) = 𝑠𝑖𝑛(𝜔𝑡 + 2𝜋) = 𝑠𝑖𝑛 (𝜔 (𝑡 +
2𝜋

𝜔
)) … 𝑝𝑒𝑟𝑖𝑜𝑑 

2𝜋

𝜔
 

Note: If the function is time-dependent, the period is called "oscillation duration" and 𝜔 “angular 

frequency”. 

d) 𝑓(𝑥) = 𝑓(𝑥 + 2) 𝑎𝑛𝑑 𝑓(𝑥) = {
−1 𝑓𝑜𝑟 − 1 ≤ 𝑥 < 0
1    𝑓𝑜𝑟      0 < 𝑥 < 1

 

 

The term 𝑓(𝑥 + 2) = 𝑓(𝑥) periodically continues the function defined  [−1,1).  

We get a square wave oscillation. 

Piecewise continuous functions 
Definition: 

𝑓(𝑥) is piecewise continuous in [𝑎, 𝑏] if 𝑓(𝑥) is continuous except for a finite number of 

discontinuities (jump points).  

Characteristic for a discontinuity 𝑥0 are the one-sided limits left and right: 

𝑓(𝑥0 +), (𝑥0 −) 
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Example: Sawtooth wave 

𝑓(𝑥) = 𝑓(𝑥 + 2𝜋) 𝑎𝑛𝑑 𝑓(𝑥) = 𝑥 𝑓𝑜𝑟 − 𝜋 < 𝑥 < 𝜋 

 

The discontinuities 𝑥0 = 𝜋: 

𝑓(𝜋 +) = −𝜋, 𝑓(𝜋 −) = 𝜋 

Trigonometric polynomials 

We use harmonic oscillations with period 𝑝 =
2𝜋

𝑘
: 

𝑓𝑘(𝑥) = 𝑎 𝑐𝑜𝑠(𝑘𝑥) + 𝑏 𝑠𝑖𝑛(𝑘𝑥) 

𝑓𝑘(𝑥) = 𝐴 𝑐𝑜𝑠(𝑘𝑥 + 𝜑) 

𝑓𝑘(𝑥) = 𝑎 𝑐𝑜𝑠(𝑘𝑥) + 𝑏 𝑠𝑖𝑛(𝑘𝑥) is the term without phase angle, mathematically easier to handle. 

𝑓𝑘(𝑥) = 𝐴 𝑐𝑜𝑠(𝑘𝑥 + 𝜑) is the term with amplitude 𝐴 and phase angle 𝜑, more suitable for practical 

applications. 

Both terms can be converted into each other: 

𝑎 = 𝐴 𝑐𝑜𝑠(𝜑), 𝑏 = −𝐴 𝑠𝑖𝑛(𝜑) 

𝐴 = √𝑎2 + 𝑏2, 𝑡𝑎𝑛(𝜑) = −
𝑏

𝑎
 

If we superimpose harmonic oscillations of different periods, we generally obtain non-periodic 

functions. However, if the partial oscillations have periods 𝑝1 =
2𝜋

𝑘1
 and 𝑝2 =

2𝜋

𝑘2
 with least common 

multiple 𝑝, we get a nonharmonic oscillation with period 𝑝. 

If 𝑘1 and 𝑘2 are integer positive numbers, the resulting oscillation has the period 2𝜋. 

Example: 

𝑓(𝑥) = 2 𝑠𝑖𝑛(𝑥) − 𝑐𝑜𝑠(2𝑥) 𝑓1(𝑥) = 2 𝑠𝑖𝑛(𝑥) … 𝑃1 = 2𝜋 𝑓2(𝑥) = 𝑐𝑜𝑠(2𝑥) … 𝑃2 = 𝜋 
 

𝑓(𝑥) has the period 𝑝 = 2𝜋. 

Overlaps of harmonic oscillations are important for applications: 

𝑓𝑘(𝑥) = 𝑎𝑘  𝑐𝑜𝑠(𝑘𝑥) + 𝑏𝑘  𝑠𝑖𝑛(𝑘𝑥) 

resp.  

𝑓𝑘(𝑥) = 𝐴 𝑘𝑐𝑜𝑠(𝑘𝑥 + 𝜑𝑘) 

Definition trigonometric polynomial: 

Any superposition of harmonic oscillations of (2) is called a trigonometric polynomial 

with the fundamental period 2𝜋. 

We get the trigonometric polynomial of degree 𝑛:  

𝑇𝑛(𝑥) =
𝑎0

2
+ ∑ 𝑎𝑘  𝑐𝑜𝑠(𝑘𝑥) + 𝑏𝑘  𝑠𝑖𝑛(𝑘𝑥)

𝑛

𝑘=1

 

2 

3 

1 
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Fourier series for 2π periodic functions 
Every function 𝑇𝑛(𝑥) according to (3) is a 2𝜋 periodic function. We can 

-  approximate any reasonable nonperiodic function by polynomials, 

- approximate any reasonable periodic function by trigonometric polynomials. 

We can approximate a general periodic motion with oscillation duration 𝑇 =
2𝜋

𝜔
 by superimposing 

harmonic oscillations with angular frequencies 𝜔, 2𝜔, 3𝜔. We decompose a general oscillation into 

its fundamental oscillation and harmonics. This procedure is called harmonic analysis.  

Below we consider 2𝜋 periodic functions. They can be converted by substitution to the case of other 

time-dependent oscillations. 

The harmonic analysis of a 2𝜋 periodic function 𝑓(𝑥) is based on the following mathematical 

consideration. The coefficients 𝑎𝑘 , 𝑏𝑘 of the trigonometric polynomial 𝑇𝑛(𝑥) according to (3) should 

be determined in such a way that the mean square of error (note: variance) becomes as small as 

possible: 

∫ (𝑓(𝑥) − 𝑇𝑛(𝑥))
2

𝑑𝑥
𝜋

−𝜋

⟹ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

This results in the following theorem: 

Fourier's theorem:  

Every “reasonable”, piecewise defined continuous function 𝑓(𝑥) in the interval −𝜋 < 𝑥 < 𝜋  

can be represented as a convergent trigonometric series of the form 

𝑓(𝑥) =
𝑎0

2
+ ∑ 𝑎𝑘  𝑐𝑜𝑠(𝑘𝑥) + 𝑏𝑘  𝑠𝑖𝑛(𝑘𝑥)

∞

𝑘=1

 

with the coefficients: 

𝑎𝑘 =
1

𝜋
∫ 𝑓(𝑥)𝑐𝑜𝑠(𝑘𝑥)𝑑𝑥, 𝑘 = 0,1,2, …

𝜋

−𝜋

 

𝑏𝑘 =
1

𝜋
∫ 𝑓(𝑥)𝑠𝑖𝑛(𝑘𝑥)𝑑𝑥, 𝑘 = 1,2, …

𝜋

−𝜋

 

The Fourier series (4) converges for each 𝑥 to: 

(a) 𝑓(𝑥) at each point the function is continuous, 

(b) 
1

2
(𝑓(𝑥0 +) + (𝑥0 −)) at each discontinuity 𝑥0. 

Note: In literature often 𝑎0 instead of 
𝑎0

2
 is used. 

We often calculate 𝑎0 explicitly: 

𝑎0

2
=

1

2𝜋
∫ 𝑓(𝑥)𝑑𝑥

𝜋

−𝜋

 

We calculate the mean value 𝑚 of a function over the interval −𝜋 < 𝑥 < 𝜋: 

𝑚 =
1

2𝜋
∫ 𝑓(𝑥)𝑑𝑥

𝜋

−𝜋

 

4 

5 
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If we compare 𝑚 and 𝑎0 we see that the absolute member 
𝑎0

2
 in the Fourier series (4) represents the 

mean value 𝑚 of the periodic function. In many cases, this value can be specified directly. 

With 𝑠𝑛 we refer to the approximation of the function 𝑓(𝑥) by a trigonometric polynomial of degree 

𝑛: 

𝑠𝑛(𝑥) =
𝑎0

2
+ ∑ 𝑎𝑘  𝑐𝑜𝑠(𝑘𝑥) + 𝑏𝑘  𝑠𝑖𝑛(𝑘𝑥)

𝑛

𝑘=1

 

At discontinuities the Fourier series converges against the arithmetic mean of the left- and right-

sided limit of 𝑓(𝑥). 

Example: Triangle oscillation 

𝑓(𝑥) = |𝑥|, −𝜋 < 𝑥 < 𝜋 

𝑓(𝑥 + 2𝜋) = 𝑓(𝑥) 

From the coefficient formulas (5) we obtain for the coefficients of the cosine series: 

𝑎𝑘 =
1

𝜋
∫ |𝑥|𝑐𝑜𝑠(𝑘𝑥)𝑑𝑥

𝜋

−𝜋

=
2

𝜋
∫ 𝑥𝑐𝑜𝑠(𝑘𝑥)𝑑𝑥

𝜋

0

     𝑘 = 0,1,2, … 

For 𝑘 = 0 we get: 

2

𝜋
∫ 𝑥𝑐𝑜𝑠(0)𝑑𝑥

𝜋

0

= 𝜋 

Note: This is the mean value. 

We integrate by parts: 𝑓′ = 𝑐𝑜𝑠(𝑘𝑥), 𝑓 =
𝑠𝑖𝑛(𝑘𝑥)

𝑘
, 𝑔 = 𝑥, 𝑔′ = 1 

𝑎𝑘 =
2

𝜋
([

𝑥𝑠𝑖𝑛(𝑘𝑥)

𝑘
]

0

𝜋

− ∫
𝑠𝑖𝑛(𝑘𝑥)

𝑘
𝑑𝑥

𝜋

0

) = 

2

𝜋
([

𝑥𝑠𝑖𝑛(𝑘𝑥)

𝑘
]

0

𝜋

+ [
𝑐𝑜𝑠(𝑘𝑥)

𝑘2
]

0

𝜋

) =
2

𝜋
([

𝑥𝑠𝑖𝑛(𝑘𝑥)

𝑘
+

𝑐𝑜𝑠(𝑘𝑥)

𝑘2
]

0

𝜋

) = 

2

𝑘2𝜋
([𝑐𝑜𝑠(𝑘𝑥)]0

𝜋) =
2

𝑘2𝜋
(𝑐𝑜𝑠(𝑘𝜋) − 1) = 

Note:  𝑘 = 0,1,2, … 

2

𝑘2𝜋
((−1)𝑘 − 1) 

𝑎1 = −
4

𝜋
, 𝑎2 = 0, 𝑎3 = −

4

𝜋
∙

1

9
, 𝑎4 = 0, 𝑎5 = −

4

𝜋
∙

1

25
 

For 𝑘 even, 𝑎𝑘 = 0. 

For 𝑘 odd, 𝑎𝑘 = −
4

𝜋
∙

1

𝑘2 

From the coefficient formulas (5) we obtain for the coefficients of the sine series: 

𝑏𝑘 =
1

𝜋
∫ |𝑥|𝑠𝑖𝑛(𝑘𝑥)𝑑𝑥

𝜋

−𝜋

= 0 

6 
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The sine function is an odd function. The integration over a symmetrical interval around the origin 

therefore returns zero. 

With this, we get the Fourier series: 

𝑓(𝑥) =
𝑎0

2
+ ∑ 𝑎𝑘  𝑐𝑜𝑠(𝑘𝑥) + 𝑏𝑘  𝑠𝑖𝑛(𝑘𝑥)

∞

𝑘=1

= 

𝑎0

2
+ ∑ 𝑎𝑘  𝑐𝑜𝑠(𝑘𝑥)

∞

𝑘=1

= 

𝜋

2
+ ∑ −

4

𝜋
∙

1

𝑘2
 𝑐𝑜𝑠(𝑘𝑥)

∞

𝑘=1

= 

𝜋

2
−

4

𝜋
∑

1

𝑘2
 𝑐𝑜𝑠(𝑘𝑥)

∞

𝑘=1

= 

𝜋

2
−

4

𝜋
(𝑐𝑜𝑠(𝑥) +

1

9
𝑐𝑜𝑠(3𝑥) +

1

25
𝑐𝑜𝑠(5𝑥) + ⋯ ) = 

𝜋

2
−

4

𝜋
∑

1

(2𝑟 + 1)2
 𝑐𝑜𝑠((2𝑟 + 1)𝑥)

∞

𝑟=1

 

Note: The last transformation needed to have the index in steps of one.  

Example: Sawtooth wave 

𝑓(𝑥) = 𝑥, −𝜋 < 𝑥 < 𝜋 

𝑓(𝑥 + 2𝜋) = 𝑓(𝑥) 

From the coefficient formulas (5) we obtain for the coefficients of the cosine series: 

𝑎𝑘 =
1

𝜋
∫ 𝑥 ∙ 𝑐𝑜𝑠(𝑘𝑥)𝑑𝑥

𝜋

−𝜋

    , 𝑘 = 0,1,2, … 

Note: The integrand is the product of an even function 𝑐𝑜𝑠 and an odd function 𝑥. Thus, the value of 

the integral over a symmetric interval becomes zero:  

𝑎𝑘 = 0 ∀𝑘 

𝑏𝑘 =
1

𝜋
∫ 𝑥 ∙ 𝑠𝑖𝑛(𝑘𝑥)𝑑𝑥

𝜋

−𝜋

=
2

𝜋
∫ 𝑥 ∙ 𝑠𝑖𝑛(𝑘𝑥)𝑑𝑥

𝜋

0

    𝑘 = 0,1,2, … 

Note: The product of two odd functions is even.  

We integrate the coefficients 𝑏𝑘 by parts. 

𝑓′ = 𝑠𝑖𝑛(𝑘𝑥), 𝑓 = −
𝑐𝑜𝑠(𝑘𝑥)

𝑘
, 𝑔 = 𝑥, 𝑔′ = 1 

𝑏𝑘 =
2

𝜋
([−

𝑥𝑐𝑜𝑠(𝑘𝑥)

𝑘
]

0

𝜋

+ ∫
𝑐𝑜𝑠(𝑘𝑥)

𝑘
𝑑𝑥

𝜋

0

) = 
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2

𝜋
([−

𝑥𝑐𝑜𝑠(𝑘𝑥)

𝑘
]

0

𝜋

+ [
𝑠𝑖𝑛(𝑘𝑥)

𝑘2
]

0

𝜋

) =
2

𝜋
([−

𝑥𝑐𝑜𝑠(𝑘𝑥)

𝑘
]

0

𝜋

) = 

2

𝜋
(−

𝜋

𝑘
) 𝑐𝑜𝑠(𝑘𝜋) = −

2

𝑘
𝑐𝑜𝑠(𝑘𝜋) =

2

𝑘
∙ (−1)𝑘+1 

We specify the Fourier series: 

𝑓(𝑥) =
𝑎0

2
+ ∑ 𝑎𝑘  𝑐𝑜𝑠(𝑘𝑥) + 𝑏𝑘  𝑠𝑖𝑛(𝑘𝑥)

∞

𝑘=1

= 

∑ 𝑏𝑘  𝑠𝑖𝑛(𝑘𝑥)

∞

𝑘=1

= ∑
2

𝑘
∙ (−1)𝑘+1 𝑠𝑖𝑛(𝑘𝑥)

∞

𝑘=1

= 

2

𝑘
∑(−1)𝑘+1 𝑠𝑖𝑛(𝑘𝑥)

∞

𝑘=1

= 

2 [𝑠𝑖𝑛(𝑥) −
1

2
𝑠𝑖𝑛(2𝑥) +

1

3
𝑠𝑖𝑛(3𝑥) −

1

4
𝑠𝑖𝑛(4𝑥) ± ⋯ ] 

Differences between polynomial and Fourier series 
The triangle function and the sawtooth function coincide in the interval [0; 𝜋) 

The two series: 

𝑓(𝑥) =
𝜋

2
−

4

𝜋
∑

1

(2𝑟 + 1)2
 𝑐𝑜𝑠((2𝑟 + 1)𝑥)

∞

𝑟=1

 

𝑓(𝑥) = 2 [𝑠𝑖𝑛(𝑥) −
1

2
𝑠𝑖𝑛(2𝑥) +

1

3
𝑠𝑖𝑛(3𝑥) −

1

4
𝑠𝑖𝑛(4𝑥) ± ⋯ ] = 

converge in interval [0; 𝜋) but represent two completely different series. 

The approximation by trigonometric polynomials and the convergence speed of the Fourier series 

depend heavily on how the function is defined on the entire fundamental interval. In contrast, a 

power series is uniquely determined by the behavior of the function at the development point 𝑥0 . 

Convergence behavior of Fourier series 
We see a much better convergence of the Fourier series in the continuous triangle oscillation than in 

the sawtooth oscillation, which is only piecewise continuous. The smoother the periodically 

continued function, the faster its Fourier series converges. For the decay of the Fourier coefficients it 

can generally be shown: 

𝑓(𝑥) 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ⟹ 𝑎𝑘 , 𝑏𝑘~
1

𝑘2
 

𝑓(𝑥) ℎ𝑎𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑖𝑒𝑠 → 𝑎𝑘 , 𝑏𝑘~
1

𝑘
 

7 
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convergence triangle function                           convergence sawtooth function 

Fourier series for oscillations 

General formulas – harmonic analysis 
In physics we often use functions that depend on time. We therefore transform the 2𝜋 -periodic 

spatial functions. 

The oscillation duration: 

𝜔 =
2𝜋

𝑇
⟹ 𝑇 =

2𝜋

𝜔
 

We substitute: 

𝑥 = 𝜔 ∙ 𝑡, 𝑑𝑥 = 𝜔 𝑑𝑡 

We transform the basic interval of length 2𝜋 to an interval of length 𝑇: 

−𝜋 < 𝑥 < 𝜋 

−
𝑇

2
= −

𝜋

𝜔
< 𝑡 <

𝜋

𝜔
=

𝑇

2
 

The 2𝜋-periodic function 𝑓(𝑥) becomes the 𝑇-periodic function 𝑓(𝑡): 

𝑓(𝑥) with 𝑓(𝑥 + 2𝜋) = 𝑓(𝑥) becomes 𝑓[𝑥(𝑡)] = 𝑓(𝑡) with 𝑓(𝑡 + 𝑇) = 𝑓(𝑡) 

From (4), (5) we get the theorem: 

Any wave 𝑓(𝑡) with angular frequency 𝜔 and oscillation duration 𝑇 =
2𝜋

𝜔
 can be represented as a 

convergent trigonometric series of the form: 

𝑓(𝑡) =
𝑎0

2
+ ∑ 𝑎𝑘  𝑐𝑜𝑠(𝑘𝜔𝑡) + 𝑏𝑘 𝑠𝑖𝑛(𝑘𝜔𝑡)

∞

𝑘=1

 

We get the coefficients: 

𝑎𝑘 =
2

𝑇
∫ 𝑓(𝑡)𝑐𝑜𝑠(𝑘𝜔𝑡)𝑑𝑡

𝑇
2

−
𝑇
2

    𝑘 = 0,1,2, … 

𝑏𝑘 =
2

𝑇
∫ 𝑓(𝑡)𝑠𝑖𝑛(𝑘𝜔𝑡)𝑑𝑡

𝑇
2

−
𝑇
2

  𝑘 = 1,2, … 

8 

9 

10 
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The series converges against 𝑓(𝑡) at each point of continuity and against the arithmetic mean of the 

left-side and right-side limit at discontinuities. 

By 𝑠𝑛 (6) we denote the approximation of the function 𝑓(𝑡) by the Fourier series (9): 

𝑠𝑛(𝑡) =
𝑎0

2
+ ∑ 𝑎𝑘  𝑐𝑜𝑠(𝑘𝜔𝑡) + 𝑏𝑘 𝑠𝑖𝑛(𝑘𝜔𝑡)

𝑛

𝑘=1

 

If we know the Fourier series of a 2𝜋-periodic function we can calculate the range of a corresponding 

oscillation with the oscillation period 𝑇 by means of substitution (8).  

Example sawtooth oscillation with 𝑇 =
2𝜋

𝜔
: 

             

 

 

From (7) we get the series: 

𝑓1(𝑡) =
2

𝜔
[𝑠𝑖𝑛(𝜔𝑡) −

1

2
𝑠𝑖𝑛(2𝜔𝑡) +

1

3
𝑠𝑖𝑛(3𝜔𝑡) −

1

4
𝑠𝑖𝑛(4𝜔𝑡) ± ⋯ ] 

𝑓2(𝑡) =
2𝐴

𝜋
[𝑠𝑖𝑛(𝜔𝑡) −

1

2
𝑠𝑖𝑛(2𝜔𝑡) +

1

3
𝑠𝑖𝑛(3𝜔𝑡) −

1

4
𝑠𝑖𝑛(4𝜔𝑡) ± ⋯ ] 

We can write the harmonics in phase form (1). (9) then becomes: 

𝑓(𝑡) =
𝑎0

2
+ ∑ 𝐴𝑘  𝑐𝑜𝑠(𝑘𝜔𝑡 + 𝜑𝑘)

𝑛

𝑘=1

 

The terms in (9) and (11) denote: 

𝑎0

2
 mean 

𝐴1 𝑐𝑜𝑠(𝜔𝑡 + 𝜑1) or 𝑎1 𝑐𝑜𝑠(𝜔𝑡) + 𝑏1 𝑠𝑖𝑛(𝜔𝑡)   1st harmonic 

𝐴2 𝑐𝑜𝑠(2𝜔𝑡 + 𝜑2) or 𝑎2 𝑐𝑜𝑠(2𝜔𝑡) + 𝑏1 𝑠𝑖𝑛(2𝜔𝑡)  2nd harmonic etc. 

The 1st harmonic corresponds to the fundamental oscillation. 

The decomposition of an oscillation into its harmonics is called harmonic analysis. 

If we plot the amplitudes 𝐴𝑘 or the phase angles 𝜑𝑘 against the frequencies 𝑘 ∙ 𝜔 resp. the frequency 

parameter 𝑘, we get the amplitude spectrum or the phase spectrum of the oscillation. Both are 

discrete line spectra. 

𝑓1(𝑡) = 𝑡       −
𝑇

2
< 𝑡 <

𝑇

2
 𝑓2(𝑡) =

2𝐴

𝑇
∙ 𝑡       −

𝑇

2
< 𝑡 <

𝑇

2
 

11 
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The amplitude spectrum provides a statement about the proportions of the fundamental oscillation 

and the individual harmonics of the oscillation under consideration. 

      

According to Fourier's theorem, a periodic time 
function 𝑓(𝑡) can be represented by a Fourier 
series with amplitudes 𝐴𝑘 and phases 𝜑𝑘. 

Conversely, for every spectrum {𝐴𝑘; 𝜑𝑘} in the 
frequency domain exists a periodic time 
function 𝑓(𝑡). 
 

 

We have two equivalent representations of a periodic signal, a representation in the time domain 

and a representation through the spectrum {𝐴𝑘; 𝜑𝑘} in the frequency domain.  

The amplitude spectrum does not contain any information about the phase position of the individual 

harmonics. 

Simplification in the calculation of Fourier series. 

Often, we get the mean 
𝑎0

2
 without further calculation.  

Symmetry: 

For even functions holds: 
𝑓(−𝑡) = 𝑓(𝑡) 

 

For odd functions holds: 
𝑓(−𝑡) = −𝑓(𝑡) 

 

We use   𝑐𝑜𝑠(−𝜔𝑡) = 𝑐𝑜𝑠(𝜔𝑡) and 𝑠𝑖𝑛(−𝜔𝑡) = −𝑠𝑖𝑛(𝜔𝑡). 
 

Thus, from the coefficient formulas (10) we get: 
 

𝑎𝑘 =
2

𝑇
∫ 𝑓(𝑡)𝑐𝑜𝑠(𝑘𝜔𝑡)𝑑𝑡

𝑇
2

−
𝑇
2

=
4

𝑇
∫ 𝑓(𝑡)𝑐𝑜𝑠(𝑘𝜔𝑡)𝑑𝑡

𝑇
2

0

 

𝑎𝑘 =
2

𝑇
∫ 𝑓(𝑡)𝑐𝑜𝑠(𝑘𝜔𝑡)𝑑𝑡

𝑇
2

−
𝑇
2

= 0 

𝑏𝑘 =
2

𝑇
∫ 𝑓(𝑡)𝑠𝑖𝑛(𝑘𝜔𝑡)𝑑𝑡

𝑇
2

−
𝑇
2

= 0 𝑏𝑘 =
2

𝑇
∫ 𝑓(𝑡)𝑠𝑖𝑛(𝑘𝜔𝑡)𝑑𝑡

𝑇
2

−
𝑇
2

=
4

𝑇
∫ 𝑓(𝑡)𝑠𝑖𝑛(𝑘𝜔𝑡)𝑑𝑡

𝑇
2

0

 

For even functions the result is a pure cosine 
series: 
 

For odd functions this results in pure sine 
series: 
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𝑓(𝑡) =
𝑎0

2
+ ∑ 𝑎𝑘  𝑐𝑜𝑠(𝑘𝜔𝑡)

∞

𝑘=1

 𝑓(𝑡) = ∑ 𝑏𝑘 𝑠𝑖𝑛(𝑘𝜔𝑡)

∞

𝑘=1

 

𝑎𝑘 =
2

𝑇
∫ 𝑓(𝑡)𝑐𝑜𝑠(𝑘𝜔𝑡)𝑑𝑡

𝑇

0

  𝑘 = 0,1,2, … 𝑏𝑘 =
2

𝑇
∫ 𝑓(𝑡)𝑠𝑖𝑛(𝑘𝜔𝑡)𝑑𝑡

𝑇

0

  𝑘 = 1,2, … 

 

In case of pure cosine series, we use only the line spectrum 𝑎𝑘 and omit the complete spectrum 

{𝐴𝑘 = |𝑎𝑘|}, {𝜑𝑘 = 0 𝑓ü𝑟 𝑎𝑘 > 0, 𝜑𝑘 = 𝜋 𝑓𝑜𝑟 𝑎𝑘 < 0}. 

The same holds for pure sine series. For the sawtooth wave we use 

𝑓1(𝑡) =
2

𝜔
[𝑠𝑖𝑛(𝜔𝑡) −

1

2
𝑠𝑖𝑛(2𝜔𝑡) +

1

3
𝑠𝑖𝑛(3𝜔𝑡)

−
1

4
𝑠𝑖𝑛(4𝜔𝑡) ± ⋯ ] 

and get this picture: 

 

 

 

Example square wave oscillation: 

We want to determine the Fourier series for the square wave oscillation: 

𝑓(𝑡) = {
1 𝑓𝑜𝑟 0 ≤ 𝑡 < 𝑎
0 𝑓𝑜𝑟 𝑎 ≤ 𝑡 < 𝑇

  𝑓(𝑡 + 𝑇) = 𝑓(𝑡), 0 < 𝑎 < 𝑇 

 

We use the coefficient formulas (12): 

𝑎𝑘 =
2

𝑇
∫ 𝑓(𝑡)𝑐𝑜𝑠(𝑘𝜔𝑡)𝑑𝑡

𝑎

0

  𝑘 = 0,1,2, … 

𝑏𝑘 =
2

𝑇
∫ 𝑓(𝑡)𝑠𝑖𝑛(𝑘𝜔𝑡)𝑑𝑡

𝑎

0

  𝑘 = 1,2, … 

𝑎0 =
2

𝑇
∫ 𝑑𝑡

𝑎

0

=
2𝑎

𝑇
→ 𝑚𝑒𝑎𝑛 𝑚 =

𝑎

𝑇
 

𝑎𝑘 =
2

𝑇
∫ 𝑐𝑜𝑠(𝑘𝜔𝑡)𝑑𝑡

𝑎

0

= [
2

𝑇
∙

1

𝑘𝜔
∙ 𝑠𝑖𝑛(𝑘𝜔𝑡)]

0

𝑎

=
2

𝑇
∙

1

𝑘𝜔
∙ 𝑠𝑖𝑛(𝑘𝜔𝑎) 

12 
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𝑏𝑘 =
2

𝑇
∫ 𝑠𝑖𝑛(𝑘𝜔𝑡)𝑑𝑡

𝑎

0

= [−
2

𝑇
∙

1

𝑘𝜔
∙ 𝑐𝑜𝑠(𝑘𝜔𝑡)]

0

𝑎

=
2

𝑇
∙

1

𝑘𝜔
∙ (1 − 𝑐𝑜𝑠(𝑘𝜔𝑎)) 

We set 𝜔 =
2𝜋

𝑇
 and get: 

𝑎𝑘 =
1

𝑘𝜋
∙ 𝑠𝑖𝑛 (𝑘

2𝜋

𝑇
𝑎) 

𝑏𝑘 =
1

𝑘𝜋
∙ (1 − 𝑐𝑜𝑠 (𝑘

2𝜋

𝑇
𝑎)) 

For the case 𝑎 =
𝑇

2
 we get: 

𝑎0 = 1 ⟹ 𝑚 =
1

2
 

𝑎𝑘 =
1

𝑘𝜋
∙ 𝑠𝑖𝑛(𝑘𝜋) = 0, 𝑘 = 1,2, … 

𝑏𝑘 =
1

𝑘𝜋
∙ (1 − 𝑐𝑜𝑠(𝑘𝜋)) =

1

𝑘𝜋
∙ (1 − (−1)𝑘) 

𝑏1 =
2

𝜋
, 𝑏3 =

1

3
∙

2

𝜋
, 𝑏5 =

1

5
∙

2

𝜋
, … 

𝑏2 = 𝑏4 = 𝑏4 = ⋯ = 0 

We get: 

𝑓(𝑡) =
1

2
+

2

𝜋
(𝑠𝑖𝑛(𝜔𝑡) +

1

3
𝑠𝑖𝑛(3𝜔𝑡) +

1

5
𝑠𝑖𝑛(5𝜔𝑡) + ⋯ ) 

 

The figure shows the Fourier approximation 𝑠31 of the square wave oscillation. 

For large values of 𝑛, the Gibbs phenomenon occurs: Near the discontinuities an overshoot of the 

Fourier series occurs by about the 9% jump height. The area in which this overshoot occurs becomes 

smaller and smaller with growing 𝑛 while the height remains unchanged. 

  

𝑘 = 1,2, … 

𝑘 = 1,2, … 
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Complex representation 
By help of Euler's formulas we convert the trigonometric series (4): 

𝑒𝑖𝑘𝑥 = 𝑐𝑜𝑠(𝑘𝑥) + 𝑖 ∙ 𝑠𝑖𝑛(𝑘𝑥) 
 

𝑐𝑜𝑠(𝑘𝑥) =
1

2
(𝑒𝑖𝑘𝑥 + 𝑒−𝑖𝑘𝑥) 

𝑒−𝑖𝑘𝑥 = 𝑐𝑜𝑠(𝑘𝑥) − 𝑖 ∙ 𝑠𝑖𝑛(𝑘𝑥) 
𝑠𝑖𝑛(𝑘𝑥) =

1

2
(𝑒𝑖𝑘𝑥 − 𝑒−𝑖𝑘𝑥) 

The coefficients 𝑎𝑘 and 𝑏𝑘 can be the complex numbers.  

We write the associated complex conjugated coefficients as 𝑎∗
𝑘 and 𝑏∗

𝑘. 

𝑓(𝑥) =
𝑎0

2
+ ∑ 𝑎𝑘  𝑐𝑜𝑠(𝑘𝑥) + 𝑏𝑘  𝑠𝑖𝑛(𝑘𝑥)

∞

𝑘=1

→ 

𝑎0

2
+ ∑ 𝑎𝑘  

1

2
(𝑒𝑖𝑘𝑥 + 𝑒−𝑖𝑘𝑥) + 𝑏𝑘  𝑠

1

2
(𝑒𝑖𝑘𝑥 − 𝑒−𝑖𝑘𝑥)

∞

𝑘=1

= 

𝑎0

2
+ ∑  

𝑎𝑘 − 𝑖 ∙ 𝑏𝑘

2
𝑒𝑖𝑘𝑥 +

∞

𝑘=1

𝑎𝑘 + 𝑖 ∙ 𝑏𝑘

2
𝑒−𝑖𝑘𝑥 

We rewrite the coefficients:  

𝑐0 =
𝑎0

2
 

𝑐𝑘 =
𝑎𝑘 − 𝑖 ∙ 𝑏𝑘

2
 

𝑐−𝑘 ≔  𝑐∗
𝑘 =

𝑎𝑘 + 𝑖 ∙ 𝑏𝑘

2
 

We get: 

𝑓(𝑥) = 𝑐0 + ∑  𝑐𝑘𝑒𝑖𝑘𝑥 + 𝑐−𝑘𝑒−𝑖𝑘𝑥

∞

𝑘=1

= 𝑐0 + ∑ 𝑐𝑘𝑒𝑖𝑘𝑥 

∞

𝑘=1

+ ∑ 𝑐−𝑘𝑒−𝑖𝑘𝑥 

∞

𝑘=1

 

By renaming 𝑐−𝑘 ≔  𝑐∗
𝑘 we can transform this into a two-sided sum: 

∑ 𝑐−𝑘𝑒−𝑖𝑘𝑥 

∞

𝑘=1

= ∑ 𝑐𝑘𝑒𝑖𝑘𝑥 

−∞

𝑘=−1

 

We get the complex Fourier series: 

𝑓(𝑥) = ∑ 𝑐𝑘𝑒𝑖𝑘𝑥 

∞

−∞

 

The summation index ranges from −∞ to ∞ resp. 𝑘 = ±1, ±2, … 

The complex Fourier series (15) contains complex sums. We can trace this back to the real version (4) 

by summarizing (13) the 𝑐𝑘𝑒𝑖𝑘𝑥 and 𝑐−𝑘𝑒−𝑖𝑘𝑥 pairs: 

𝑐−𝑘𝑒−𝑖𝑘𝑥 + 𝑐𝑘𝑒𝑖𝑘𝑥 = 𝑐∗
𝑘(𝑒𝑖𝑘𝑥)

∗
+ 𝑐𝑘𝑒𝑖𝑘𝑥 = 

2𝑅𝑒(𝑐𝑘𝑒𝑖𝑘𝑥) = 2𝑅𝑒 (
1

2
(𝑎𝑘 − 𝑖 ∙ 𝑏𝑘)(𝑐𝑜𝑠(𝑘𝑥) + 𝑖 ∙  𝑠𝑖𝑛(𝑘𝑥))) = 

 𝑘 = 1,2, … 

15 

14 

13 
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𝑎𝑘  𝑐𝑜𝑠(𝑘𝑥) + 𝑏𝑘 𝑠𝑖𝑛(𝑘𝑥) 

The complex quantities 𝑐𝑘 , 𝑘 ∈ ℤ of (14) are the complex Fourier coefficients.  

From these we can restore the real Fourier coefficients: 

𝑎𝑘 = 2 ∙ 𝑅𝑒(𝑐𝑘) = 𝑐𝑘 + 𝑐∗
𝑘, 𝑘 = 0,1,2, … 

𝑏𝑘 = −2 ∙ 𝐼𝑚(𝑐𝑘) = 𝑖 ∙ (𝑐𝑘 − 𝑐∗
𝑘), 𝑘 = 1,2, … 

For symmetric functions the complex Fourier series becomes: 

𝑓(𝑡) even ⟺ real cos series ⟺ 𝑐𝑘 real 

𝑓(𝑡) odd ⟺ real sin series ⟺ 𝑐𝑘 purely imaginary 

We determine the complex Fourier coefficients using the integrals: 

𝑐0 =
1

2
𝑎0 =

1

2𝜋
∫ 𝑓(𝑥)𝑑𝑥

𝜋

−𝜋

 

𝑐𝑘 =
𝑎𝑘 − 𝑖 ∙ 𝑏𝑘

2
=

1

2𝜋
∫ 𝑓(𝑥)𝑐𝑜𝑠(𝑘𝑥)𝑑𝑥

𝜋

−𝜋

−
𝑖

2𝜋
∫ 𝑓(𝑥)𝑠𝑖𝑛(𝑘𝑥)𝑑𝑥

𝜋

−𝜋

= 

1

2𝜋
∫ 𝑓(𝑥)(𝑐𝑜𝑠(𝑘𝑥) − 𝑖𝑠𝑖𝑛(𝑘𝑥))𝑑𝑥

𝜋

−𝜋

=6.1 

1

2𝜋
∫ 𝑓(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥

𝜋

−𝜋

 

We get the following theorem: 

For each 2𝜋 periodic function  𝑓(𝑥), we get the Fourier series in complex form: 

𝑓(𝑥) = ∑ 𝑐𝑘𝑒𝑖𝑘𝑥 

∞

𝑘=−∞

 

The coefficients are: 

𝑐𝑘 =
1

2𝜋
∫ 𝑓(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥

𝜋

−𝜋

    𝑘 = 0, ±1, ±2, … 

For time-dependent functions, we use the substitution 𝑥 = 𝜔𝑡 and get the theorem: 

Any oscillation 𝑓(𝑡) with angular frequency 𝜔 and oscillation duration 𝑇 =
2𝜋

𝜔
 can be represented as 

a convergent series: 

𝑓(𝑡) = ∑ 𝑐𝑘𝑒𝑖𝑘𝜔𝑡 

∞

𝑘=−∞

, 𝜔 =
2𝜋

𝑇
 

The coefficients are: 

𝑐𝑘 =
1

𝑇
∫ 𝑓(𝑡)𝑒−𝑖𝑘𝜔𝑡𝑑𝑡

𝑇
2

−
𝑇
2

    𝑘 = 0, ±1, ±2, … 

Note: If we integrate we treat the imaginary unit 𝑖 like a constant. 

16 
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Example: 

𝑓(𝑡) = {
0 𝑓𝑜𝑟 −

𝑇

2
≤ 𝑡 < 0

𝐴    𝑓𝑜𝑟      0 < 𝑡 <
𝑇

2

 

𝑓(𝑇 + 𝑡) = 𝑓(𝑡) 

 

We calculate: 

𝑐0 =
1

𝑇
∫ 𝑓(𝑡)𝑑𝑡

𝑇
2

−
𝑇
2

=
1

𝑇
∫ 𝐴𝑑𝑡

𝑇
2

0

=
𝐴

2
 

𝑐𝑘 =
1

𝑇
∫ 𝑓(𝑡)𝑒−𝑖∙𝑘𝜔𝑡𝑑𝑡

𝑇
2

−
𝑇
2

=
1

𝑇
∫ 𝐴𝑒−𝑖∙𝑘𝜔𝑡𝑑𝑡

𝑇
2

0

= −
𝐴

𝑖𝑘𝜔𝑇
[𝑒−𝑖∙𝑘𝜔𝑡]

0

𝑇
2 = 

−
𝐴

𝑖 ∙ 𝑘𝜔𝑇
(𝑒−𝑖∙𝑘𝜔

𝑇
2 − 1) =

𝑖 ∙ 𝐴

2𝜋𝑘
(𝑒−𝑖∙𝑘𝜋 − 1) 

We rewrite 𝑒−𝑖𝑘𝜋: 

𝑒−𝑖∙𝑘𝜋 = 𝑐𝑜𝑠(𝑘𝜋) − 𝑖 ∙ 𝑠𝑖𝑛(𝑘𝜋) = (−1)𝑘 

We get: 

𝑐𝑘 =
𝑖 ∙ 𝐴

2𝜋𝑘
((−1)𝑘 − 1) = {

0      𝑓𝑜𝑟 𝑘 = ±2, ±4, …

−
𝑖 ∙ 𝐴

𝜋𝑘
        𝑓𝑜𝑟 𝑘 = ±1, ±3, …

 

The result is the complex Fourier series: 

𝑓(𝑡) =
𝐴

2
−

𝑖 ∙ 𝐴

𝜋
𝑒𝑖𝜔𝑡 +

𝑖 ∙ 𝐴

𝜋
𝑒−𝑖𝜔𝑡 −

𝑖 ∙ 𝐴

3𝜋
𝑒𝑖3𝜔𝑡 +

𝑖 ∙ 𝐴

3𝜋
𝑒−𝑖3𝜔𝑡 −

𝑖 ∙ 𝐴

5𝜋
𝑒𝑖5𝜔𝑡 +

𝑖 ∙ 𝐴

5𝜋
𝑒−𝑖5𝜔𝑡 ∓ ⋯ 

=
𝐴

2
+

𝐴

𝜋
∑

𝑖 ∙ (−𝑒𝑖(2𝑘−1)𝜔𝑡 + 𝑒−𝑖(2𝑘−1)𝜔𝑡)

(2𝑘 − 1)

∞

𝑘=1

 

From the complex Fourier series, we get the real Fourier series by transforming the complex 

summands: 

𝑖 ∙ (−𝑒𝑖(2𝑘−1)𝜔𝑡 + 𝑒−𝑖(2𝑘−1)𝜔𝑡) = 
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𝑖 ∙ (−𝑐𝑜𝑠((2𝑘 − 1)𝜔𝑡) − 𝑖 ∙ 𝑠𝑖𝑛((2𝑘 − 1)𝜔𝑡) + 𝑐𝑜𝑠((2𝑘 − 1)𝜔𝑡) − 𝑖 ∙ 𝑠𝑖𝑛((2𝑘 − 1)𝜔𝑡)) = 

2𝑠𝑖𝑛((2𝑘 − 1)𝜔𝑡) 

We get: 

𝑓(𝑡) =
𝐴

2
+

𝐴

𝜋
∑

𝑖 ∙ (−𝑒𝑖(2𝑘−1)𝜔𝑡 + 𝑒−𝑖(2𝑘−1)𝜔𝑡)

(2𝑘 − 1)

∞

𝑘=1

= 

𝐴

2
+

2𝐴

𝜋
∑

(2𝑘 − 1)𝜔𝑡

(2𝑘 − 1)

∞

𝑘=1

= 

𝐴

2
+

2𝐴

𝜋
(𝑠𝑖𝑛(𝜔𝑡) +

𝑠𝑖𝑛(3𝜔𝑡)

3
+

𝑠𝑖𝑛(5𝜔𝑡)

5
+ ⋯ ) 

We compare with the square wave oscillation on S. 12, there we had 𝐴 = 1: 

𝑓(𝑡) =
1

2
+

2

𝜋
(𝑠𝑖𝑛(𝜔𝑡) +

1

3
𝑠𝑖𝑛(3𝜔𝑡) +

1

5
𝑠𝑖𝑛(5𝜔𝑡) + ⋯ ) 

Both calculation methods give the same result. 

Fourier-Integral 
Periodic oscillations can be described as Fourier series: 

𝑓(𝑡) = ∑ 𝑐𝑘𝑒𝑖𝑘𝜔0𝑡  

∞

𝑘=−∞

, 𝜔0 =
2𝜋

𝑇
 

𝑐𝑘 =
1

𝑇
∫ 𝑓(𝑡)𝑒−𝑖𝑘𝜔0𝑡𝑑𝑡

𝑇
2

−
𝑇
2

    𝑘 = 0, ±1, ±2, … 

In the spectra, the fundamental frequency corresponds to 𝜔0 the 

distance between successive spectral lines.  

We set for the distance 𝜔0 = ∆𝜔 and rewrite: 

𝜔0 =
2𝜋

𝑇
→

1

𝑇
=

∆𝜔

2𝜋
 

𝜔𝑘 = 𝑘𝜔0 

We get equivalent equations: 

𝑓(𝑡) =
1

2𝜋
∑ (𝑐𝑘 ∙ 𝑇)𝑒𝑖𝜔𝑘𝑡  ∆𝜔

∞

𝑘=−∞

 

𝑐𝑘 =
1

𝑇
∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑘𝑡𝑑𝑡

𝑇
2

−
𝑇
2

    𝑘 = 0, ±1, ±2, … 

We increase the period of the periodic function and finally get a nonperiodic function, which we can 

describe with a Fourier series. 

𝑇 → ∞, ∆𝜔 → 0 

17 

18 



Fourier series 

D. Kriesell  page 17 of 25 

Formally, we obtain from (17) and (18):  

𝑐𝑘 ∙ 𝑇 → ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑘𝑡𝑑𝑡

𝑇
2

−
𝑇
2

 
𝑆(𝜔) → ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

 

𝑓𝑇(𝜏) →
1

2𝜋
∑ (𝑐𝑘 ∙ 𝑇)𝑒𝑖𝜔𝑘𝑡 ∆𝜔

∞

𝑘=−∞

 𝑓(𝑡) →
1

2𝜋
∫ 𝑆(𝜔)𝑒𝑖𝜔𝑡𝑑𝑡

∞

−∞

 

 

Note: The method corresponds to the method used in developing of the integral. From a sum of 

rectangles, the continuous integral is created by refining the rectangles. 

Example.  

 

The graph shows a periodic square wave of duration 𝑇𝑖 = 2𝑇1 and the period 𝑇 = 2𝑇0. 

𝑓(𝑡) = {
1    𝑓𝑜𝑟             0 ≤ |𝑡| < 𝑇1

0    𝑓𝑜𝑟           𝑇1 < |𝑡| < 𝑇0
 

𝑓(𝑡 + 𝑇) = 𝑓(𝑡) 

From (18) we determine the Fourier coefficients: 

𝑐𝑘 =
1

𝑇
∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑘𝑡𝑑𝑡

𝑇
2

−
𝑇
2

    𝑘 = 0, ±1, ±2, … 

For 𝑐0 we obtain: 

𝑐0 =
1

2𝑇0
∫ 𝑓(𝑡)𝑑𝑡

𝑇0

−𝑇0

=
1

2𝑇0

[𝑡]−𝑇1

𝑇1 =
2𝑇1

2𝑇0
=

𝑇1

𝑇0
 

We calculate the coefficients 𝑐𝑘. We use: 

𝑇 = 2𝑇0, 𝜔𝑘 = 𝑘𝜔0, 𝜔 =
𝜋

𝑇0
, 𝑓(𝑡) = 1 𝑓ü𝑟 0 ≤ |𝑡| < 𝑇1 

𝑐𝑘 =
1

𝑇
∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑘𝑡𝑑𝑡

𝑇
2

−
𝑇
2

⟹ 

𝑐𝑘 =
1

2𝑇0
∫ 𝑒−𝑖𝑘𝜔0𝑡𝑑𝑡

𝑇1

−𝑇1

= −
1

2𝑇0𝑖𝑘𝜔0
[𝑒−𝑖𝑘𝜔0𝑡]

−𝑇1

𝑇1 = 

21 

19 

20 
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−
1

2𝑇0𝑖𝑘𝜔0
(𝑒−𝑖∙𝑘𝜔0𝑇1 − 𝑒𝑖∙𝑘𝜔0𝑇1) =

2𝑖

2𝑇0𝑖𝑘𝜔0
𝑠𝑖𝑛(𝑘𝜔0𝑇1) = 

1

𝑇0𝑘𝜔0
𝑠𝑖𝑛 (𝑘

2𝜋

2𝑇0
𝑇1) =

1

𝑇0𝑘
2𝜋
2𝑇0

𝑠𝑖𝑛 (𝑘𝜋
𝑇1

𝑇0
) = 

=
1

𝜋𝑘
𝑠𝑖𝑛 (𝑘𝜋

𝑇1

𝑇0
) 

We get:  

𝑐𝑘 =
1

𝜋𝑘
𝑠𝑖𝑛 (𝑘𝜋

𝑇1

𝑇0
) 

Using the coefficients, we write the Fourier series: 

𝑓(𝑡) =
1

2𝜋
∑ 𝑐𝑘𝑒𝑖𝜔𝑘𝑡 ∆𝜔

∞

𝑘=−∞

= 

𝑇1

𝑇0
+

2𝑇0

2𝜋
∑

1

𝜋𝑘
𝑠𝑖𝑛 (𝑘𝜋

𝑇1

𝑇0
) 𝑒𝑖𝜔𝑘𝑡𝜔0

∞

𝑘=−∞

= 

𝑇1

𝑇0
+

𝑇0𝜔0

𝜋2
∑

1

𝑘
𝑠𝑖𝑛 (𝑘𝜋

𝑇1

𝑇0
) 𝑒𝑖𝑘𝜔0𝑡  

∞

𝑘=−∞

= 

𝑇1

𝑇0
+

1

𝜋
∑

1

𝑘
𝑠𝑖𝑛 (𝑘𝜋

𝑇1

𝑇0
) 𝑒𝑖𝑘𝜔0𝑡  

∞

𝑘=−∞

= 

𝑇1

𝑇0
+

1

𝜋
(𝑠𝑖𝑛 (𝜋

𝑇1

𝑇0
) 𝑒𝑖𝜔0𝑡 − 𝑠𝑖𝑛 (−𝜋

𝑇1

𝑇0
) 𝑒−𝑖𝜔0𝑡 +

1

2
𝑠𝑖𝑛 (2𝜋

𝑇1

𝑇0
) 𝑒𝑖2𝜔0𝑡 −

1

2
𝑠𝑖𝑛 (−2𝜋

𝑇1

𝑇0
) 𝑒−𝑖2𝜔0𝑡

+
1

3
𝑠𝑖𝑛 (3𝜋

𝑇1

𝑇0
) 𝑒𝑖3𝜔0𝑡 −

1

2
𝑠𝑖𝑛 (−3𝜋

𝑇1

𝑇0
) 𝑒−𝑖3𝜔0𝑡 ± ⋯ ) = 

𝑇1

𝑇0
+

1

𝜋
(𝑠𝑖𝑛 (𝜋

𝑇1

𝑇0
) 𝑒𝑖𝜔0𝑡 + 𝑠𝑖𝑛 (𝜋

𝑇1

𝑇0
) 𝑒−𝑖𝜔0𝑡 +

1

2
𝑠𝑖𝑛 (2𝜋

𝑇1

𝑇0
) 𝑒𝑖2𝜔0𝑡 +

1

2
𝑠𝑖𝑛 (2𝜋

𝑇1

𝑇0
) 𝑒−𝑖2𝜔0𝑡

+
1

3
𝑠𝑖𝑛 (3𝜋

𝑇1

𝑇0
) 𝑒𝑖3𝜔0𝑡 +

1

2
𝑠𝑖𝑛 (3𝜋

𝑇1

𝑇0
) 𝑒−𝑖3𝜔0𝑡 ± ⋯ ) = 

𝑇1

𝑇0
+

1

𝜋
(𝑠𝑖𝑛 (𝜋

𝑇1

𝑇0
) (𝑒𝑖𝜔0𝑡 + 𝑒−𝑖𝜔0𝑡) +

1

2
𝑠𝑖𝑛 (2𝜋

𝑇1

𝑇0
) (𝑒𝑖2𝜔0𝑡 + 𝑒−𝑖2𝜔0𝑡)

+
1

3
𝑠𝑖𝑛 (3𝜋

𝑇1

𝑇0
) (𝑒𝑖3𝜔0𝑡 + 𝑒−𝑖3𝜔0𝑡) + ⋯ ) = 

𝑇1

𝑇0
+

1

𝜋
(

2

1
𝑠𝑖𝑛 (𝜋

𝑇1

𝑇0
) 𝑐𝑜𝑠(𝜔0𝑡) +

2

2
𝑠𝑖𝑛 (2𝜋

𝑇1

𝑇0
) 𝑐𝑜𝑠(2𝜔0𝑡) +

2

3
𝑠𝑖𝑛 (3𝜋

𝑇1

𝑇0
) 𝑐𝑜𝑠(3𝜔0𝑡) + ⋯ ) = 

𝑇1

𝑇0
+

2

𝜋
∑

1

𝑘

∞

𝑘=1

𝑠𝑖𝑛 (𝑘𝜋
𝑇1

𝑇0
) 𝑐𝑜𝑠(𝑘𝜔0𝑡) 

  

22 
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We take a look at the approximation 𝑠15 for the ratio 
𝑇1

𝑇0
=

1

2
 and 𝑇0 = 1. 

We get 𝜔0: 

𝜔0 =
2𝜋

𝑇
=

2𝜋

2𝑇0
= 𝜋 

𝑠15 =
𝑇1

𝑇0
+

2

𝜋
∑

1

𝑘

15

𝑘=1

𝑠𝑖𝑛 (𝑘𝜋
1

2
) 𝑐𝑜𝑠(𝑘𝜔0𝑡) = 

1

2
+

2

𝜋
(𝑐𝑜𝑠(𝜔0𝑡) −

1

3
𝑐𝑜𝑠(3𝜔0𝑡) +

1

5
𝑐𝑜𝑠(5𝜔0𝑡) −

1

7
𝑐𝑜𝑠(7𝜔0𝑡) + ⋯ −

1

15
𝑐𝑜𝑠(15𝜔0𝑡)) 

 

In order to prepare for the limes 𝑇 → ∞ , we take a look at the spectrum for different ratios of  

𝑛 =
𝑇0

𝑇1
. 𝑇0 is the duration of the period, if 𝑇0 it becomes larger, 𝑛 grows also. 

(21) and (2 2) become: 

𝑐0 =
1

𝑛
, 𝑐𝑘 =

1

𝜋𝑘
𝑠𝑖𝑛 (𝑘𝜋

𝑇1

𝑇0
) 

The graphs have the following appearance for different 𝑛: 

 

 

The larger 𝑛, the wider and flatter the graphs.  

We normalize the spectra by multiplying with the period duration and determine 𝑐𝑘 ∙ 𝑇.  

𝑛 = 2 𝑛 = 4 

𝑛 = 8 𝑛 = 16 
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Again, we have 𝑇 = 2𝑇0, 𝜔𝑘 = 𝑘𝜔0, 𝜔 =
𝜋

𝑇0
 and get: 

𝑐𝑘 ∙ 𝑇 =
𝑇

𝜋𝑘
𝑠𝑖𝑛 (𝑘𝜋

𝑇1

𝑇0
) =

2𝑇0

𝜋𝑘
𝑠𝑖𝑛(𝑘𝜔0𝑇1) = 

2

𝜔𝑘
𝑠𝑖𝑛(𝜔𝑘𝑇1) =; 

All spectral lines have the same envelope if we use the parameter 𝑢 ≔ 𝜔𝑘𝑇1: 

2𝑇1 ∙
𝑠𝑖𝑛(𝜔𝑘𝑇1)

𝜔𝑘𝑇1
 

𝐹(𝑢) = 2𝑇1

𝑠𝑖𝑛(𝑢)

𝑢
 

The envelope has the zeros 𝑢 = ±𝜋, ±2𝜋, … 

We get the following representation on 𝑘𝜔0 the abscissa (x-axis). 

 

 

The number of spectral lines between the zero crossings is growing. The first zero digit belongs to 𝑛-

th fundamental frequency 𝜔0. 

Limes 
We now consider 𝑇 → ∞. The discrete sequence of spectral lines {𝑐𝑘 ∙ 𝑇} changes to the continuous 

function 𝐹(𝑢): 

𝑢 = 𝜔𝑘𝑇1 → 𝜔𝑇1 

{𝑐𝑘 ∙ 𝑇}𝑇→∞ → 𝐹(𝑢) = 2𝑇1

𝑠𝑖𝑛(𝑢)

𝑢
 

𝐹(𝑢) = 𝐹(𝜔𝑇1) is called spectral density and denoted by 𝑆(𝜔). 

We go back to (19) and (20). 

We define the relationship between the function 𝑆(𝜔) and 𝑓(𝑡): 

𝑆(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞

 

𝑓(𝑡) =
1

2𝜋
∫ 𝑆(𝜔)𝑒𝑖𝜔𝑡𝑑𝑡

∞

−∞

 

2 ∙ 𝜔0 4 ∙ 𝜔0 

8 ∙ 𝜔0 16 ∙ 𝜔0 

23 
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We call the spectral density 𝑆(𝜔) of the time signal 𝑓(𝑡). 

The Integral  

1

2𝜋
∫ 𝑆(𝜔)𝑒𝑖𝜔𝑡𝑑𝑡

∞

−∞

 

is called the Fourier integral.  

We refer to the relationship between 𝑓(𝑡) and 𝑆(𝜔) as the Fourier transform. The function in the 

time domain 𝑓(𝑡) (original) corresponds to the function 𝑆(𝜔) in the frequency domain (image). Such 

mappings between functions we call functional transformations. 

Up to now we have the following results: 

- If a function 𝑓(𝑡) is periodic, we get a discrete spectrum, {𝑐𝑘} 

- If a function is not periodic, we get a continuous spectrum 𝑆(𝜔). 

The spectral density of our example: 

𝑆(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞

 

The definition (square wave momentum of height 𝐴, aperiodic function): 

𝑓(𝑡) = {
𝐴    𝑓𝑜𝑟       0 ≤ |𝑡| < 𝑇1

0                        𝑒𝑙𝑠𝑒      
 

We calculate 𝑆(𝜔): 

𝑆(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞

= 

∫ 𝐴𝑒−𝑖𝜔𝑡𝑑𝑡
𝑇1

−𝑇1

= −
𝐴

𝑖𝜔
[𝑒−𝑖𝜔𝑡]

−𝑇1

𝑇1 = 

−
𝐴

𝑖𝜔
(𝑒−𝑖𝜔𝑇1 − 𝑒𝑖𝜔𝑇1) = 

𝐴

𝑖𝜔
(2𝑖 ∙ 𝑠𝑖𝑛(𝜔𝑇1)) = 

2𝐴

𝜔
𝑠𝑖𝑛(𝜔𝑇1) 

We extend numerator and nominator by 𝑇1 and get: 

2𝐴𝑇1

𝑠𝑖𝑛(𝜔𝑇1)

𝜔𝑇1
 

For 𝐴 = 1 this is the same function we got with (23) by making the transition 𝑇 → ∞ . 
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Generalized function 

Heaviside step function 
We define the Heaviside step function: 

𝐻(𝑡) = {
1 𝑓𝑜𝑟 𝑡 > 0
0 𝑓𝑜𝑟 𝑡 < 0

 

The Heaviside step function allows us to represent 

piecewise defined functions in closed form. 

Example 

The rectangle function is defined as: 

𝑓(𝑡) = {
1    𝑓𝑜𝑟       |𝑡| < 𝑇1

0                𝑒𝑙𝑠𝑒      
 

We write this as: 

𝑓(𝑡) = 𝐻(𝑡 + 𝑇) − 𝐻(𝑡 − 𝑇) 

         

 

Dirac 𝛿 function 
Note: Dirac momentum or the Dirac function is not a mathematically precise definition, not a 

classical function. 

We start with a rectangle function 𝑑𝜀(𝑡) of time duration 휀 and height 
1

𝜀
. 

The area of the function 𝑑𝜀(𝑡) is 1. 

We get the Dirac function by the limes:  

𝛿(𝑡) = lim
𝜀→0

𝑑𝜀(𝑡) 
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Since the area remains the same, we get the Dirac "function" 𝛿(𝑡): 

𝛿(𝑡) = {
∞    𝑓𝑜𝑟  𝑡 = 0
0        𝑒𝑙𝑠𝑒      

 

If we need the Dirac function for 𝑡0 ≠ 0, we write: 

𝛿(𝑡 − 𝑡0) = {
∞    𝑓𝑜𝑟  𝑡 = 𝑡0

0        𝑒𝑙𝑠𝑒      
 

Usually we represent the Dirac function by an arrow of length 1 .  

 

The Dirac function has the property: 

∫ 𝛿(𝑡)𝑑𝑡
∞

−∞

= 1 

By help of the Dirac function we can extract specific values of other functions: 

𝑓(𝑡) ∙ 𝛿(𝑡 − 𝑡0) = 𝑓(𝑡0) ∙ 𝛿(𝑡 − 𝑡0) 

∫ 𝑓(𝑡) ∙ 𝛿(𝑡 − 𝑡0)𝑑𝑡
∞

−∞

= 𝑓(𝑡0) 

Example: 

∫ 𝑠𝑖𝑛(𝑡) ∙ 𝛿 (𝑡 −
𝜋

2
) 𝑑𝑡

∞

−∞

= 𝑠𝑖𝑛 (
𝜋

2
) 

∫ 𝑒−𝑎𝑡 ∙ 𝛿(𝑡)𝑑𝑡
∞

−∞

= 𝑒0 

We have a relationship between Heaviside and Dirac function, even though if it is not precise in the 

classical sense: 

𝛿(𝑡) ≈
𝑑𝐻(𝑡)

𝑑𝑡
 

𝐻(𝑡) ≈ ∫ 𝛿(𝜏)
𝑡

−∞

𝑑𝜏 

Example: 

We use the function 𝑢(𝑡): 

𝑢(𝑡) = ((1 +
𝑡

𝑇
) (𝐻(𝑡 + 𝑇) − 𝐻(𝑡))) + ((1 −

𝑡

𝑇
) (𝐻(𝑡) − 𝐻(𝑡 − 𝑇))) 
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For value 𝑇 = 2 we get the following picture: 

 

We obtain the derivatives by differentiating with respect to time. 

�̇�(𝑡) =
𝑑

𝑑𝑡
𝑢(𝑡) =

𝑑

𝑑𝑡
((1 +

𝑡

𝑇
) (𝐻(𝑡 + 𝑇) − 𝐻(𝑡)) + (1 −

𝑡

𝑇
) (𝐻(𝑡) − 𝐻(𝑡 − 𝑇))) = 

1

𝑇
(𝐻(𝑡 + 𝑇) − 𝐻(𝑡)) + (1 +

𝑡

𝑇
) (𝛿(𝑡 + 𝑇) − 𝛿(𝑡)) −

1

𝑇
(𝐻(𝑡) − 𝐻(𝑡 − 𝑇)) + (1 −

𝑡

𝑇
) (𝛿(𝑡) − 𝛿(𝑡 − 𝑇)) = 

1

𝑇
𝐻(𝑡 + 𝑇) −

1

𝑇
𝐻(𝑡) + 𝛿(𝑡 + 𝑇) − 𝛿(𝑡) +

𝑡

𝑇
𝛿(𝑡 + 𝑇) −

𝑡

𝑇
𝛿(𝑡) −

1

𝑇
𝐻(𝑡) +

1

𝑇
𝐻(𝑡 − 𝑇) + 𝛿(𝑡) − 𝛿(𝑡 − 𝑇) −

𝑡

𝑇
𝛿(𝑡) +

𝑡

𝑇
𝛿(𝑡 − 𝑇) = 

1

𝑇
(𝐻(𝑡 + 𝑇) − 𝐻(𝑡) − 𝐻(𝑡) + 𝐻(𝑡 − 𝑇)) +

𝑡

𝑇
(𝛿(𝑡 + 𝑇) − 𝛿(𝑡) − 𝛿(𝑡) + 𝛿(𝑡 − 𝑇)) + 𝛿(𝑡 + 𝑇) − 𝛿(𝑡) + 𝛿(𝑡) − 𝛿(𝑡 − 𝑇) = 

1

𝑇
(𝐻(𝑡 + 𝑇) − 2𝐻(𝑡) + 𝐻(𝑡 − 𝑇)) +

𝑡

𝑇
(𝛿(𝑡)(𝑡 + 𝑇) − 2𝛿(𝑡) + 𝛿(𝑡 − 𝑇)) + 𝛿(𝑡 + 𝑇) − 𝛿(𝑡 − 𝑇) = 

1

𝑇
(𝐻(𝑡 + 𝑇) − 2𝐻(𝑡) + 𝐻(𝑡 − 𝑇)) +

1

𝑇
(𝑡𝛿(𝑡)(𝑡 + 𝑇) − 2𝑡𝛿(𝑡) + 𝑡𝛿(𝑡 − 𝑇)) + 𝛿(𝑡 + 𝑇) − 𝛿(𝑡 − 𝑇) = 

1

𝑇
(𝐻(𝑡 + 𝑇) − 2𝐻(𝑡) + 𝐻(𝑡 − 𝑇)) +

1

𝑇
(−𝑇𝛿(𝑡)(𝑡 + 𝑇) − 2 ∙ 0 ∙ 𝛿(𝑡) + 𝑇𝛿(𝑡)(𝑡 − 𝑇)) + 𝛿(𝑡 + 𝑇) − 𝛿(𝑡 − 𝑇) = 

1

𝑇
(𝐻(𝑡 + 𝑇) − 2𝐻(𝑡) + 𝐻(𝑡 − 𝑇) − 𝑇𝛿(𝑡)(𝑡 + 𝑇) + 𝑇𝛿(𝑡)(𝑡 − 𝑇) + 𝑇𝛿(𝑡 + 𝑇) − 𝑇𝛿(𝑡 − 𝑇)) = 

1

𝑇
(𝐻(𝑡 + 𝑇) − 2𝐻(𝑡) + 𝐻(𝑡 − 𝑇)) 

 

The second derivative �̈�(𝑡): 

�̈�(𝑡) =
𝑑

𝑑𝑡
(

1

𝑇
(𝐻(𝑡 + 𝑇) − 2𝐻(𝑡) + 𝐻(𝑡 − 𝑇))) = 

1

𝑇
(𝛿(𝑡 + 𝑇) − 2𝛿(𝑡) + 𝛿(𝑡 − 𝑇)) 
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The first derivative has discontinuities where the function has edges. 

The discontinuities of the first derivative have "infinite" slope. 


