The Free Particle

This paper deals with the free particle in quantum mechanics. It follows Griffiths, 2.4.

Hope | can help you learning quantum mechanics.
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The Free Particle

The time-independent Schrédinger equation for the free particle without any potential V' (x):

h?  d?
—ﬁ'ﬁlp(x) =E-(x)

We rearrange:

2 2m

d
W00 = 27 E ()

o]

2mEk=+ 2m

2 =
We use k* = T t—

2

d
TV =k P
Note: k depends of the energy.
Note: The energy can be any positive value, E > 0.
General Solution:
P =4
Note: Together with (x) = A - e™*¥ also Y (x) = B - e~ fulfills the differential equation
L@ = k2 p().

Using that every linear combination of possible solutions is a solution again we concentrate on
P(x) = A+ e™™ with —oo < k < oo making things easier.

P(x) = A- e is the stationary solution.

We add (multiply) the standard time dependence:

>

=it

25,2

h2k
We use =E
2m

We have:

2
_ i - i(k o
Yr(x,t) =A-e" e 2m =A-e

This is a particular solution for a specific “energy” k.
If we fix the position, we get a wave going with time.
If we fix the time, we get a wave going with position.

The wavelength:

The momentum according to de Broglie:
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The Free Particle

The range over all k gives the general solution:

hk?

=4[ “ o) - (Tt g

Note: This is a wave packet.

From this wave packet we get y¥(x, 0):

P(x,0)=A fm¢(k) L)

We have to calculate ¢ (k).

This is made by Fourier transformation (Plancherel’s theorem):
* —ikx 1 * ikx
F(k) = f(x)-et dx@f(x)zﬁ- F(k)-e"*dk
Note: This is a method often used by physicists and mathematicians transforming a problem into a

space (where it is easier to solve) and then transform it back to the original space.

With this method we get:

o) = j (6, 0) - e rdx

The complete wave function:

2

w0 =g-a- [ ga0-e ) ar

This expression shows: We have given a spatial distribution 1 (x, 0). We transform this by help of the
Fourier transform into the energy space. The energy space is needed to bring dynamics into life and
to get the time dependent wave function ¥ (x, t).

Example 1

A free particle initially localized in the range —a < x < a attime t = 0:

_ (A —a<x<a
l/)(x,O)—{O else

Note: A,a e R,4,a >0

Step 1, normalization:

1= fool/)(x, 0)yY*(x,0)dx =

a a
f (A-A)dx:Azf dx=2-a-A?
-a

—-a

We get:
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The Free Particle

Step 2, calculation of ¢(k):

_L ¢ —ikx _
¢(k)—mf_ae dx =

e—ka

—ik

a

1

V2a —a

1 e—ika _ eika
vz—< ~ik >‘
1 (—z-lm(eika))

V2a —ik

1 <—2 e sin(ka)) B
V2a —ik -

sin(ka) =

2
kv2a

L2
" asm(a)

Step 3, the general solution:

Y(x,t) = 1.1 \/g : j-w sin(ka) - ei(kx_gim't)dk =

2k

11 ,1 © (K-t
— % |7a f_msm(ka) e dk

Unfortunately, this integral cannot be solved analytically but numerically.

Example 2

The gaussian wave packet. A free particle has the initial wave function at time t = 0:

Y(x,0)=A- g—ax’
Note:4,a e R,A,a>0

Step 1, normalization:

ey R e

N[ =
A=

NORNE

We get ¥(x, 0):

NI

2

b0 = (22)} oo

A

2a
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The Free Particle

Step 2, calculation of ¢(k) according to Griffith, completing the square.

A2+ 2AB+B?*=(A+B)* -
A? + 2AB = (A + B)? — B?

We have the integral from the left, dealing with the exponent only:

1

2a\4 [© )
p(k) = <—> f e—(@x®+ikx) . gy - ax? + jkx
T —0o
We set:
A% = ax? - A =+ax
2AB = ikx
B? =?
We calculate:
ikx ik
2AB = ikx = 2/JaxB - B = =
2Vax  2Va
B? = K
" 4q
We get:
ik \* k2
ax? + ikx = (\/Ex+—) -
2vVa 4q
We use:
ik
=Vax + —
We need dx:
dy dy
RECAp— dx = —=
dx Va - dx Va

We rewrite the integral:

co co kZ
f e~ (ax?+ikx) . 1, = f e—y2+m . ﬂ =
—o0 -0

Va
1 (® ..k 1 K2
V435 . gy = — p4a - T =
— e 4a - d _—e4a-\/7?_
\/af_m Y=1a
T k?
—e4a
a

Note: This is the result when you look at Wikipedia.

We get ¢ (k):

=

o0 = (2

(0.0)
—ax? —i
f e X" .o lkxdxz
[ —00
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The Free Particle

Note: ¢p(k) is real function.
Step 3, the general solution.

We remember:

1 (00}
=5 A [ gU-e

We calculate:
1 zn% © g2 . hk?
l,b(x,t) ZE. (;> .fooe‘ﬁ_el(kx—ﬁ.t)dk _
1 % © k2 .(k _h_kz,t)
(ra) | o7V
— 00

We calculate the exponent:

2 2
S atie)

ke + ik k2 t)=
exp e ikx lzm =
( (g 3 1) = #2)
exp 12 om ikx
We proceed:

[ .
(;)5] e‘(""z(rlcﬁ%'t)“'kx)dk =

23m3a

We have the coefficient with k?2:
1 in
(st 2m)
We have the coefficient with k:
—ix

We get the value of the integral (Wikipedia):

1 | ih
4a

( & )
T 1, 2ih
j—.e 1,2t
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The Free Particle

We calculate y(x, t):

1 __x?
L
4a

23m3a _|_Zl_h ¢
1 2
( 1 )4.\/—n e %Jr%'t =
2373a m + 2aiht -
4am

1 X
( 1 )1 4ammn 1,20h,
S— . ——————————— e a m o
23m3a m + 2aiht

24q2 T1,2in
e E+%'t =
237r a m+ 2alht

Result:

__ax?
vosr = () 222
xt)=|—|  ————

n 2aint

1+m

We calculate |y (x, t)|? = ¥ (x, )P*(x, t):

i e >

1 _Zax2< 211ht>
2a7 1+(5)

Zaht
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The Free Particle

We plot [ (x,t)|?fort = 0anda = 1:

1
2\2 2
x,t)|? :(—) ceTX
0P, = (-
T wix,0)142
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Note: For t = 0 A, m vanish with the exception m # 0.

We plot [Y(x,t)|? fort =10 and a, i, m = 1:

.
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