Hilbert

This paper shows the way from a (real) function f(x) to a function in an infinite dimensional Hilbert
space |f) suitable for the inner product (6]f) and the Dirac delta. It can be seen as a supplement to
the paper Hilbert space you find on this website.

It follows Andrea Aiello:

https://mpl.mpg.de/fileadmin/user upload/Marquardt Division/Teaching/Lecture 13.pdf

Hope I can help you with learning Quantum mechanics.
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Hilbert

Prerequisites

Vector notation
We write vectors in bra-ket notation.

|u) corresponds to a column vector. We assume the vector 1 has n dimensions and write:

Uq
()
uTl

(u| corresponds to a row vector. We assume the vector U has n dimensions and write:

Ul = W .. up)

Note: For real vectors we have |u) = (u|. For complex valued vectors we need to use the complex
conjugated: |u) = (u*|.

We write the inner product % - ¥ as:
u-v=(ulv)
We write the orthonormal standard basis:
(1,0, ...) = |eg), (0,1,0,...) = |ey), (0,0,1,0, ...) = |ey),

We can decompose every vector into a sum:

n-1
1) = (utleo) + -+ {ulen 1) = ) {ule)
j=0

Note: (u|e;) can be seen as the projection of the vector (u| onto the basis vector |e;).
Note: any other set of orthonormal basis vectors would work the same way.

Length of a vector
In order to describe the length of a vector 1 we use the [? norm ||]| to get its length:

Il =/ {ulu)
If the vector space is of finite dimension n then the length is finite:
ldll < n - max(lw;|*)

Riemann integral
We remember the task calculating the area below a continuous
function f(x) between the boundaries a and b.*

We start by quantizing the function f(x) — f(x;) and calculate the
area as the sum of rectangles Ax - f(x;):

f(x)
Af ) = Z Ax - f(x;)
7

1 Graphic by Vladimir llievski, https://isquared.digital/blog/2020-05-27-riemann-integration/
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By refining the partition, the number of rectangles grows and the width shrinks but the product i - Ax
remains constant:

i-Ax=b—a
We get:
n b
lim ) f(x)- -Ax = f f(x)dx
e a

Note: What we need is that an infinite sum gives a finite value.

Mean value theorem for integrals
If f(x) is continuous over an interval [a, b], then there is at least one point ¢ € [a, b] such that

1 b
f© = 5= | Foodx

Graphically:

a

https://chitowntutoring.com/wp-content/uploads/mean-value-theorem-for-inteqrals1-1200x675.png

You may find more information at:

https://math.libretexts.org/Courses/Cosumnes _River College/Math 401%3A Calculus Il -
Integral Calculus/01%3A Applications of Integration/1.09%3A The Mean Value Theorem for Integrals

End prerequisites
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Quantizing functions
We use a real function f(x) defined over the interval [a, b].

We build an equal distributed partition of [a, b]:

| | | | | | | | | | »
| [ [ [ [ [ [ [ | g

[
a a, a, as a4 as Ag a7 Aag b

Note: we could rename a = ag, b = a, with n = 9 in the case shown above.

The length of one partition depends on the number n of intervals:

b—a
n

Ax=a;—a;_4 =

With an equal distribution we get the center x; of the intervals:

+Ax
X;i =a; +—
l L 2

Weusea; =ay+i-Ax,i=0,..,n—1.

We get:
. X 2:0i"Ax + Ax
Xi=ayti-Mx+—=aq+———=
2 2
2i+1
a0+!-Ax

2

We get a discrete representation of f(x):

fx) = f(x0), f(x1), e, f (Xp—1)
We can interpret this as a vector. The finer the decomposition the more dimensions.
We name the vector |f;):

|fa) = (f(xo)'f(?ﬁ)’ ---'f(xn—l))
The vectors |f,;) are vectors with a finite number of dimensions.
We define basis vectors |e;),i =0, ...,n — 1:

le;) = (0, ...,0,1,0, ...,0)

Every basis vector |e;) has a 1 at position i and 0 else.
The basis vectors |e;) form an orthonormal basis of the vector space.
The basis vectors represent the discrete x-coordinates

By help of the basis vectors we can rewrite f(x) as a sum of projections of the vector |f;) onto each
basis vector:

n—1
fa) =) f(x)le)
j=0

Similar functions should produce similar vectors.
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We check this with three examples and a very coarse partition of three intervals.

—x? + 3x X _
flx) = — g(x) = —x* + 3x, h(x) = sin(x - )
3
y
2,5¢
27 g(x)
1,5¢
fx)
1 L
0,5
o| 025 05 0,75 125 15 1,75 2,25 2,5 2,75
-0,5¢
-1 -

We set n = 3 in order to be able to display this in a 3D model and set the interval [a, b] to [0,3].
We get the quantized functions:
Ifs) = £(0.5); £(1.5); £(2.5) - 0.625,1.125,0.625
lgs) = g(0.5); g(1.5); g(2.5) —» 1.25,2.25,1.25
|hs) - h(0.5); h(1.5); R(2.5) > 1,—1,1

X3 A

1 -

0,5t

- b
[ '0; —
a
0,5 0 0,5 1 1,5 X,
0,5/

2
Note: d represents |f3), b represents |g3), C represents |h3).

The picture shows that functions f and g are similar. The values of function g are twice the values of

function f. In Hilbert space this shows as vector b being twice vector d.

Vector C, representing the sin- function, is different in size and direction.
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Remarks
What we have so far — we can describe any continuous real function f(x) by a quantized counterpart
|f4), a vector in a finite dimensional Hilbert space.

The finer the quantization the closer the function |f;) to its continuous counterpart f (x).
Properties of continuous functions f(x) are slope, area.
Properties of quantized functions |f;) are direction and length.

We describe the quantized function by a set of basis vectors and the projection of the function vector
onto this basis vectors with their eigenvalues.

The basis vectors represent the x-coordinates.

In the process of refining |f;) the number of dimensions of the Hilbert space grow, length and
direction change.

Multiplying a function
Multiplying a function f(x) with a constant c changes the amplitude of the function.

In Hilbert space it changes the length of the corresponding vector.
Multiplying f(x) with x changes the shape of the function.

Example: f(x) = x - sin(x)

=
[0l
1=
@
=]

HGEPSRYI
E

-20

304

In Hilbert space it changes length and coordinates of the corresponding vector.

We check this by the graphs of the functions f(x) = sin(x - 7), g(x) = x - sin(x - ).
Y

2,5

1,5

0,5

0 025 05 075 1\ 125 L5 1,75 2,25 2,5 275 3

-0,5

-1,5

If3) = f3(0.5); f3(1.5); f3(2.5) - 1,-1,1
lgs) = 93(0.5); g3(1.5); g3(2.5) = 0.5,—1.5,2.5
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The representation in Hilbert space shows two vectors different in direction and length:

X; A
4_.
3_.
21 3
%]
L% 0P
4 1 2 3 4 5 6 X

Multiplying by position
We describe the process of multiplying a function with x by help of an operator X:

(Ef)x = x-f(x)
Its discrete counterpart is X|f;).
We can represent the operator X by a n X n matrix. We name the matrix X and get:

X|fa) = X|fa)

The matrix X is a diagonal matrix containing the x-positions:

xo 0 .. 0
¥ = 0 x .. O
0 0 .. xp4q

For this matrix holds:
(ec|Xes) = x:6,
The basis vectors |e;) are eigenvectors of the matrix X with eigenvalue x;.
We build the inner product of X|f;) = X|f4) with (e;|:
(ei|®fa) = (el X|fa)
We check:
Left side (e;|X|f4):
(eillfa) = (eilxo - f (xo)leo) + (eilxs - f(x1)ler) + -+ + (eilxn_q - f(xn-1)len—1) =
xo * f(xo)(eileg) + x1 - fx ) egler) + -+ xn_q * fxn—1){eilen—1) =

xi f ()
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Right side (e;|X|fy):

xo 0 .. 0 f(x0)
(edXlfy) = 0..0i0..0f 0 ¥ = 0 f(x1)
0 0 v 2o/ \flry)
f(x0)
0..0%0..0| f&) )=y ra
£ Gn-1)

We remember |f;):

f) =) F(x)le)
j=0

We remember the position matrix:
(el Xle;) = x;6;;

With this we can write the quantized function x;|f; (x;)):

n—1

xilfaG) = ) (eilXley) fal)

Jj=0

Length in an infinite dimensional space
We replace the function f(x) by :== VAx - f(x).

This leads to a replacement of the quantized function |f;) by VAx|fz).

We calculate the [2-norm of VAx|f,):

n—1
[VAxIfa)| = Zlf(xi)lz Ax
j=0

Note: Ax is a positive value.

We take the limes:

n-1
Jim [VB=If]| = Jim D 1FGel? - ax
j=0

Note: By Ax — 0 we perform the transition from the discrete to the continuous case.

This resembles the Riemann integral:

L b
Jm > r) - ax = [ @
i=1 a

We need that the infinite sum converges to a finite value.

D. Kriesell
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We get:
n-1 b
lim Y |f G - Ax = f FCO2dx = |If 12
j=0 ¢

Note: ||f]|? is the [2-norm of f(x).

Note: Functions that allow this transition are called square integrable functions. You may find more
information at:

https://chem.libretexts.orqg/Courses/Grinnell College/CHM 364%3A Physical Chemistry 2 (Grinnell College)/04%3A Postulates and Pri
nciples of Quantum Mechanics/4.01%3A The Wavefunction Specifies the State of a System

Note: Square integrable functions often have no analytic antiderivative. The integral then can be
solved only numerically.

Note: By multiplying f; (x;) with vVAx we got the new function VAx|f). For this function holds:

IVBxI£D == ifir

Rescaling
We work with the scaled function VAx|fy):

VAx|fy) = VAx - f(xo)leg) + VAx - f(x1)les) + -+ + VAx - f(xp-1)|€n—1)
The “old” scalar product was:
(eilfa) = f(x)
Now we get:
eq|Vaxfa) = Vax - f(x)

In order to correct this, we rescale the basis vectors:

o) = |ei>-% S lei) = VERle)

With this rescaling of the basis vectors by we rewrite VAx|f;):
n-1 n-1

VAx|fy) = Z \/Ax-f(xj)|ej) = Z Ax-f(xj)|e’j)
j=0 j=0

We have a new inner product:
’ r\ _ ‘Sij
{eile’;) = At
T .
Note: §;; is the Kronecker delta. In the limes lim —L this becomes the Dirac 6.
Ax—0 Ax

6’..
Because of (e’i|e’j> = A—Z ande’;) = |e;) -\/%_xwe get back the original function:

(e'i|[VAxfa) = f(x)

We remember that e’; corresponds to the values on the x-axis.

D. Kriesell page 10 of 12


https://chem.libretexts.org/Courses/Grinnell_College/CHM_364%3A_Physical_Chemistry_2_(Grinnell_College)/04%3A_Postulates_and_Principles_of_Quantum_Mechanics/4.01%3A_The_Wavefunction_Specifies_the_State_of_a_System
https://chem.libretexts.org/Courses/Grinnell_College/CHM_364%3A_Physical_Chemistry_2_(Grinnell_College)/04%3A_Postulates_and_Principles_of_Quantum_Mechanics/4.01%3A_The_Wavefunction_Specifies_the_State_of_a_System

Hilbert

In the limes Ax — 0 resp. n — oo we get:

(e'i|VBxfy) = (xIf) = f(x)

Note: e’; is x; in the discrete case, in the continuous case this becomes x.

Note: VAx f, gives the values of f,; (x;).

Note: In the limes this becomes (x|f) and this is a representation of f(x).

According to Riemann we get in the limes:

n—-1 b
VERIf) = ) ax-F(g)le’) ~ [ £l
j=0 ¢

Continuous inner product
We take the limes case:

b
VEx|fa) = j F©1E)de

We build the inner product with (x|:

b b
(xIf) = f xIF©)1€)dE = f £ xlE)de

a

We remember (e’;|VAxf;) = (x|f) - f(x) and get for the left side:
(x|f)=f(x)

On the right side we need f(x) too.

We go back to the discrete case:

n-—1
VBx|fs) = z Ax- £(x;)le’;)
j=0
8
(eile’s) =1
We build the inner product:

(' VAx|fa) = (e's| B}z Ax - f(x)le’;)) =

S ax f()e'der) =
=0

n-1 5
z Ax - f(x;) Ax
j=0

D. Kriesell
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We keep Ax and use Riemann again:

n-1 5i. b 51” b
lim, > 85+ £()- 2= | 1) < lim —’) a5 = [ (6 - 0)ds = @)
i=0 a a

Ax—0 Ax—0 Ax

Note: § (¢ — x) is the Dirac delta.

Result
What we get is:

xlf)y =)

The inner product of position x and function f (x) gives the value of the function at position x, both
in the continuous and the discrete case.

We now have a vector representation |f) of the continuous function f(x)

Any square integrable function f(x) may be interpreted as the projection of the vector |f) onto the
basis vector |x) with the eigenvalue x.

f(x) in this sense is the x-th coordinate of the vector |f) in an infinite dimensional vector space.
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