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This paper shows the way from a (real) function 𝑓(𝑥) to a function in an infinite dimensional Hilbert 

space |𝑓⟩ suitable for the inner product ⟨𝑜̂|𝑓⟩ and the Dirac delta. It can be seen as a supplement to 

the paper Hilbert space you find on this website. 

It follows Andrea Aiello: 

https://mpl.mpg.de/fileadmin/user_upload/Marquardt_Division/Teaching/Lecture_13.pdf 

 

 

Hope I can help you with learning Quantum mechanics. 

 

  

file:///C:/Users/kriesell/Documents/quantum_mechanics/Hilbert_Space.pdf
https://mpl.mpg.de/fileadmin/user_upload/Marquardt_Division/Teaching/Lecture_13.pdf
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Prerequisites 

Vector notation 
We write vectors in bra-ket notation. 

|𝑢⟩ corresponds to a column vector. We assume the vector 𝑢⃗  has 𝑛 dimensions and write: 

|𝑢⟩ = (

𝑢1
…
𝑢𝑛
) 

⟨𝑢| corresponds to a row vector. We assume the vector 𝑢⃗  has 𝑛 dimensions and write: 

⟨𝑢| = (𝑢1… 𝑢𝑛) 

Note: For real vectors we have |𝑢⟩ = ⟨𝑢|. For complex valued vectors we need to use the complex 

conjugated: |𝑢⟩ = ⟨𝑢∗|. 

We write the inner product 𝑢⃗ ∙ 𝑣  as: 

𝑢⃗ ∙ 𝑣 = ⟨𝑢|𝑣⟩ 

We write the orthonormal standard basis: 

(1,0, … ) ≔ |𝑒0⟩, (0,1,0,… ) ≔ |𝑒1⟩, (0,0,1,0, … ) ≔ |𝑒2⟩, … 

We can decompose every vector into a sum: 

|𝑢⟩ = ⟨𝑢|𝑒0⟩ + ⋯+ ⟨𝑢|𝑒𝑛−1⟩ = ∑⟨𝑢|𝑒𝑗⟩

𝑛−1

𝑗=0

 

Note: ⟨𝑢|𝑒𝑖⟩ can be seen as the projection of the vector ⟨𝑢| onto the basis vector |𝑒𝑖⟩. 

Note: any other set of orthonormal basis vectors would work the same way. 

Length of a vector 

In order to describe the length of a vector 𝑢⃗  we use the 𝑙2 norm ‖𝑢⃗ ‖ to get its length: 

‖𝑢⃗ ‖ ≔ √⟨𝑢|𝑢⟩ 

If the vector space is of finite dimension 𝑛 then the length is finite: 

‖𝑢⃗ ‖ ≤ 𝑛 ∙ 𝑚𝑎𝑥(|𝑢𝑖|
2) 

Riemann integral 
We remember the task calculating the area below a continuous 

function 𝑓(𝑥) between the boundaries 𝑎 and 𝑏.1 

We start by quantizing the function 𝑓(𝑥) → 𝑓(𝑥𝑖) and calculate the 

area as the sum of rectangles ∆𝑥 ∙ 𝑓(𝑥𝑖): 

𝐴𝑓(𝑥) ≅∑∆𝑥 ∙ 𝑓(𝑥𝑖)

𝑖

 

                                                           
1 Graphic by Vladimir Ilievski, https://isquared.digital/blog/2020-05-27-riemann-integration/ 

https://de.wikipedia.org/wiki/Lp-Raum#Der_Hilbertraum_L2
https://isquared.digital/blog/2020-05-27-riemann-integration/
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By refining the partition, the number of rectangles grows and the width shrinks but the product 𝑖 ∙ ∆𝑥 

remains constant: 

𝑖 ∙ ∆𝑥 = 𝑏 − 𝑎 

We get: 

lim
𝑛→∞

∑𝑓(𝑥𝑖) ∙ ∆𝑥

𝑛

𝑖=0

= ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

Note: What we need is that an infinite sum gives a finite value. 

Mean value theorem for integrals 
If 𝑓(𝑥) is continuous over an interval [𝑎, 𝑏], then there is at least one point 𝑐 ∈ [𝑎, 𝑏] such that 

𝑓(𝑐) =
1

𝑏 − 𝑎
∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

Graphically: 

 

https://chitowntutoring.com/wp-content/uploads/mean-value-theorem-for-integrals1-1200x675.png 

You may find more information at: 

https://math.libretexts.org/Courses/Cosumnes_River_College/Math_401%3A_Calculus_II_-

_Integral_Calculus/01%3A_Applications_of_Integration/1.09%3A_The_Mean_Value_Theorem_for_Integrals 

End prerequisites 

  

https://chitowntutoring.com/wp-content/uploads/mean-value-theorem-for-integrals1-1200x675.png
https://math.libretexts.org/Courses/Cosumnes_River_College/Math_401%3A_Calculus_II_-_Integral_Calculus/01%3A_Applications_of_Integration/1.09%3A_The_Mean_Value_Theorem_for_Integrals
https://math.libretexts.org/Courses/Cosumnes_River_College/Math_401%3A_Calculus_II_-_Integral_Calculus/01%3A_Applications_of_Integration/1.09%3A_The_Mean_Value_Theorem_for_Integrals
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Quantizing functions 
We use a real function 𝑓(𝑥) defined over the interval [𝑎, 𝑏]. 

We build an equal distributed partition of [𝑎, 𝑏]: 

 

Note: we could rename 𝑎 → 𝑎0, 𝑏 → 𝑎𝑛 with 𝑛 = 9 in the case shown above. 

The length of one partition depends on the number 𝑛 of intervals: 

∆𝑥 = 𝑎𝑖 − 𝑎𝑖−1 =
𝑏 − 𝑎

𝑛
 

With an equal distribution we get the center 𝑥𝑖 of the intervals: 

𝑥𝑖 = 𝑎𝑖 +
∆𝑥

2
 

We use 𝑎𝑖 = 𝑎0 + 𝑖 ∙ ∆𝑥, 𝑖 = 0,… , 𝑛 − 1. 

We get: 

𝑥𝑖 = 𝑎0 + 𝑖 ∙ ∆𝑥 +
∆𝑥

2
= 𝑎0 +

2 ∙ 𝑖 ∙ ∆𝑥 + ∆𝑥

2
= 

𝑎0 +
(2𝑖 + 1)

2
∙ ∆𝑥 

We get a discrete representation of 𝑓(𝑥): 

𝑓(𝑥) → 𝑓(𝑥0), 𝑓(𝑥1),… , 𝑓(𝑥𝑛−1) 

We can interpret this as a vector. The finer the decomposition the more dimensions. 

We name the vector |𝑓𝑑⟩: 

|𝑓𝑑⟩ = (𝑓(𝑥0), 𝑓(𝑥1),… , 𝑓(𝑥𝑛−1)) 

The vectors |𝑓𝑑⟩ are vectors with a finite number of dimensions. 

We define basis vectors |𝑒𝑖⟩, 𝑖 = 0,… , 𝑛 − 1: 

|𝑒𝑖⟩ ≔ (0,… ,0,1,0,… ,0) 

Every basis vector |𝑒𝑖⟩ has a 1 at position 𝑖 and 0 else. 

The basis vectors |𝑒𝑖⟩ form an orthonormal basis of the vector space. 

The basis vectors represent the discrete 𝑥-coordinates 

By help of the basis vectors we can rewrite 𝑓(𝑥) as a sum of projections of the vector |𝑓𝑑⟩ onto each 

basis vector: 

|𝑓𝑑⟩ = ∑𝑓(𝑥𝑗)|𝑒𝑗⟩

𝑛−1

𝑗=0

 

Similar functions should produce similar vectors. 

  

𝑎 𝑎1 𝑏 𝑎8 𝑎7 𝑎6 𝑎5 𝑎4 𝑎3 𝑎2 
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We check this with three examples and a very coarse partition of three intervals. 

𝑓(𝑥) =
−𝑥2 + 3𝑥

2
, 𝑔(𝑥) = −𝑥2 + 3𝑥, ℎ(𝑥) = 𝑠𝑖𝑛(𝑥 ∙ 𝜋) 

 

We set 𝑛 = 3 in order to be able to display this in a 3𝐷 model and set the interval [𝑎, 𝑏] to [0,3]. 

We get the quantized functions: 

|𝑓3⟩ → 𝑓(0.5); 𝑓(1.5); 𝑓(2.5) → 0.625,1.125,0.625 

|𝑔3⟩ → 𝑔(0.5); 𝑔(1.5); 𝑔(2.5) → 1.25,2.25,1.25 

|ℎ3⟩ → ℎ(0.5); ℎ(1.5); ℎ(2.5) → 1,−1,1 

 

Note: 𝑎  represents |𝑓3⟩, 𝑏⃗  represents |𝑔3⟩, 𝑐  represents |ℎ3⟩. 

The picture shows that functions 𝑓 and 𝑔 are similar. The values of function 𝑔 are twice the values of 

function 𝑓. In Hilbert space this shows as vector 𝑏⃗  being twice vector 𝑎 . 

Vector 𝑐 , representing the 𝑠𝑖𝑛- function, is different in size and direction. 

  

𝑓(𝑥) 

𝑔(𝑥) 

ℎ(𝑥) 
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Remarks 
What we have so far – we can describe any continuous real function 𝑓(𝑥) by a quantized counterpart 

|𝑓𝑑⟩, a vector in a finite dimensional Hilbert space.  

The finer the quantization the closer the function |𝑓𝑑⟩ to its continuous counterpart 𝑓(𝑥). 

Properties of continuous functions 𝑓(𝑥) are slope, area.  

Properties of quantized functions |𝑓𝑑⟩ are direction and length.  

We describe the quantized function by a set of basis vectors and the projection of the function vector 

onto this basis vectors with their eigenvalues.  

The basis vectors represent the 𝑥-coordinates. 

In the process of refining |𝑓𝑑⟩ the number of dimensions of the Hilbert space grow, length and 

direction change. 

Multiplying a function 
Multiplying a function 𝑓(𝑥) with a constant 𝑐 changes the amplitude of the function.  

In Hilbert space it changes the length of the corresponding vector.  

Multiplying 𝑓(𝑥) with 𝑥 changes the shape of the function. 

Example: 𝑓(𝑥) = 𝑥 ∙ 𝑠𝑖𝑛(𝑥) 

 

In Hilbert space it changes length and coordinates of the corresponding vector.  

We check this by the graphs of the functions 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥 ∙ 𝜋), 𝑔(𝑥) = 𝑥 ∙ 𝑠𝑖𝑛(𝑥 ∙ 𝜋). 

 

|𝑓3⟩ → 𝑓3(0.5); 𝑓3(1.5); 𝑓3(2.5) → 1,−1,1 

|𝑔3⟩ → 𝑔3(0.5); 𝑔3(1.5); 𝑔3(2.5) → 0.5, −1.5,2.5 
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The representation in Hilbert space shows two vectors different in direction and length: 

 

Multiplying by position 
We describe the process of multiplying a function with 𝑥 by help of an operator 𝑥: 

(𝑥𝑓)𝑥 ≔ 𝑥 ∙ 𝑓(𝑥) 

Its discrete counterpart is 𝑥|𝑓𝑑⟩. 

We can represent the operator 𝑥 by a 𝑛 × 𝑛 matrix. We name the matrix 𝑋 and get: 

𝑥|𝑓𝑑⟩ = 𝑋|𝑓𝑑⟩ 

The matrix 𝑋 is a diagonal matrix containing the 𝑥-positions: 

𝑋 = (

𝑥0 0 … 0
0 𝑥1 … 0
… … … … .
0 0 … 𝑥𝑛−1

) 

For this matrix holds: 

⟨𝑒𝑖|𝑋|𝑒𝑗⟩ = 𝑥𝑖𝛿𝑖𝑗  

The basis vectors |𝑒𝑖⟩ are eigenvectors of the matrix 𝑋 with eigenvalue 𝑥𝑖. 

We build the inner product of 𝑥|𝑓𝑑⟩ = 𝑋|𝑓𝑑⟩ with ⟨𝑒𝑖|: 

⟨𝑒𝑖|𝑥|𝑓𝑑⟩ = ⟨𝑒𝑖|𝑋|𝑓𝑑⟩ 

We check: 

Left side ⟨𝑒𝑖|𝑥|𝑓𝑑⟩: 

⟨𝑒𝑖|𝑥|𝑓𝑑⟩ = ⟨𝑒𝑖|𝑥0 ∙ 𝑓(𝑥0)|𝑒0⟩ + ⟨𝑒𝑖|𝑥1 ∙ 𝑓(𝑥1)|𝑒1⟩ +⋯+ ⟨𝑒𝑖|𝑥𝑛−1 ∙ 𝑓(𝑥𝑛−1)|𝑒𝑛−1⟩ = 

𝑥0 ∙ 𝑓(𝑥0)⟨𝑒𝑖|𝑒0⟩ + 𝑥1 ∙ 𝑓(𝑥1)⟨𝑒𝑖|𝑒1⟩ + ⋯+ 𝑥𝑛−1 ∙ 𝑓(𝑥𝑛−1)⟨𝑒𝑖|𝑒𝑛−1⟩ = 

𝑥𝑖 ∙ 𝑓(𝑥𝑖) 
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Right side ⟨𝑒𝑖|𝑋|𝑓𝑑⟩: 

⟨𝑒𝑖|𝑋|𝑓𝑑⟩ = (0…0 𝑖 0…0)(

𝑥0 0 … 0
0 𝑥1 … 0
… … … … .
0 0 … 𝑥𝑛−1

)(

𝑓(𝑥0)

𝑓(𝑥1)
…

𝑓(𝑥𝑛−1)

) = 

(0…0 𝑥𝑖 0 …0)(

𝑓(𝑥0)

𝑓(𝑥1)
…

𝑓(𝑥𝑛−1)

) = 𝑥𝑖 ∙ 𝑓(𝑥𝑖) 

We remember |𝑓𝑑⟩: 

|𝑓𝑑⟩ = ∑𝑓(𝑥𝑗)|𝑒𝑗⟩

𝑛−1

𝑗=0

 

We remember the position matrix: 

⟨𝑒𝑖|𝑋|𝑒𝑖⟩ = 𝑥𝑖𝛿𝑖𝑗  

With this we can write the quantized function 𝑥𝑖|𝑓𝑑(𝑥𝑖)⟩: 

𝑥𝑖|𝑓𝑑(𝑥𝑖)⟩ = ∑⟨𝑒𝑖|𝑋|𝑒𝑗⟩

𝑛−1

𝑗=0

|𝑓𝑑(𝑥𝑖)⟩ 

Length in an infinite dimensional space 

We replace the function 𝑓(𝑥) by ≔ √∆𝑥 ∙ 𝑓(𝑥). 

This leads to a replacement of the quantized function |𝑓𝑑⟩ by √∆𝑥|𝑓𝑑⟩. 

We calculate the 𝑙2-norm of √∆𝑥|𝑓𝑑⟩: 

‖√∆𝑥|𝑓𝑑⟩‖ = ∑|𝑓(𝑥𝑖)|
2 ∙ ∆𝑥

𝑛−1

𝑗=0

 

Note: ∆𝑥 is a positive value. 

We take the limes: 

lim
∆𝑥→0

‖√∆𝑥|𝑓𝑑⟩‖ = lim
∆𝑥→0

∑|𝑓(𝑥𝑖)|
2 ∙ ∆𝑥

𝑛−1

𝑗=0

 

Note: By ∆𝑥 → 0 we perform the transition from the discrete to the continuous case. 

This resembles the Riemann integral: 

lim
∆𝑥→0

∑𝑓(𝑥𝑖) ∙ ∆𝑥

𝑛

𝑖=1

= ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

We need that the infinite sum converges to a finite value. 
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We get: 

lim
𝑛→∞

∑|𝑓(𝑥𝑖)|
2 ∙ ∆𝑥

𝑛−1

𝑗=0

= ∫ |𝑓(𝑥)|2𝑑𝑥
𝑏

𝑎

= ‖𝑓‖2 

Note: ‖𝑓‖2 is the 𝑙2-norm of 𝑓(𝑥). 

Note: Functions that allow this transition are called square integrable functions. You may find more 

information at: 

https://chem.libretexts.org/Courses/Grinnell_College/CHM_364%3A_Physical_Chemistry_2_(Grinnell_College)/04%3A_Postulates_and_Pri

nciples_of_Quantum_Mechanics/4.01%3A_The_Wavefunction_Specifies_the_State_of_a_System 

Note: Square integrable functions often have no analytic antiderivative. The integral then can be 

solved only numerically. 

Note: By multiplying 𝑓𝑑(𝑥𝑖) with √∆𝑥 we got the new function √∆𝑥|𝑓𝑑⟩. For this function holds: 

‖√∆𝑥|𝑓𝑑⟩‖
2
  
∆𝑥→0
→     ‖𝑓‖2 

Rescaling 

We work with the scaled function √∆𝑥|𝑓𝑑⟩: 

√∆𝑥|𝑓𝑑⟩ = √∆𝑥 ∙ 𝑓(𝑥0)|𝑒0⟩ + √∆𝑥 ∙ 𝑓(𝑥1)|𝑒1⟩ + ⋯+ √∆𝑥 ∙ 𝑓(𝑥𝑛−1)|𝑒𝑛−1⟩ 

The “old” scalar product was: 

⟨𝑒𝑖|𝑓𝑑⟩ = 𝑓(𝑥𝑖) 

Now we get: 

⟨𝑒𝑖|√∆𝑥𝑓𝑑⟩ = √∆𝑥 ∙ 𝑓(𝑥𝑖) 

In order to correct this, we rescale the basis vectors: 

|𝑒′𝑖⟩ = |𝑒𝑖⟩ ∙
1

√∆𝑥
→ |𝑒𝑖⟩ = √∆𝑥|𝑒

′
𝑖⟩ 

With this rescaling of the basis vectors by we rewrite √∆𝑥|𝑓𝑑⟩: 

√∆𝑥|𝑓𝑑⟩ = ∑√∆𝑥 ∙ 𝑓(𝑥𝑗)|𝑒𝑗⟩

𝑛−1

𝑗=0

= ∑∆𝑥 ∙ 𝑓(𝑥𝑗)|𝑒
′
𝑗⟩

𝑛−1

𝑗=0

 

We have a new inner product: 

⟨𝑒′𝑖|𝑒
′
𝑗⟩ =

𝛿𝑖𝑗

∆𝑥
t 

Note: 𝛿𝑖𝑗  is the Kronecker delta. In the limes lim
∆𝑥→0

𝛿𝑖𝑗

∆𝑥
 this becomes the Dirac 𝛿. 

Because of ⟨𝑒′𝑖|𝑒
′
𝑗⟩ =

𝛿𝑖𝑗

∆𝑥
 and 𝑒′𝑖⟩ = |𝑒𝑖⟩ ∙

1

√∆𝑥
 we get back the original function: 

⟨𝑒′𝑖|√∆𝑥𝑓𝑑⟩ = 𝑓(𝑥𝑖) 

We remember that 𝑒′𝑖 corresponds to the values on the 𝑥-axis. 

  

https://chem.libretexts.org/Courses/Grinnell_College/CHM_364%3A_Physical_Chemistry_2_(Grinnell_College)/04%3A_Postulates_and_Principles_of_Quantum_Mechanics/4.01%3A_The_Wavefunction_Specifies_the_State_of_a_System
https://chem.libretexts.org/Courses/Grinnell_College/CHM_364%3A_Physical_Chemistry_2_(Grinnell_College)/04%3A_Postulates_and_Principles_of_Quantum_Mechanics/4.01%3A_The_Wavefunction_Specifies_the_State_of_a_System
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In the limes ∆𝑥 → 0 resp. 𝑛 → ∞ we get: 

⟨𝑒′𝑖|√∆𝑥𝑓𝑑⟩ → ⟨𝑥|𝑓⟩ → 𝑓(𝑥) 

Note: 𝑒′𝑖 is 𝑥𝑖 in the discrete case, in the continuous case this becomes 𝑥. 

Note: √∆𝑥𝑓𝑑 gives the values of 𝑓𝑑(𝑥𝑖). 

Note: In the limes this becomes ⟨𝑥|𝑓⟩ and this is a representation of 𝑓(𝑥). 

According to Riemann we get in the limes: 

√∆𝑥|𝑓𝑑⟩ = ∑∆𝑥 ∙ 𝑓(𝑥𝑗)|𝑒
′
𝑗⟩

𝑛−1

𝑗=0

→ ∫ 𝑓(𝜉)|𝜉⟩𝑑𝜉
𝑏

𝑎

 

Continuous inner product 
We take the limes case:  

√∆𝑥|𝑓𝑑⟩ = ∫ 𝑓(𝜉)|𝜉⟩𝑑𝜉
𝑏

𝑎

 

We build the inner product with ⟨𝑥|: 

⟨𝑥|𝑓⟩ = ∫ ⟨𝑥|𝑓(𝜉)|𝜉⟩𝑑𝜉
𝑏

𝑎

= ∫ 𝑓(𝜉)⟨𝑥|𝜉⟩𝑑𝜉
𝑏

𝑎

 

We remember ⟨𝑒′𝑖|√∆𝑥𝑓𝑑⟩ → ⟨𝑥|𝑓⟩ → 𝑓(𝑥) and get for the left side: 

⟨𝑥|𝑓⟩ = 𝑓(𝑥) 

On the right side we need 𝑓(𝑥) too.  

We go back to the discrete case: 

√∆𝑥|𝑓𝑑⟩ = ∑∆𝑥 ∙ 𝑓(𝑥𝑗)|𝑒
′
𝑗⟩

𝑛−1

𝑗=0

 

⟨𝑒′𝑖|𝑒
′
𝑗⟩ =

𝛿𝑖𝑗

∆𝑥
 

We build the inner product: 

⟨𝑒′𝑖√∆𝑥|𝑓𝑑⟩ = ⟨𝑒
′
𝑖| ∑ ∆𝑥 ∙ 𝑓(𝑥𝑗)|𝑒

′
𝑗⟩

𝑛−1
𝑗=0 ⟩ = 

∑∆𝑥 ∙ 𝑓(𝑥𝑗)⟨𝑒
′
𝑖|𝑒

′
𝑗⟩

𝑛−1

𝑗=0

= 

∑∆𝑥 ∙ 𝑓(𝑥𝑗) ∙
𝛿𝑖𝑗

∆𝑥

𝑛−1

𝑗=0
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We keep ∆𝑥 and use Riemann again: 

lim
∆𝑥→0

∑∆𝑥 ∙ 𝑓(𝑥𝑗) ∙
𝛿𝑖𝑗

∆𝑥

𝑛−1

𝑖=0

= ∫ 𝑓(𝜉) ( lim
∆𝑥→0

𝛿𝑖𝑗

∆𝑥
)𝑑𝜉

𝑏

𝑎

= ∫ 𝑓(𝜉)(𝛿(𝜉 − 𝑥))𝑑𝜉
𝑏

𝑎

= 𝑓(𝑥) 

Note: 𝛿(𝜉 − 𝑥) is the Dirac delta. 

Result 
What we get is: 

⟨𝑥|𝑓⟩ = 𝑓(𝑥) 

The inner product of position 𝑥 and function 𝑓(𝑥) gives the value of the function at position 𝑥, both 

in the continuous and the discrete case. 

We now have a vector representation |𝑓⟩ of the continuous function 𝑓(𝑥)  

Any square integrable function 𝑓(𝑥) may be interpreted as the projection of the vector |𝑓⟩ onto the 

basis vector |𝑥⟩ with the eigenvalue 𝑥. 

𝑓(𝑥) in this sense is the 𝑥-th coordinate of the vector |𝑓⟩ in an infinite dimensional vector space. 


