A matrix (an operator) mathematically is a map from one vector space to another. This paper describes how the change of basis vectors alters a given matrix.

We will calculate this in two ways, a graphical representation might help.
Related information you may find at:
https://www.math.tamu.edu/~fnarc/psfiles/change basis m311.pdf

Hope I can help you with learning quantum mechanics.

Method 1

$f: V \rightarrow V$ is a linear map of a vector space into itself.
B and C are a complete set of basis vectors of V.
$M_{B C}$ maps the basis B onto the basis C.
$M_{C B}$ maps the basis C onto the basis B.
Then:

$$
M_{B C} \cdot M_{C B}=i d
$$

If we have a matrix A_{B} representing the linear map f with respect to the basis B, then we can calculate the matrix A_{C} representing the linear map f with respect to the basis C :

$$
A_{C}=M_{C B} \cdot A_{B} \cdot M_{B C}
$$

Example

We use the vector space \mathbb{R}^{2}.
The linear map f :

$$
f\left(x_{1}, x_{2}\right):=\left(x_{1}+2 x_{2}, x_{1}-3 x_{2}\right)
$$

Basis B is the standard basis:

$$
B:=\left\{\binom{1}{0},\binom{0}{1}\right\}
$$

f is represented by the matrix A_{B} with respect to the standard basis B :

$$
A_{B}:=\left(\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right)
$$

Basis C is a second basis (not orthogonal):

$$
C:=\left\{\binom{1}{2},\binom{3}{4}\right\}
$$

We calculate the matrix $M_{B C}$ that maps the basis B onto the basis C. For this matrix must hold:

$$
\begin{aligned}
& M_{B C}\binom{1}{0}=\binom{1}{2} \\
& M_{B C}\binom{0}{1}=\binom{3}{4}
\end{aligned}
$$

We express the basis vectors C with the basis B :

$$
\begin{aligned}
& \binom{1}{2}=1 \cdot\binom{1}{0}+2 \cdot\binom{0}{1} \\
& \binom{3}{4}=3 \cdot\binom{1}{0}+4 \cdot\binom{0}{1}
\end{aligned}
$$

We get the matrix $M_{B C}$:

$$
M_{B C}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)
$$

Check:

$$
\begin{aligned}
& M_{B C} \cdot\binom{1}{0}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right) \cdot\binom{1}{0}=\binom{1}{2} \\
& M_{B C} \cdot\binom{0}{1}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right) \cdot\binom{0}{1}=\binom{3}{4}
\end{aligned}
$$

To calculate the reverse matrix $M_{C B}$ we calculate the inverse to $M_{B C}$:

$$
M_{C B}=\left(\begin{array}{cc}
-2 & \frac{3}{2} \\
1 & -\frac{1}{2}
\end{array}\right)
$$

We check:

$$
\begin{aligned}
& M_{C B} \cdot\binom{1}{2}=\left(\begin{array}{cc}
-2 & \frac{3}{2} \\
1 & -\frac{1}{2}
\end{array}\right) \cdot\binom{1}{2}=\binom{1}{0} \\
& M_{C B} \cdot\binom{3}{4}=\left(\begin{array}{cc}
-2 & \frac{3}{2} \\
1 & -\frac{1}{2}
\end{array}\right) \cdot\binom{3}{4}=\binom{0}{1}
\end{aligned}
$$

Note: for higher dimensions, the use of a computer algebra system recommended.
We check $M_{C B} \cdot M_{B C}$:

$$
M_{C B} \cdot M_{B C}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)\left(\begin{array}{cc}
-2 & \frac{3}{2} \\
1 & -\frac{1}{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

The linear map A_{B} with respect to the basis B :

$$
A_{B}:=\left(\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right)
$$

The linear map A_{C} with respect to the basis C :

$$
\begin{gathered}
A_{C}=M_{C B} \cdot A_{B} \cdot M_{B C} \\
A_{C}=\left(\begin{array}{cc}
-2 & \frac{3}{2} \\
1 & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)= \\
\left(\begin{array}{cc}
-\frac{35}{2} & -\frac{71}{2} \\
\frac{15}{2} & \frac{31}{2}
\end{array}\right)
\end{gathered}
$$

Method 2

f is represented by the matrix A_{B}, the matrix with respect to the standard basis:

$$
A_{B}:=\left(\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right)
$$

Basis B is the standard basis:

$$
B:=\left\{\binom{1}{0},\binom{0}{1}\right\}
$$

Basis C is a second basis (not orthogonal):

$$
C:=\left\{\binom{1}{2},\binom{3}{4}\right\}
$$

We calculate the effect of A_{B} on the basis vectors C :

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right)\binom{1}{2}=\binom{5}{-5} \\
& \left(\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right)\binom{3}{4}=\binom{11}{-9}
\end{aligned}
$$

We express the result in the basis C :

$$
\begin{aligned}
& \binom{5}{-5}=a\binom{1}{2}+b\binom{3}{4} \\
& \binom{11}{-9}=c\binom{1}{2}+d\binom{3}{4}
\end{aligned}
$$

We get (after some calculation):

$$
\begin{aligned}
& a=-\frac{35}{2}, b=\frac{15}{2} \\
& c=-\frac{71}{2}, b=\frac{31}{2}
\end{aligned}
$$

We assemble the linear map A_{C} with respect to the basis C :

$$
A_{C}=\left(\begin{array}{cc}
-\frac{35}{2} & -\frac{71}{2} \\
\frac{15}{2} & \frac{31}{2}
\end{array}\right)
$$

Graphical representation

The traditional cartesian coordinates with function $f\left(x_{1}\right)=\frac{1}{2} x_{1}$:

The effect of the linear map f, represented by the matrix A_{B} onto the (blue) axes x_{1} and y_{1} gives the new (red) axes x_{2} and y_{2} :

$$
A_{B}:=\left(\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right)
$$

Note: the linear map changes the orientation, the determinant of A_{B} is negative.
The scaling of the new coordinate system is altered:

The effect of the linear map on the function $f\left(x_{1}\right)=\frac{1}{2} x_{1}: f\left(x_{2}\right)=\frac{1}{2} x_{2}$, the expression remains the same.

The new function expressed in the "old" coordinate system:

Changing the basis could help to make dependencies easier to handle.

