This paper deals with momentum representation and position representation and describe both variants parallel.

A more elaborated text you find in
https://inst.eecs.berkeley.edu/~cs191/fa07/lectures/lecture13 fa07.pdf

Hope I can help you with learning quantum mechanics.

Note: $|\psi\rangle$ is a state (a finite or infinite vector, a Hilbert-space of functions, ...)
Quantum mechanics forbids a wave function $\psi(x, p)$ because x and p cannot be known precisely simultaneously. For this reason, we can only work with wave functions $\psi(x)$ and $\tilde{\psi}(p)$.

All of these are eigenfunctions with eigenvalue x or p. They contain the same information about the state $|\psi\rangle$.

Momentum	Position
$\|p\rangle \quad \forall p \in \mathbb{R}$ $\|p\rangle$ is a momentum state in an infinite dimensional vector space, the particle with momentum p. It is a basis of the space of states $\|\psi\rangle$. The dimension of $\|\psi\rangle$ is infinite. $\tilde{\psi}(p)=\langle p \mid \psi\rangle$ $\tilde{\psi}(p)$ is an eigenfunction with eigenvalue p.	$\|x\rangle \quad \forall x \in \mathbb{R}$ $\|x\rangle$ is a position state in an infinite dimensional vector space, the particle with position x. It is a basis of the space of states $\|\psi\rangle$. The dimension of $\|\psi\rangle$ is infinite. $\psi(x)=\langle x \mid \psi\rangle$ $\psi(x)$ is an eigenfunction with eigenvalue x.
Because $\|p\rangle$ is an element of an infinite dimensional vector space, we have: $\begin{gathered} a\|p\rangle \neq\|a p\rangle, \quad a \in \mathbb{R}, \quad a \neq 1 \\ -\|p\rangle \neq\|-p\rangle, \quad p \neq 0 \\ \left\|p_{1}+p_{2}\right\rangle \neq\left\|p_{1}\right\rangle+\left\|p_{2}\right\rangle \end{gathered}$ Note: $\|0\rangle$ is the particle with momentum zero, not a zero vector.	Because $\|x\rangle$ is an element of an infinite dimensional vector space, we have: $\begin{gathered} a\|x\rangle \neq\|a x\rangle, \quad a \in \mathbb{R}, \quad a \neq 1 \\ -\|x\rangle \neq\|-x\rangle, \quad x \neq 0 \\ \left\|x_{1}+x_{2}\right\rangle \neq\left\|x_{1}\right\rangle+\left\|x_{2}\right\rangle \end{gathered}$ Note: $\|0\rangle$ is the particle at position zero, not a zero vector.
The inner product: $\left\langle p_{1} \mid p_{2}\right\rangle:=\delta\left(p_{2}-p_{1}\right)$ Different momenta are orthogonal to each other.	The inner product: $\left\langle x_{1} \mid x_{2}\right\rangle:=\delta\left(x_{2}-x_{1}\right)$ Different positions are orthogonal to each other.
The norm of a momentum state is infinite: $\langle p \mid p\rangle:=\delta(0)=\infty$	The norm of a position state is infinite: $\langle x \mid x\rangle:=\delta(0)=\infty$
Completeness relation: $\begin{gathered} \mathbf{1}=\int d p\left\|p_{1}\right\rangle\left\langle p_{1}\right\| \\ \mathbf{1}\left\|p_{2}\right\rangle=\int d p\left\|p_{1}\right\rangle\left\langle p_{1} \mid p_{2}\right\rangle= \\ \int d p\left\|p_{1}\right\rangle \delta\left(p_{1}-p_{2}\right)=\left\|p_{2}\right\rangle \end{gathered}$	Completeness relation: $\begin{gathered} \mathbf{1}=\int d x\left\|x_{1}\right\rangle\left\langle x_{1}\right\| \\ \mathbf{1}\left\|x_{2}\right\rangle=\int d x\left\|x_{1}\right\rangle\left\langle x_{1} \mid x_{2}\right\rangle= \\ \int d x\left\|x_{1}\right\rangle \delta\left(x_{1}-x_{2}\right)=\left\|x_{2}\right\rangle \end{gathered}$
The momentum operator \hat{p} and position operator \hat{x} are defined by their action on momentum states.	The position operator \hat{x} and momentum operator \hat{p} are defined by their action on position states.

The eigen-equation for the operator \hat{p} :

$$
\hat{p}|p\rangle:=p|p\rangle
$$

In terms of wave functions:

$$
\hat{p} \psi_{p}(p)=p \psi_{p}(p)
$$

Result:

$$
\psi_{p}(p)=\delta\left(p-p_{0}\right)
$$

The eigen-equation for the operator \hat{x} :

$$
\hat{x}|p\rangle:=-i \hbar \frac{d}{d p}|p\rangle=x|p\rangle
$$

In terms of wave-functions:

$$
\hat{x} \psi_{x}(p)=-i \hbar \frac{d}{d p} \psi_{x}(p)=x \psi_{x}(p)
$$

Result of the differential equation:

$$
\psi_{x}(p)=\frac{e^{\frac{i p x}{\hbar}}}{\sqrt{2 \pi \hbar}}
$$

Note: $\frac{1}{\sqrt{2 \pi \hbar}}$ is a normalizing factor.
Note: $\psi_{x}(p)$ and $\psi_{p}(p)$ are functions of p. We labelled them with x and p to make clear that they belong to different eigen-equations (different bases).

The operator \hat{x} is Hermitian:

$$
-i \hbar \frac{d}{d p}=i \hbar \frac{d}{d p}
$$

A proof you find at the end of this paper
The operator \hat{p} is Hermitian:

$$
\hat{p}^{\dagger}=\hat{p}
$$

With this we get:
$\langle p| \hat{p}=p\langle p|$

The wave function associated with a state we get by taking the inner product of a momentum state $|p\rangle$ with the given state $|\psi\rangle$:

$$
\tilde{\psi}(p):=\langle p \mid \psi\rangle \in \mathbb{C}
$$

$\langle p \mid \psi\rangle$ is a complex number that depends on the value of p, thus a function of p.

Any state can be written as a superposition of momentum eigenstates:

$$
\begin{gathered}
|\psi\rangle=\mathbf{1}|\psi\rangle=\int d p|p\rangle\langle p \mid \psi\rangle= \\
\int d p|p\rangle \tilde{\psi}(p)
\end{gathered}
$$

$\tilde{\psi}(p)$ is the component of $\tilde{\psi}$ along the state $|p\rangle$.

The eigen-equation for the operator \hat{x} :

$$
\hat{x}|x\rangle:=x|x\rangle
$$

In terms of wave functions:

$$
\hat{x} \psi_{x}(x)=x \psi_{x}(x)
$$

Result:

$$
\psi_{x}(x)=\delta\left(x-x_{0}\right)
$$

The eigen-equation for the operator \hat{p} :

$$
\hat{p}|x\rangle:=-i \hbar \frac{d}{d x}|x\rangle=p|x\rangle
$$

In terms of wave-functions:

$$
\hat{p} \psi_{p}(x)=-i \hbar \frac{d}{d x} \psi_{p}(x)=p \psi_{p}(x)
$$

Result of the differential equation:

$$
\psi_{p}(x)=\frac{e^{\frac{i p x}{\hbar}}}{\sqrt{2 \pi \hbar}}
$$

Note: $\frac{1}{\sqrt{2 \pi \hbar}}$ is a normalizing factor.
Note: $\psi_{p}(x)$ and $\psi_{x}(x)$ are functions of x. We labelled them with p and x to make clear that they belong to different eigen-equations (different bases).

The operator \hat{p} is Hermitian:

$$
-i \hbar \frac{d}{d x}=i \hbar \frac{d}{d x}
$$

A proof you find at the end of this paper
The operator \hat{x} is Hermitian:

$$
\hat{x}^{\dagger}=\hat{x}
$$

With this we get:

$$
\langle x| \hat{x}=x\langle x|
$$

The wave function associated with a state we get by taking the inner product of a position state $|x\rangle$ with the given state $|\psi\rangle$:

$$
\psi(x):=\langle x \mid \psi\rangle \in \mathbb{C}
$$

$\langle x \mid \psi\rangle$ is a complex number that depends on the value of x, thus a function of x.

Any state can be written as a superposition of position eigenstates:

$$
\begin{gathered}
|\psi\rangle=\mathbf{1}|\psi\rangle=\int d x|x\rangle\langle x \mid \psi\rangle= \\
\int d x|x\rangle \psi(x)
\end{gathered}
$$

$\psi(x)$ is the component of ψ along the state $|x\rangle$.

The overlap of states (the projection) written in momentum space: $\begin{gathered} \langle\theta \mid \psi\rangle=\langle\theta\| \mathbf{1}\|\psi\rangle= \\ \int d p\langle\theta \mid p\rangle\langle p \mid \psi\rangle= \\ \int d p\left\langle p \mid \theta^{*}\right\rangle\langle p \mid \psi\rangle= \\ \int d p \tilde{\theta}^{*}(p) \tilde{\psi}(p) \end{gathered}$	The overlap of states (the projection) written in position space: $\begin{gathered} \langle\theta \mid \psi\rangle=\langle\theta\| \mathbf{1}\|\psi\rangle= \\ \int d x\langle\theta \mid x\rangle\langle x \mid \psi\rangle= \\ \int d x\left\langle x \mid \theta^{*}\right\rangle\langle x \mid \psi\rangle= \\ \int d x \theta^{*}(x) \psi(x) \end{gathered}$
$\begin{array}{r} \text { Matrix elements of } \hat{p}: \\ \langle\theta\| \hat{p}\|\psi\rangle=\langle\theta\| \hat{p} \mathbf{1}\|\psi\rangle= \\ \int d p\langle\theta\| \hat{p}\|p\rangle\langle p \mid \psi\rangle= \\ \int d p\langle\theta \mid p\rangle p\langle p \mid \psi\rangle= \\ \int d p\left\langle p \mid \theta^{*}\right\rangle p\langle p \mid \psi\rangle= \\ \int d p \tilde{\theta}^{*}(p) p \tilde{\psi}(p) \end{array}$	Matrix elements of \hat{x} : $\begin{gathered} \langle\theta\| \hat{x}\|\psi\rangle=\langle\theta\| \hat{x} \mathbf{1}\|\psi\rangle= \\ \int d x\langle\theta\| \hat{x}\|x\rangle\langle x \mid \psi\rangle= \\ \int d x\langle\theta \mid x\rangle x\langle x \mid \psi\rangle= \\ \int d x\left\langle x \mid \theta^{*}\right\rangle x\langle x \mid \psi\rangle= \\ \int d x \theta^{*}(x) x \psi(x) \end{gathered}$
The overlap $\langle x \mid p\rangle$ for a particle with momentum p : $\langle x \mid p\rangle=p(x)=\frac{e^{\frac{i p x}{\hbar}}}{\sqrt{2 \pi \hbar}}$	The overlap $\langle p \mid x\rangle$ for a particle with position x : $\langle p \mid x\rangle=x(p)=\frac{e^{-\frac{i p x}{\hbar}}}{\sqrt{2 \pi \hbar}}$
Note: $\langle x \mid p\rangle$ and $\langle p \mid x\rangle$ differ by a minus sign in the exponent.	
$\tilde{\psi}(p)$ is the Fourier transform of $\psi(x)$: $\tilde{\psi}(p)=\frac{1}{\sqrt{2 \pi \hbar}} \int d x e^{-\frac{i p x}{\hbar}} \psi(x)$ The wave function in the momentum representation $\tilde{\psi}(p)$ is the Fourier transform of the wave function in the position representation $\psi(x)$.	$\psi(x)$ is the Fourier transform of $\tilde{\psi}(p)$: $\psi(x)=\frac{1}{\sqrt{2 \pi \hbar}} \int d p e^{\frac{i p x}{\hbar}} \tilde{\psi}(p)$ The wave function in the position representation $\psi(x)$ is the Fourier transform of the wave function in the momentum representation $\tilde{\psi}(p)$.
We evaluate $\langle p\| \hat{x}\|\psi\rangle$: $\begin{gathered} \langle p\| \hat{x}\|\psi\rangle=\int d x\langle p \mid x\rangle\langle x\| \hat{x}\|\psi\rangle \\ =\int d x\langle p \mid x\rangle\langle x\| x\|\psi\rangle \\ =\int d x\langle p \mid x\rangle x \psi(x) \\ =\frac{1}{\sqrt{2 \pi \hbar}} \int d x e^{-\frac{i p x}{\hbar}} x \psi(x) \\ =i \hbar\left(\frac{-i}{\hbar}\right) \frac{1}{\sqrt{2 \pi \hbar}} \int d x e^{-\frac{i p x}{\hbar}} x \psi(x) \\ =i \hbar \frac{d}{d p} \tilde{\psi}(p) \end{gathered}$	We evaluate $\langle x\| \hat{p}\|\psi\rangle$: $\begin{gathered} \langle x\| \hat{p}\|\psi\rangle=\int d p\langle x \mid p\rangle\langle p\| \hat{p}\|\psi\rangle \\ =\int d p\langle x \mid p\rangle\langle p\| p\|\psi\rangle \\ =\int d p(p\langle x \mid p\rangle)\langle p \mid \psi\rangle \\ =\int^{\hbar} d p\left(\frac{\hbar}{i} \frac{d}{d x}\langle x \mid p\rangle\right)\langle p \mid \psi\rangle \\ =\frac{\hbar}{i} \frac{d}{d x} \int d p\langle x \mid p\rangle\langle p \mid \psi\rangle= \\ \frac{\hbar}{i} \frac{d}{d x}\langle x \mid \psi\rangle=-i \hbar \frac{d}{d x} \psi(x) \end{gathered}$

The operator $\hat{p}=-i \hbar \frac{d}{d x}$ is Hermitian. The proof for the operator \hat{x} is analog.
We must show:

$$
\int_{-\infty}^{\infty} \psi^{*} \hat{p} \phi d x=\int_{-\infty}^{\infty} \phi \hat{p}^{*} \psi^{*} d x
$$

We begin:

$$
\int_{-\infty}^{\infty} \psi^{*} \hat{p} \phi d x=\int_{-\infty}^{\infty} \psi^{*}\left(-i \hbar \frac{d}{d x}\right) \phi d x=-i \hbar \int_{-\infty}^{\infty} \psi^{*} d \phi=;
$$

We use integration by parts:

$$
\int_{a}^{b} u d v=[u v]_{a}^{b}-\int_{a}^{b} v d u
$$

We proceed:

$$
-i \hbar\left(\left[\psi^{*} \phi\right]_{-\infty}^{\infty}-\int_{-\infty}^{\infty} \phi d \psi^{*}\right)=
$$

Note: the wave functions vanish in infinity, so $\left[\psi^{*} \phi\right]_{-\infty}^{\infty}$ becomes zero.

$$
\begin{gathered}
=i \hbar \int_{-\infty}^{\infty} \phi d \psi^{*}=i \hbar \int_{-\infty}^{\infty} \phi \frac{d \psi^{*}}{d x} d x=\int_{-\infty}^{\infty} \phi\left(i \hbar \frac{d \psi^{*}}{d x}\right) d x= \\
\int_{-\infty}^{\infty} \phi\left(i \hbar \frac{d}{d x}\right) \psi^{*} d x=\int_{-\infty}^{\infty} \phi \hat{p}^{*} \psi^{*} d x
\end{gathered}
$$

Result:

$$
\int_{-\infty}^{\infty} \psi^{*} \hat{p} \phi d x=\int_{-\infty}^{\infty} \phi \hat{p}^{*} \psi^{*} d x
$$

Note: this works only with functions that are normalizable.
The proof can be found at:
https://www.colby.edu/chemistry/PChem/notes/MomentumHermitian.pdf

