This paper deals with momentum representation and position representation and describe both variants parallel.

A more elaborated text you find in

https://inst.eecs.berkeley.edu/~cs191/fa07/lectures/lecture13_fa07.pdf

Hope I can help you with learning quantum mechanics.

Note: $|\psi\rangle$ is a state (a finite or infinite vector, a Hilbert-space of functions, ...)

Quantum mechanics forbids a wave function $\psi(x, p)$ because x and p cannot be known precisely simultaneously. For this reason, we can only work with wave functions $\psi(x)$ and $\tilde{\psi}(p)$.

All of these are eigenfunctions with eigenvalue x or p. They contain the same information about the state $|\psi\rangle$.

Momentum	Position
$ p\rangle \forall p \in \mathbb{R}$	$ x\rangle \forall x \in \mathbb{R}$
$ p\rangle$ is a momentum state in an infinite	$ x\rangle$ is a position state in an infinite
dimensional vector space, the particle	dimensional vector space, the particle
with momentum <i>p</i> .	with position <i>x</i> .
It is a basis of the space of states $ \psi angle$.	It is a basis of the space of states $ \psi angle.$
The dimension of $ \psi angle$ is infinite.	The dimension of $ \psi angle$ is infinite.
$ ilde{\psi}(p) = \langle p \psi angle$	$\psi(x) = \langle x \psi \rangle$
$ ilde{\psi}(p)$ is an eigenfunction with eigenvalue $p.$	$\psi(x)$ is an eigenfunction with eigenvalue x .
Because $ p angle$ is an element of an infinite	Because $ x\rangle$ is an element of an infinite
dimensional vector space, we have:	dimensional vector space, we have:
$a p\rangle \neq ap\rangle, a \in \mathbb{R}, a \neq 1$	$a x\rangle \neq ax\rangle, a \in \mathbb{R}, a \neq 1$
$- p\rangle \neq -p\rangle, \qquad p \neq 0$	$- x\rangle \neq -x\rangle, \qquad x \neq 0$
$ p_1 + p_2\rangle \neq p_1\rangle + p_2\rangle$	$ x_1 + x_2\rangle \neq x_1\rangle + x_2\rangle$
Note: $ 0\rangle$ is the particle with momentum zero,	Note: $ 0\rangle$ is the particle at position zero,
not a zero vector.	not a zero vector.
The inner product:	The inner product:
$\langle p_1 p_2 \rangle \coloneqq \delta(p_2 - p_1)$	$\langle x_1 x_2 \rangle \coloneqq \delta(x_2 - x_1)$
Different momenta are orthogonal to each other.	Different positions are orthogonal to each other.
The norm of a momentum state is infinite:	The norm of a position state is infinite:
$\langle p p \rangle \coloneqq \delta(0) = \infty$	$\langle x x\rangle \coloneqq \delta(0) = \infty$
Completeness relation:	Completeness relation:
	C .
$1 = \int dp p_1\rangle \langle p_1 $	$1 = \int dx x_1\rangle \langle x_1 $
$ 1 p_2\rangle = \int dp p_1\rangle\langle p_1 p_2\rangle =$	$1 x_2\rangle = \int dx x_1\rangle \langle x_1 x_2\rangle =$
$\int dp p_1\rangle \delta(p_1 - p_2) = p_2\rangle$	$\int dx x_1\rangle \delta(x_1 - x_2) = x_2\rangle$
J	5
The momentum operator \hat{p} and position	The position operator \hat{x} and momentum
operator \hat{x} are defined by their action on	operator \hat{p} are defined by their action on
momentum states.	position states.

The eigen-equation for the operator \hat{p} :	The eigen-equation for the operator \hat{x} :
$\hat{p} p angle \coloneqq p p angle$	$\hat{x} x\rangle \coloneqq x x\rangle$
In terms of wave functions: $\hat{m}_{i}(n) = m_{i}(n)$	In terms of wave functions: $\frac{2\pi h}{r} (x) = xrh (x)$
$\hat{p}\psi_p(p) = p\psi_p(p)$ Result:	$\hat{x}\psi_x(x) = x\psi_x(x)$ Result:
$\psi_n(p) = \delta(p - p_0)$	$\psi_x(x) = \delta(x - x_0)$
$\varphi_p(p) = \delta(p - p_0)$	$\varphi_X(x) = (x - x_0)$
The eigen-equation for the operator \hat{x} :	The eigen-equation for the operator \hat{p} :
7	$\hat{p} x\rangle \coloneqq -i\hbar \frac{d}{dx} x\rangle = p x\rangle$
$\hat{x} p angle \coloneqq -i\hbar rac{d}{dp} p angle = x p angle$	
In terms of wave-functions:	In terms of wave-functions:
$\hat{x}\psi_x(p) = -i\hbar \frac{d}{dn}\psi_x(p) = x\psi_x(p)$	$\hat{p}\psi_p(x) = -i\hbar \frac{d}{dx}\psi_p(x) = p\psi_p(x)$
wp	Result of the differential equation:
Result of the differential equation:	to a constant of the second
$e^{\frac{tpx}{\hbar}}$	$\psi_p(x) = \frac{e^{\frac{tpx}{\hbar}}}{\sqrt{2\pi\hbar}}$
$\psi_x(p) = rac{e^{rac{b\lambda}{\hbar}}}{\sqrt{2\pi\hbar}}$	$\sqrt{2\pi\hbar}$
V 2.000	
Note: $\frac{1}{\sqrt{2\pi\hbar}}$ is a normalizing factor.	Note: $\frac{1}{\sqrt{2\pi\hbar}}$ is a normalizing factor.
$\sqrt{2\pi n}$	
Note: $\psi_x(p)$ and $\psi_p(p)$ are functions of p . We	Note: $\psi_p(x)$ and $\psi_x(x)$ are functions of x . We
labelled them with x and p to make clear that	labelled them with p and x to make clear that
they belong to different eigen-equations	they belong to different eigen-equations
(different bases).	(different bases).
The operator \hat{x} is Hermitian:	The operator \hat{p} is Hermitian:
$-i\hbar \frac{d}{dn} = i\hbar \frac{d}{dn}$	$-i\hbar \frac{d}{dx} = i\hbar \frac{d}{dx}$
up up	dx $dxA proof you find at the end of this paper$
A proof you find at the end of this paper The operator \hat{p} is Hermitian:	The operator \hat{x} is Hermitian:
$\hat{p}^{\dagger} = \hat{p}$	$\hat{x}^{\dagger} = \hat{x}$
With this we get:	With this we get:
$\langle p \hat{p} = p\langle p $	$\langle x \hat{x} = x \langle x $
The wave function associated with a state we	The wave function associated with a state we
get by taking the inner product of a momentum	get by taking the inner product of a position
state $ p\rangle$ with the given state $ \psi\rangle$:	state $ x\rangle$ with the given state $ \psi\rangle$:
\tilde{c}	
$ ilde{\psi}(p)\coloneqq \langle p \psi angle\in\mathbb{C}$	$\psi(x) \coloneqq \langle x \psi \rangle \in \mathbb{C}$
$\langle p \psi angle$ is a complex number that depends on the	$\langle x \psi angle$ is a complex number that depends on the
value of p , thus a function of p .	value of x , thus a function of x .
Any state can be written as a superposition of	Any state can be written as a superposition of
momentum eigenstates:	position eigenstates:
$ \psi\rangle = 1 \psi\rangle = \int dp p\rangle\langle p \psi\rangle =$	C C
	$ \psi\rangle = 1 \psi\rangle = \int dx x\rangle\langle x \psi\rangle =$
$\int dp \ket{p} ilde{\psi}(p)$	$\int dx x\rangle \psi(x)$
$\tilde{\psi}(p)$ is the component of $\tilde{\psi}$ along the state $ p\rangle$.	$\psi(x)$ is the component of ψ along the state $ x\rangle$.
$\psi(\varphi)$ is the component of ψ along the state $ p\rangle$.	$\varphi(w)$ is the component of φ along the state $ k $.

The overlap of states (the projection) written in	The overlap of states (the projection) written in	
momentum space: $(0 1 k) = (0 1 k)$	position space: $(0 1 k) = (0 1 k) =$	
$\langle \theta \psi \rangle = \langle \theta 1 \psi \rangle =$	$\langle \theta \psi \rangle = \langle \theta 1 \psi \rangle =$	
$\int_{C} dp \langle \theta p \rangle \langle p \psi \rangle =$	$\int_{C} dx \langle \theta x \rangle \langle x \psi \rangle =$	
$\int dp \langle p \theta^* \rangle \langle p \psi \rangle = $	$\int dx \langle x \theta^* \rangle \langle x \psi \rangle =$	
$\int dp \ ilde{ heta}^*(p) ilde{\psi}(p)$	$\int dx \ \theta^*(x) \ \psi(x)$	
Matrix elements of \hat{p} :	Matrix elements of \hat{x} :	
$\langle \theta \hat{p} \psi \rangle = \langle \theta \hat{p} 1 \psi \rangle =$	$\langle \theta \hat{x} \psi \rangle = \langle \theta \hat{x} 1 \psi \rangle =$	
$\int dp \langle \theta \hat{p} p \rangle \langle p \psi \rangle =$	$\int dx \langle \theta \hat{x} x \rangle \langle x \psi \rangle =$	
$\int dp \langle heta p angle p \langle p \psi angle =$	$\int dx \langle \theta x \rangle x \langle x \psi \rangle = $	
$\int dp \langle p \theta^* \rangle p \langle p \psi \rangle = $	$\int dx \langle x \theta^* \rangle x \langle x \psi \rangle =$	
$\int dp \ ilde{ heta}^*(p) p ilde{\psi}(p)$	$\int dx \theta^*(x) x \psi(x)$	
The overlap $\langle x p \rangle$ for a particle with	The overlap $\langle p x \rangle$ for a particle with	
momentum p:	position <i>x</i> :	
$e^{\frac{ipx}{\hbar}}$	$e^{-\frac{lpx}{\hbar}}$	
$\langle x p\rangle = p(x) = \frac{e^{\frac{ipx}{\hbar}}}{\sqrt{2\pi\hbar}}$	$\langle p x \rangle = x(p) = \frac{e^{-\frac{lpx}{\hbar}}}{\sqrt{2\pi\hbar}}$	
V Zitit	V Zitit	
Note: $\langle x p \rangle$ and $\langle p x \rangle$ differ by a minus sign in the exponent.		
$ ilde{\psi}(p)$ is the Fourier transform of $\psi(x)$:	$\psi(x)$ is the Fourier transform of $ ilde{\psi}(p)$:	
$\tilde{\psi}(p) = \frac{1}{\sqrt{2\pi\hbar}} \int dx \ e^{-\frac{ipx}{\hbar}} \psi(x)$	$\psi(x) = \frac{1}{\sqrt{2\pi\hbar}} \int dp \; e^{\frac{ipx}{\hbar}} \tilde{\psi}(p)$	
The wave function in the momentum $$	The wave function in the position	
representation $ ilde{\psi}(p)$ is the Fourier transform of	representation $\psi(x)$ is the Fourier transform of	
the wave function in the position	the wave function in the momentum $\tilde{f}(x)$	
representation $\psi(x)$.	representation $ ilde{\psi}(p).$	
We evaluate $\langle p \hat{x} \psi \rangle$:	We evaluate $\langle x \hat{p} \psi \rangle$:	
$\langle p \hat{x} \psi angle = \int dx \langle p x angle \langle x \hat{x} \psi angle$	$\langle x \hat{p} \psi angle = \int dp\langle x p angle\langle p \hat{p} \psi angle$	
$= \int dx \langle p x \rangle \langle x x \psi \rangle$	$= \int dp \langle x p \rangle \langle p p \psi \rangle$	
$= \int dx \langle p x \rangle x \psi(x)$	$= \int dp \ (p\langle x p\rangle) \langle p \psi\rangle$	
$=\frac{1}{\sqrt{2\pi\hbar}}\int dx \ e^{-\frac{ipx}{\hbar}}x\psi(x)$	$= \int dp \left(\frac{\hbar}{i}\frac{d}{dx}\langle x p\rangle\right)\langle p \psi\rangle$	
$=i\hbar\left(\frac{-i}{\hbar}\right)\frac{1}{\sqrt{2\pi\hbar}}\int dx \ e^{-\frac{ipx}{\hbar}}x\psi(x)$	$= \frac{\hbar}{i} \frac{d}{dx} \int dp \langle x p \rangle \langle p \psi \rangle =$	
V Entropy		
$=i\hbarrac{d}{dp} ilde{\psi}(p)$	$\frac{\hbar}{i}\frac{d}{dx}\langle x \psi\rangle = -i\hbar\frac{d}{dx}\psi(x)$	
i i		

The operator $\hat{p} = -i\hbar \frac{d}{dx}$ is Hermitian. The proof for the operator \hat{x} is analog. We must show:

$$\int_{-\infty}^{\infty} \psi^* \hat{p} \phi dx = \int_{-\infty}^{\infty} \phi \hat{p}^* \psi^* dx$$

We begin:

$$\int_{-\infty}^{\infty} \psi^* \hat{p} \phi dx = \int_{-\infty}^{\infty} \psi^* \left(-i\hbar \frac{d}{dx} \right) \phi dx = -i\hbar \int_{-\infty}^{\infty} \psi^* d\phi =;$$

We use integration by parts:

$$\int_{a}^{b} u dv = [uv]_{a}^{b} - \int_{a}^{b} v du$$

We proceed:

$$-i\hbar\left([\psi^*\phi]_{-\infty}^{\infty}-\int_{-\infty}^{\infty}\phi d\psi^*
ight)=;$$

Note: the wave functions vanish in infinity, so $[\psi^*\phi]_{-\infty}^\infty$ becomes zero.

$$=i\hbar\int_{-\infty}^{\infty}\phi d\psi^* = i\hbar\int_{-\infty}^{\infty}\phi \frac{d\psi^*}{dx}dx = \int_{-\infty}^{\infty}\phi \left(i\hbar\frac{d\psi^*}{dx}\right)dx =$$
$$\int_{-\infty}^{\infty}\phi \left(i\hbar\frac{d}{dx}\right)\psi^*dx = \int_{-\infty}^{\infty}\phi \hat{p}^*\psi^*dx$$

Result:

$$\int_{-\infty}^{\infty} \psi^* \hat{p} \phi dx = \int_{-\infty}^{\infty} \phi \hat{p}^* \psi^* dx$$

Note: this works only with functions that are normalizable.

The proof can be found at:

https://www.colby.edu/chemistry/PChem/notes/MomentumHermitian.pdf