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This paper deals with the path integral. It may give a first impression of what path integrals 
mean.  

It follows: 

https://www.youtube.com/watch?v=UWuhMJZaiZM 

Physics with Elliot elliot-schneider@t.kajabimail.com 

 

Hope I can help you with learning quantum mechanics. 

 

  

https://www.youtube.com/watch?v=UWuhMJZaiZM
mailto:elliot-schneider@t.kajabimail.com
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The ordinary integral 

 

The rectangles below the function 𝑓(𝑥) give the approximation of the area between the 
function and the 𝑥-axis. By refining the rectangles, the area tends more and more to the 
exact value of the area below 𝑓(𝑥). In the limit of infinitesimally tall rectangles we get 
the correct sum.  

Feynman reinterpreted this picture.  

 

He interpreted this as a path an object travels in space, starting at position 𝑥0 and 
ending at 𝑥1 for which the time 𝑡1 was required. 

The integral gives the total action of the particle along this path. 

Moving particles have kinetic energy, expressed as units of Joule. Multiplying the kinetic 
energy with time gives action.  

In our example we have a free particle with no potential.  

The kinetic energy is: 

1

2
∙ 𝑚 ∙ 𝑥̇2 
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We integrate the kinetic energy along the path from time 𝑡0 to 𝑡1 ≔ ∆𝑡: 

∫
1

2
∙ 𝑚 ∙ 𝑥̇2𝑑𝑡

𝑡1

𝑡0

=
1

2
∙ 𝑚 ∙ 𝑥̇2 ∙ ∆𝑡 

We have no potential, no force, the velocity of the particle is constant: 

𝑥̇ = 𝑐 =
𝑥1 − 𝑥0

𝑡1 − 𝑡0
 

For the straight line from 𝑥0 to 𝑥1 we get the action: 

∫
1

2
∙ 𝑚 ∙ 𝑥̇2𝑑𝑡

𝑡1

𝑡0

=
1

2
∙ 𝑚 ∙  (

𝑥1 − 𝑥0

𝑡1 − 𝑡0
)

2

∫ 𝑑𝑡
𝑡1

𝑡0

=
1

2
∙ 𝑚 ∙  (

𝑥1 − 𝑥0

𝑡1 − 𝑡0
)

2

∙ (𝑡1 − 𝑡0) = 

1

2
∙ 𝑚 ∙  (

𝑥1 − 𝑥0

∆𝑡
)

2

∙ ∆𝑡 =
1

2
∙ 𝑚 ∙

(𝑥1 − 𝑥0)2

∆𝑡
=

1

2
∙ 𝑚 ∙

(∆𝑥)2

∆𝑡
 

The double slit experiment 
We fix 𝑥0, 𝑥𝑎, 𝑥𝑏  and vary the 𝑥2-position from −∞ to ∞. 

𝑥0 = 𝑐𝑜𝑛𝑠𝑡. , 𝑥𝑎 = 𝑐𝑜𝑛𝑠𝑡. , 𝑥𝑏 = 𝑐𝑜𝑛𝑠𝑡. , 𝑥2 = 𝑥 

Graphic representation: 

 

 

 

 

 

 

 

 

𝑥-position 

𝑡0 𝑡1 

2 symmetric positions 𝑥1 for 𝑡1 

time 
𝑡2 

𝑥0 final position 𝑥 

𝑥𝑏  

𝑥𝑎 
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Each path contributes to the probability of finding the particle at position 𝑥 by raising it 
to the exponential. 

The lower path: 

𝑒
𝑖
ℏ

∙𝑆[𝑥𝑙]
= 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑎−𝑥0)2+(𝑥−𝑥𝑎)2) 

The upper path: 

𝑒
𝑖
ℏ

∙𝑆[𝑥𝑢]
= 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑏−𝑥0)2+(𝑥−𝑥𝑏)2) 

We get the probability amplitude 𝐾02 for a particle to go from 𝑥0 to 𝑥2: 

𝐾02 = ∑ 𝑒
𝑖
ℏ

∙𝑆[𝑥]

𝑝𝑎𝑡ℎ𝑠 𝑥(𝑡)

≈ (𝑒
𝑖
ℏ

∙𝑆[𝑥𝑙]
+ 𝑒

𝑖
ℏ

∙𝑆[𝑥𝑢]
) 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑎−𝑥0)2+(𝑥−𝑥𝑎)2) + 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑏−𝑥0)2+(𝑥−𝑥𝑏)2) = 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥𝑎

2−2𝑥𝑎𝑥0+𝑥0
2+𝑥2−2𝑥𝑎𝑥+𝑥𝑎

2) + 𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥𝑏

2−2𝑥𝑏𝑥0+𝑥0
2+𝑥2−2𝑥𝑏𝑥+𝑥𝑏

2) = 

𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥0𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥0

2

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥 + 𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑏
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑏𝑥0𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥0

2

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑏𝑥 = 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥0

2

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

(𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥0𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥 + 𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑏
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑏𝑥0𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑏𝑥) 

We use: 

𝑥0 =
𝑥𝑎 + 𝑥𝑏

2
→ 𝑥𝑏 = 2𝑥0 − 𝑥𝑎 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥0

2

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

(𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥0𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥

+ 𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

(2𝑥0−𝑥𝑎)2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

(2𝑥0−𝑥𝑎)𝑥0𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

(2𝑥0−𝑥𝑎)𝑥) = 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥0

2

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

(𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥0𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥

+ 𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

(4𝑥0
2−4𝑥0𝑥𝑎+𝑥𝑎

2)𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

(2𝑥0−𝑥𝑎)𝑥0𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

(2𝑥0−𝑥𝑎)𝑥) 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥0

2

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

(𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥0𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥

+ 𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

4𝑥0
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

4𝑥0𝑥𝑎𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥0
2

𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥0𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥0𝑥𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥) = 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥0

2

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

(𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥0𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥

+ 𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥0
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

3𝑥0𝑥𝑎𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥0𝑥𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥) = 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥0

2

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥0𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥 (1 + 𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥0
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

4𝑥0𝑥𝑎𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥0𝑥𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥𝑎𝑥) = 
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𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥0

2

𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥0𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥2−𝑥𝑎𝑥) (1 + 𝑒

𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥0
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

4𝑥0𝑥𝑎𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

2(𝑥𝑎−𝑥0)𝑥) 

The only factors varying with 𝑥 are 𝑥2 − 𝑥𝑎𝑥 and (𝑥𝑎 − 𝑥0)𝑥: 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥2−𝑥𝑎𝑥) (1 + 𝑒

𝑖
ℏ

∙
𝑚
∆𝑡

2(𝑥𝑎−𝑥0)𝑥) 

The probability to find the particle at 𝑥 then is: 

𝑃𝑟𝑜𝑏(𝑥) ≈ |𝐾02|2 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥2−𝑥𝑎𝑥) (1 + 𝑒

𝑖
ℏ

∙
𝑚
∆𝑡

2(𝑥𝑎−𝑥0)𝑥) ∙ 𝑒
−𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥2−𝑥𝑎𝑥) (1 + 𝑒

−𝑖
ℏ

∙
𝑚
∆𝑡

2(𝑥𝑎−𝑥0)𝑥) = 

(1 + 𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

2(𝑥𝑎−𝑥0)𝑥) ∙ (1 + 𝑒
−𝑖
ℏ

∙
𝑚
∆𝑡

2(𝑥𝑎−𝑥0)𝑥) = 

2 + 𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

2(𝑥𝑎−𝑥0)𝑥 + 𝑒
−𝑖
ℏ

∙
𝑚
∆𝑡

2(𝑥𝑎−𝑥0)𝑥 = 

2 + 2𝑅𝑒 (𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

2(𝑥𝑎−𝑥0)𝑥) = 

2 + 2𝑐𝑜𝑠 (
𝑚

ℏ∆𝑡
2(𝑥𝑎 − 𝑥0)𝑥) 

We use 𝑥𝑎 − 𝑥0 = ∆𝑥 

2 + 2𝑐𝑜𝑠 (2
𝑚

ℏ∆𝑡
∆𝑥𝑥) 

Adding a second double slit barrier 
Graphic representation: 

 

 

 

 

 

 

 

 

  

𝑥-position 

𝑡0 𝑡1 

𝑥1 

time 

𝑡2 

𝑥0 final position 𝑥3 

 

𝑥𝑏  

𝑥𝑎 

𝑡3 

𝑥2 
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We have four possible paths from 𝑥0 to 𝑥3: 

 

 

 

 

 

 

We leave ∆𝑡 constant as before and examine the case with 𝑥3 varying. 

We fix 𝑥0, 𝑥𝑎, 𝑥𝑏  and vary the 𝑥3-position from −∞ to ∞. 

𝑥0 = 𝑐𝑜𝑛𝑠𝑡. , 𝑥𝑎 = 𝑐𝑜𝑛𝑠𝑡. , 𝑥𝑏 = 𝑐𝑜𝑛𝑠𝑡. , 𝑥3 = 𝑥 

Each path contributes to the probability of finding the particle at position 𝑥 by raising it 
to the exponential. 

Path 𝑝1: 

𝑒
𝑖
ℏ

∙𝑆[𝑝1]
= 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑏−𝑥0)2+(𝑥𝑏−𝑥𝑏)2+(𝑥−𝑥𝑏)2)

= 𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑏−𝑥0)2+(𝑥−𝑥𝑏)2) 

Path 𝑝2: 

𝑒
𝑖
ℏ

∙𝑆[𝑝2]
= 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑏−𝑥0)2+(𝑥𝑎−𝑥𝑏)2+(𝑥−𝑥𝑎)2) 

Path 𝑝3: 

𝑒
𝑖
ℏ

∙𝑆[𝑝3]
= 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑎−𝑥0)2+(𝑥𝑏−𝑥𝑎)2+(𝑥−𝑥𝑏)2) 

Path 𝑝4: 

𝑒
𝑖
ℏ

∙𝑆[𝑝4]
= 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑎−𝑥0)2+(𝑥𝑎−𝑥𝑎)2+(𝑥−𝑥𝑎)2) = 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑎−𝑥0)2+(𝑥−𝑥𝑎)2) 

We resolve the binomials and omit constant factors in the end: 

𝑝1 = 𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑏−𝑥0)2+(𝑥−𝑥𝑏)2) = 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
(2𝑥𝑏

2−2𝑥𝑏𝑥0+𝑥0
2+𝑥2−2𝑥𝑏𝑥) ≈ 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥2−2𝑥𝑏𝑥) 

𝑝2 = 𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑏−𝑥0)2+(𝑥𝑎−𝑥𝑏)2+(𝑥−𝑥𝑎)2) = 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥𝑏

2−2𝑥𝑏𝑥0+𝑥0
2+𝑥𝑎

2−2𝑥𝑎𝑥𝑏+𝑥𝑏
2+𝑥2−2𝑥𝑥𝑎+𝑥𝑎

2) = 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
(2𝑥𝑏

2−2𝑥𝑏𝑥0+𝑥0
2+2𝑥𝑎

2−2𝑥𝑎𝑥𝑏+𝑥2−2𝑥𝑥𝑎)≈𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥2−2𝑥𝑥𝑎) 

𝑝3 = 𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑎−𝑥0)2+(𝑥𝑏−𝑥𝑎)2+(𝑥−𝑥𝑏)2) = 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥𝑎

2−2𝑥𝑎𝑥0+𝑥0
2+𝑥𝑏

2−2𝑥𝑎𝑥𝑏+𝑥𝑎
2+𝑥2−2𝑥𝑥𝑏+𝑥𝑏

2) = 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
(2𝑥𝑎

2−2𝑥𝑎𝑥0+𝑥0
2+2𝑥𝑏

2−2𝑥𝑎𝑥𝑏+𝑥2−2𝑥𝑥𝑏) ≈ 𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥2−2𝑥𝑥𝑏) 

𝑝1 

 

𝑝2 

 

𝑝3 

 

𝑝4 
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𝑝4 = 𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑎−𝑥0)2+(𝑥−𝑥𝑎)2) = 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
(2𝑥𝑎

2−2𝑥𝑎𝑥0+𝑥0
2+𝑥2−2𝑥𝑎𝑥) ≈ 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥2−2𝑥𝑎𝑥) 

We get the probability amplitude 𝐾02 for a particle to go from 𝑥0 to 𝑥: 

𝐾03 ≈ ∑ 𝑒
𝑖
ℏ

∙𝑆[𝑥]

𝑝𝑎𝑡ℎ𝑠 𝑥(𝑡)

= (𝑒
𝑖
ℏ

∙𝑆[𝑝1]
+ 𝑒

𝑖
ℏ

∙𝑆[𝑝2]
+ 𝑒

𝑖
ℏ

∙𝑆[𝑝3]
+ 𝑒

𝑖
ℏ

∙𝑆[𝑝4]
) = 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥2−2𝑥𝑏𝑥) + 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥2−2𝑥𝑥𝑎) + 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥2−2𝑥𝑥𝑏) + 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥2−2𝑥𝑎𝑥) = 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

𝑒−
𝑖
ℏ

∙
𝑚

2∆𝑡
2𝑥𝑏𝑥 + 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

𝑒−
𝑖
ℏ

∙
𝑚

2∆𝑡
2𝑥𝑥𝑎 + 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

𝑒−
𝑖
ℏ

∙
𝑚

2∆𝑡
2𝑥𝑥𝑏 + 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

𝑒−
𝑖
ℏ

∙
𝑚

2∆𝑡
2𝑥𝑎𝑥 = 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

(𝑒−
𝑖
ℏ

∙
𝑚

2∆𝑡
2𝑥𝑏𝑥 + 𝑒−

𝑖
ℏ

∙
𝑚

2∆𝑡
2𝑥𝑥𝑎 + 𝑒−

𝑖
ℏ

∙
𝑚

2∆𝑡
2𝑥𝑥𝑏 + 𝑒−

𝑖
ℏ

∙
𝑚

2∆𝑡
2𝑥𝑎𝑥) = 

2𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

(𝑒−
𝑖
ℏ

∙
𝑚

2∆𝑡
2𝑥𝑏𝑥 + 𝑒−

𝑖
ℏ

∙
𝑚

2∆𝑡
2𝑥𝑥𝑎) 

We use: 

𝑥0 =
𝑥𝑎 + 𝑥𝑏

2
→ 𝑥𝑏 = 2𝑥0 − 𝑥𝑎 

2𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

(𝑒−
𝑖
ℏ

∙
𝑚

2∆𝑡
2(2𝑥0−𝑥𝑎)𝑥 + 𝑒−

𝑖
ℏ

∙
𝑚

2∆𝑡
2𝑥𝑥𝑎) = 

2𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

(𝑒−
𝑖
ℏ

∙
𝑚

2∆𝑡
4𝑥𝑥0𝑒−

𝑖
ℏ

∙
𝑚

2∆𝑡
2𝑥𝑥𝑎 + 𝑒−

𝑖
ℏ

∙
𝑚

2∆𝑡
2𝑥𝑥𝑎) = 

2𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

𝑒−
𝑖
ℏ

∙
𝑚

2∆𝑡
2𝑥𝑥𝑎 (𝑒−

𝑖
ℏ

∙
𝑚

2∆𝑡
4𝑥𝑥0 + 1) = 

2𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥2−2𝑥𝑥𝑎) (𝑒−

𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥𝑥0 + 1) 

The probability to find the particle at 𝑥 position is: 

𝑃𝑟𝑜𝑏(𝑥) ≈ |𝐾03|2 

2𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥2−2𝑥𝑥𝑎) (𝑒−

𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥𝑥0 + 1) ∙ 2𝑒−
𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥2−2𝑥𝑥𝑎) (𝑒

𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥𝑥0 + 1) = 

4 (𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥𝑥0 + 1) ∙ (𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥𝑥0 + 1) = 

4 ∙ (1 + 𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥𝑥0 + 𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥𝑥0 + 1) = 

4 ∙ (2 + 𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥𝑥0 + 𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥𝑥0) = 

4 ∙ (2 + 2𝑅𝑒 (𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

2𝑥𝑥0)) = 
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8 ∙ (1 + 𝑐𝑜𝑠 (
𝑚

ℏ∆𝑡
2𝑥𝑥0)) = 

8 + 8𝑐𝑜𝑠 (
𝑚

ℏ∆𝑡
2𝑥𝑥0) 

𝑁 gratings with 𝑁 × 𝑁 possible paths 
 

 

 

 

 

 

 

 

 

We divide time into equal parts, ∆𝑡 = 𝑡𝑖+1 − 𝑡𝑖 = 𝑐𝑜𝑛𝑠𝑡. The line segments of the 
position ∆𝑥 might be individually different.  

We take one of these possibilities. 

 

 

 

 

 

 

 

 

The action 𝑆[𝑥] of this free particle in each segment: 

𝑆[𝑥𝑖] = ∫ 𝑑𝑡 {
1

2
𝑚 (

𝑥𝑖+1 − 𝑥𝑖

∆𝑡
)

2

}
𝑡𝑖+𝑖

𝑡𝑖

=
𝑚

2∆𝑡
(∆𝑥)2 

  

0 

… 

𝑥0 

𝑥𝑁  final position (𝑥𝑡, 𝑡) 

∆𝑥𝑖  

∆𝑥𝑖  

𝑥-position 

time 

1
∆

𝑡 

3
∆

𝑡 

( 𝑁
−

2
) ∆

𝑡 

𝑇 

2
∆

𝑡 

( 𝑁
−

1
) ∆

𝑡 

𝑥-position 

time 
0 1

∆
𝑡 

3
∆

𝑡 

… 

( 𝑁
−

2
) ∆

𝑡 

𝑇 

2
∆

𝑡 

( 𝑁
−

1
) ∆

𝑡 

𝑥0 

𝑥𝑁  final position (𝑥𝑁 , 𝑡) 
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We divided the timeline into 𝑁 steps. Summing up, we get the action for a single path: 

𝑆[𝑥] = ∑ 𝑆[𝑥𝑖]

𝑁

𝑖=1

= ∑
𝑚

2∆𝑡
(𝑥𝑖 − 𝑥𝑖−1)2

𝑁

𝑖=1

= 

𝑚

2∆𝑡
((𝑥1 − 𝑥0)2 + (𝑥2 − 𝑥1)2 + ⋯ + (𝑥𝑁 − 𝑥𝑁−1)2) = 

∑
𝑚

2∆𝑡
(∆𝑥𝑖)

2

𝑁

𝑖=1

 

This path contributes to the probability of finding the particle at position 𝑥𝑁  by raising it 
to the exponential: 

𝑒
𝑖
ℏ

∙𝑆[𝑥]
= 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥1−𝑥0)2+(𝑥2−𝑥1)2+⋯+(𝑥𝑁−𝑥𝑁−1)2) 

We get the probability amplitude 𝐾0𝑁 for a particle to go from 𝑥0 to 𝑥𝑁: 

𝐾0𝑁 ≈ ∑ 𝑒
𝑖
ℏ

∙𝑆[𝑥]

𝑝𝑎𝑡ℎ𝑠 𝑥(𝑡)

 

The probability of finding the particle at 𝑥𝑁: 

𝑃𝑟𝑜𝑏(𝑥𝑁) ≈ |𝐾0𝑁|2 

Taking the limit 
Note: 𝑁 × 𝑁 is countable so we can take the limit. 

We took one of these possible paths and split it up in 𝑁 time slots of equal length: 

 

 

 

 

 

 

 

 

For every possible path we get discrete approximation. 

  

0 

𝑥𝑁  final position (𝑥𝑁 , 𝑡) 

∆𝑥𝑖  

𝑥-position 

time 

𝑥0 

𝑡0 𝑡𝑁 

∆
𝑡 
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If we want to sum over all those approximations, we need to sum over all possible values 
of each 𝑥𝑖: 

lim
𝑁→∞

∫ 𝑑𝑥1

∞

−∞

∫ 𝑑𝑥2

∞

−∞

… ∫ 𝑑𝑥𝑁−1

∞

−∞

= lim
𝑁→∞

∫ 𝑑𝑥1𝑑𝑥2 … 𝑑𝑥𝑁−1

∞

−∞

= ∫ 𝐷𝑥

𝑥𝑁

𝑥0

 

We get: 

∫ 𝐷𝑥
𝑥𝑁

𝑥0

𝑒
𝑖
ℏ

∙𝑆[𝑥]
≈ lim

𝑁→∞
∫ 𝑑𝑥1𝑑𝑥2 … 𝑑𝑥𝑁−1𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥1−𝑥0)2+(𝑥2−𝑥1)2+⋯+(𝑥𝑁−𝑥𝑁−1)2)

∞

−∞

 

 

 

Note: from the viewpoint of 𝑑𝑥1 all expressions (𝑥𝑗 − 𝑥𝑗−1)
2

 are constant if 𝑗 ≠ 1,2 etc. 

A look at Wikipedia gives: 

∫ 𝑒𝑖𝑎𝑥2
𝑑𝑥

∞

−∞

= √
𝜋𝑖

𝑎
 

By performing this for all (𝑥𝑗 − 𝑥𝑗−1)
2

 we get, after lengthy calculations: 

∫ 𝐷𝑥
𝑥𝑁

𝑥0

𝑒
𝑖
ℏ

∙𝑆[𝑥]
≈ lim

𝑁→∞
{𝑒

𝑖
ℏ

∙
𝑚
2

(𝑥𝑁−𝑥0)2

𝑡𝑁−𝑡0 √
𝑚

2𝜋𝑖ℏ(𝑡𝑁 − 𝑡0)
(√

2𝜋𝑖ℏ∆𝑡

𝑚
)

𝑁

} 

We note that the only dependency of 𝑁 is: 

(√
2𝜋𝑖ℏ∆𝑡

𝑚
)

𝑁

 

To eliminate this dependency, we choose a factor 𝐴 as the inverse: 

𝐴 =
1

(√2𝜋𝑖ℏ∆𝑡
𝑚 )

𝑁 

We write: 

∫ 𝐷𝑥
𝑥𝑁

𝑥0

𝑒
𝑖
ℏ

∙𝑆[𝑥]
≈ lim

𝑁→∞
{𝐴 ∙ 𝑒

𝑖
ℏ

∙
𝑚
2

(𝑥𝑁−𝑥0)2

𝑡𝑁−𝑡0 √
𝑚

2𝜋𝑖ℏ(𝑡𝑁 − 𝑡0)
(√

2𝜋𝑖ℏ∆𝑡

𝑚
)

𝑁

} 

  

With this we express the 
path integral … 

… by a sequence of 
ordinary integrals 
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Then the dependency of 𝑁 cancels out and we get: 

∫ 𝐷𝑥
𝑥𝑁

𝑥0

𝑒
𝑖
ℏ

∙𝑆[𝑥]
= 𝑒

𝑖
ℏ

∙
𝑚
2

∙
(𝑥𝑁−𝑥0)2

𝑡𝑁−𝑡0 √
𝑚

2𝜋𝑖ℏ(𝑡𝑁 − 𝑡0)
≔ 𝐾0𝑁 

This is the probability amplitude for a free particle to propagate from 𝑥0 to 𝑥𝑁. 
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Addentum: The interference pattern of the double slit and the cascaded double slit. 

Double slit 

 

 

 

 

 

 

 

 

The calculation for the double slit experiment gave: 

2 + 2𝑐𝑜𝑠 (2
𝑚

ℏ∆𝑡
∆𝑥𝑥) 

We set 𝑚 = ℏ = ∆𝑡 = ∆𝑥 = 1 and plot: 

 

Cascaded double slit 

 

 

 

 

 

 

 

𝑥-position 

𝑡0 𝑡1 

2 symmetric positions 𝑥1 for 𝑡1 

time 
𝑡2 

𝑥0 final position 𝑥 

𝑥𝑏  

𝑥𝑎 

𝑥-position 

𝑡0 𝑡1 

𝑥1 

time 

𝑡2 

𝑥0 final position 𝑥3 

 

𝑥𝑏  

𝑥𝑎 

𝑡3 

𝑥2 
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The calculation for the cascaded double slit experiment gave: 

8 + 8𝑐𝑜𝑠 (
𝑚

ℏ∆𝑡
2𝑥𝑥0) 

We set 𝑚 = ℏ = ∆𝑡 = 𝑥0 = 1 and plot: 

 

Note: the red plot was the amplitude of the double slit case. 

What would happen if we varied 𝑥𝑏  only? 

We fix 𝑥0, 𝑥𝑎, 𝑥2 and vary the 𝑥𝑏-position from −∞ to ∞ and omit all constant factors 

𝑥0 = 𝑐𝑜𝑛𝑠𝑡. , 𝑥𝑎 = 𝑐𝑜𝑛𝑠𝑡. , 𝑥2 = 𝑐𝑜𝑛𝑠𝑡. , 𝑥𝑏 = 𝑥 

 

 

 

 

 

 

 

 

Each path contributes to the probability of finding the particle at position 𝑥 by raising it 
to the exponential. 

The lower path: 

𝑒
𝑖
ℏ

∙𝑆[𝑥𝑙]
= 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑎−𝑥0)2+(𝑥−𝑥𝑎)2) 

The upper path: 

𝑒
𝑖
ℏ

∙𝑆[𝑥𝑢]
= 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑏−𝑥0)2+(𝑥−𝑥𝑏)2) 

𝑥-position 

𝑡0 𝑡1 

2 symmetric positions 𝑥1 for 𝑡1 

time 
𝑡2 

𝑥0 final position 𝑥 

𝑥𝑏  

𝑥𝑎 
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We get the probability amplitude 𝐾02 for a particle to go from 𝑥0 to 𝑥2: 

𝐾02 = ∑ 𝑒
𝑖
ℏ

∙𝑆[𝑥]

𝑝𝑎𝑡ℎ𝑠 𝑥(𝑡)

≈ (𝑒
𝑖
ℏ

∙𝑆[𝑥𝑙]
+ 𝑒

𝑖
ℏ

∙𝑆[𝑥𝑢]
) 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑎−𝑥0)2+(𝑥−𝑥𝑎)2) + 𝑒

𝑖
ℏ

∙
𝑚

2∆𝑡
((𝑥𝑏−𝑥0)2+(𝑥−𝑥𝑏)2) = 

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥𝑎

2−2𝑥𝑎𝑥0+𝑥0
2+𝑥2−2𝑥𝑎𝑥+𝑥𝑎

2) + 𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
(𝑥𝑏

2−2𝑥𝑏𝑥0+𝑥0
2+𝑥2−2𝑥𝑏𝑥+𝑥𝑏

2) = 

𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥0𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥0

2

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑎𝑥 + 𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑏
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑏𝑥0𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥0

2

𝑒
𝑖
ℏ

∙
𝑚

2∆𝑡
𝑥2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑏𝑥 

We omit all constant factors: 

1 + 𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑏
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑏𝑥0𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑏𝑥 = 

1 + 𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑏
2

𝑒−
𝑖
ℏ

∙
𝑚
∆𝑡

𝑥𝑏(𝑥0−𝑥)
= 

1 + 𝑒
𝑖
ℏ

∙
𝑚
∆𝑡

(𝑥𝑏
2−𝑥𝑏𝑥0+𝑥𝑏𝑥) 

We get the probability: 
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2 − 𝑥𝑏𝑥0 + 𝑥𝑏𝑥) 

We use that 𝑥0 = 𝑥: 

2 + 2𝑐𝑜𝑠(𝑥2) 

 

If we move 𝑥𝑏  further outwards, we obtain oscillation with increasing frequency as the 
distance 𝑥𝑏  from 𝑥0 increases. 


