Path Integral

This paper deals with the path integral. It may give a firstimpression of what path integrals
mean.

It follows:
https://www.youtube.com/watch?v=UWuhMJZaiZM

Physics with Elliot elliot-schneider@t.kajabimail.com

Hope | can help you with learning quantum mechanics.
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Path Integral

The ordinary integral

\ P _— f(x)

The rectangles below the function f (x) give the approximation of the area between the
function and the x-axis. By refining the rectangles, the area tends more and more to the
exact value of the area below f(x). In the limit of infinitesimally tall rectangles we get
the correct sum.

Feynman reinterpreted this picture.

(t)

t =0 t;

0:
He interpreted this as a path an object travels in space, starting at position x, and
ending at x; for which the time t; was required.

The integral gives the total action of the particle along this path.

Moving particles have kinetic energy, expressed as units of Joule. Multiplying the kinetic
energy with time gives action.

In our example we have a free particle with no potential.

The kinetic energy is:

N| =
3
=
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Path Integral

t0=0 tl
We integrate the kinetic energy along the path from time t, to t; = At:

tl 1
f —-m-x%dt =--m-x?-At
. 2 2

0
We have no potential, no force, the velocity of the particle is constant:
X1 — Xo

t1 —to
For the straight line from x, to x; we get the action:

X=c =

f11 1 X1 — X\% (1 1 X1 — Xo\?
j —-m-;’czdt=—-m-<1 0) dt=—-m-<1 °> (b —to) =
. 2 2 t,—to) J, 2 t, — to

1. (xl—xoy.At:gm.wzz.m.w
2 At 2 At 2 At

The double slit experiment

We fix xq, X4, Xp @nd vary the x,-position from —oo to co.

Xy = const.,x, = const.,x, = const.,x, = x
Graphic representation:

x-position . -
P A 2 symmetric positions x; for t;
A
Xp— ) o
Xo //;/} final position x
xa_,,,,,,,,,,,,,,,,,,,fﬁ‘:x,// /
T time
to iy tr
D. Kriesell
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Path Integral

Each path contributes to the probability of finding the particle at position x by raising it
to the exponential.
The lower path:

i

o7 S _ ohane((Famx0)2+(x-x0)?)

The upper path:

Ll _

e — oFaar(Gp=x0)2+(x=xp)?)

We get the probability amplitude K, for a particle to go from x; to x5:

Ky, = z oF S (e%-s[xl] + eif'L-s[qu)

paths x(t)
i m i m
eﬁ'm((xa—xo)2+(x—xa)2) + eﬁ-m((xb—xo)2+(x—xb)2) —
eﬁ%(xa —2xgx0+x0% +x%=2x0x+%4?) + ehZAt(xb —2xpx0+x02+x2=2xpx+xp%) _

Lmz 2 im im_ im im_o, im_, im
eRhAt*a o hAtxaerh 2Atx° eh 2At e RAT*Y 4 oRAtYD” o TRATPY0 o ZATY0 R 2ALY e RACHY =

L 2 Im o/ im o _im
eR ZAT*0 pR 2AL" (ehAtx e hAtxaer hAtxax+ehAtxb e hAtxbxoe hAtxbx)

We use
Xq + Xp
X _T_)xb = 2X9 — X4
Iim o, Im ¢/ im , im
eRZAC"0” R 2ATY (eh At¥a o TRAT Y0~ hAtxax

im
n em(z:co xa)?, LT (2500 Xa)¥o,, ﬁﬂ(zxo—xa)x> _

L 2 Im Lm. o
e ZAT0 pR 2ATF (ehAtx“ e hAtxaxoe hAtxax

im im im
+ eﬁ'A_t(“xoz—‘onxa"'xaz)e_E'A—t(zxo—xa)xoe—E‘A—t(zxo—xa)x>

im o im ¢/ im o im . _im
(ehAt @ o RAtTY 0 RALTA

im o _im
4x0 e hAt4x0xaeh At¥a o R At 2Xo

im
+ eh At eRAt¥a%0 TR Atzxoxeh Atxax) =

im
eRh2at" | eRAtYe @ h Atxaxo e RArra*

2 lm 2<lm 2

i.mz 2 _1.23 Lﬂ 2 _L'.mz Lﬂ
+ eRAt“Y0 o TRAT XX apR AT e o TRAT xO"ghAt"ﬂ") =

ﬂ 2 _Lﬂ _Lﬂ Lmz 2 imn imz Lmz
At*a” o TR ACYa¥0 o TRAT Y (1 + eRAt“¥0 o TRAL X 0¥ap TRAL“XOX o RAE xax) =
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Path Integral

The only factors varying with x are x? — x,x and (x, — xo)x:

2

i m im
o 2AE (¥ ~%aX) (1 n eﬁ'ﬂz(xa‘xo)x)

The probability to find the particle at x then is:

3
eh

We use x;, — xo = Ax

2 + 2Re (eh Ag2(Xa~ "0)") =

2+ 2cos (—2(xa xo)x)

Prob(x) =

2+ ZCOS(

<1 + e%'%z(xa—xo)x) - (1 + e%i'%ﬂxa—xo)x) =

im —-im
2 4+ eﬁ'A—tZ(xa—xo)x + eT'A_tZ(xa_xO)x —

hAt

hAt

Adding a second double slit barrier

Graphic representation:

| Koz |?

Z—Axx

im im im im im
t¥a’ o TR aa%0 o F 2R (Y ¥a%) (1 + eﬁ'szoze“ﬁ'E“xOx“eﬁ'Ez("a‘xo)x)

.%(xz_xax) (1 n ehAtz(xa xo)x) e h 2At(x —XxgX) (1 +e h Atz(xa xo)x) _

x-position
! X1 X2
A
Xb
X = final position x3
Xq -
r—> time
to t t, ts
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Path Integral

We have four possible paths from x, to x53:

(&1 ) D2

| \ P4

We leave At constant as before and examine the case with x5 varying.
We fix xg, x4, X, and vary the x3-position from —oo to co.
Xy = const.,x, = const.,x, = const.,x3 = x

Each path contributes to the probability of finding the particle at position x by raising it
to the exponential.

Path p4:
7S] _ o hame((ep=x0)2+ (ep=xp)2+ (x=x)?) _ o ame (=04 (x-xp)?)
Path p,:
oFSIP2] _ o hame((ep=x0)*+ (ta=xp)?+(¥-10)?)
Path p;:
oFSID3] _ o hane((Fa=x0)?+ (=10 +(x=xp)?)
Path p,:

L

eh Slpa4l — e%’%((xa_xo)z+(xa_xa)2+(x_xa)2) — e%-zﬂm((xa—xo)2+(x—xa)2)

We resolve the binomials and omit constant factors in the end:
im i m i m
p, = eﬁ-m((xb—xo)2+(x—xb)2) _ eﬁ-m(bez—bexoﬂcoz+x2—2xbx) ~ eﬁ-m(xz—bex)

i m i m
_ eﬁ-Z—At((xb—xo)z+(xa—xb)2+(x—xa)2) _ eE-Z—At(xbz—bexo+x02+xa2—Zxaxb+xb2+x2—2xxa+xa2) _

b2 =
i m 2 2 2 2 ~ Lm o2
eﬁ'Z_At(ZXb —2XpXo+Xo“+2x5°—2XgXptX _Zxxa)"'eﬁZ_At(x —Zxxa)
i m 2 2 2 i m 2 2 2 2,,2 2
Py = eﬁ-m((xa—xo) +(ep—xa)?+(x—-xp)?) _ eﬁ'm(xa —2XgXo+X02 +Xp2—2XaXp+xa? +X2 = 22xp+Xp?) _

i m 2 2 2 2 img >
eﬁ'm(zx“ —2xgx0+x0%+2xp% —2XgXp+x2—2%Xp) ~ eﬁ'm(x —2xxp)
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Path Integral

l-%(Zxaz—Zxax0+x02+x2—2xax) ~ eﬁ At(x —2xgx)

im
— eﬁ'm((xa—xo)2+(x—xa)2) = eh

P4

We get the probability amplitude K, for a particle to go from x;, to x:

Ky ~ Z 7SI (e%-s[pl] + ofStpal | Stosl e%-s[pu) _
paths x(t)

im im i m i m
eﬁ-m(xz—bex) + eﬁ-m(xz—Zxxa) + eﬁ-m(xz—Zxxb) +eﬁ'm(x2—2xax) —

3

2 m 2 m 2 m 2

m i
286° ¢ TR 2AE2XPX | eh 250" e h 2At2xxa + eh 256" e hZAtzxxb + eh 2At° e h 2At2xax =

=

e

im 2 i m2 _i.ﬂz _i.ﬂz _L'.ﬂz
efi 2at" (e R2AC°FVY 4 e TRZAt Y a 4 o TR2ALMD 4 @ TR2AE xax) =

im _ o, 2 m,
2eR 2At° (e h2At X 4 o hZAt "xa)

We use:

xa+xb

x0: 2

= X = 2Xg — X4

im 2
2eR 2At" (e PR (2o—xa)x +e R 2At2xxa> =

im im
Zeh 2At ( Txxoe R 2At>%Xa + e_ﬁlz_Atzxxa) =
L m 2
2At

2eR2 e h ZAthxa (e h2At4xx° + 1)

28%.%()62_23”“) (8 —%-%Zxxo + 1)
The probability to find the particle at x position is:

Prob(x) = |Kys3|?

m

i m [ m '
Zeﬁ.m(xz_zxxa) (e_ﬁ-EZxxo + 1) 2e hZAt(x Zxxa)< RAL 2xXg + 1) =

im, im,
4-(6 RAET0 4 1> . (ehAt o+ 1)
im im
4- (1 + o RREZXFo 4 oFAEEYK0 4 1) -

4 - (2 +e hAtzxxo + eh Atzxxo) =

4. (2 + 2Re (eh Atz’%)) —
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Path Integral

8- (1 + cos (% Zxxo)> =

8 + 8cos (1 Zxxo)

hAt

N gratings with N X N possible paths

inal position (x;, t)

time

x-position
A
B ] .
_ ] —
B ] \
] ] — \77
] J \7
g f' o
|/ [
] L -
] [/ 7
X —+— A —FF—
Ax | - -
=R i >
339 3 ar
0 — N N ~ ~
AN
([
=2 =
N

We divide time into equal parts, At = t;,1 — t; = const. The line segments of the

position Ax might be individually differe

We take one of these possibilities.

nt.

x-position
A
Xy —— —final position (xy, t)
Xo — N I I T R
Axi : :
= :.
338 3T time
0 — AN ~
AN
[
=z =
—

The action S[x] of this free particle in each segment:

Citi 1
S[x;] =f dt {—m
" 2

i

Xit1 — X 2} . m 2
( At ) = 2ag A%

D. Kriesell
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Path Integral

We divided the timeline into N steps. Summing up, we get the action for a single path:
N N
m
= Zs[xi] = ZE(XI' —xi-1)? =
=1 =1

2At((x1_x0) + (= x)2 + 4 (xy — xy-1)?) =

N

m
ZT (8x)*
i=1

This path contributes to the probability of finding the particle at position x, by raising it
to the exponential:

ehS[x] _ etht((xl x%0)%+(z=x1)% ++ (N —xN-1)?)

We get the probability amplitude K,y for a particle to go from x, to xy:
Koy = 2 el
paths x(t)
The probability of finding the particle at xy:
Prob(xy) = |Kon|?
Taking the limit
Note: N X N is countable so we can take the limit.

We took one of these possible paths and splitit up in N time slots of equal length:

x-position
A

Xy —f- - —final position (xy, t)
1 /’ S

o —(———

Ax; | % o
time

0 to ty

For every possible path we get discrete approximation.
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Path Integral

If we want to sum over all those approximations, we need to sum over all possible values

of each x;:
XN
1\1113.10 dxlf dx, f dxy_1 = Al]l_r&J dxidxy ...dxy_1 = f Dx
— 00 —00 — 00 — 00 X0
We get:
XN i ® i m 2 2 2
f Dx eF ™ ~ 1im dx,dx; ...dXN_leﬁ'm((xl"xO) +(p=x1) 4+ (o —xN-1)?)
X0 \ N-oo — 00 T
With this we express the ... by asequence of
path integral ... ordinary integrals

2
Note: from the viewpoint of dx; all expressions (xj —xj_,)" are constantif j # 1,2 etc.

A look at Wikipedia gives:
fooeiaxzdx = E
—o0 a

By performing this for all (xj - xj_l)z we get, after lengthy calculations:

N
N ' i mxy=x0)? 2mihA
j Dxe%'s[x] ~ lim < eh 2 tn=to , m mihAL
Xo N—-oo anh(tN — to) m
We note that the only dependency of N is:
N
2mihAt

m

To eliminate this dependency, we choose a factor 4 as the inverse:

1

N
2mihAt
m
We write:

N i mxy=x9)? m 2mihAt
f Dxer”™ ~ lim{A-eh 2 tn-to .
%o N—oo Zﬂlfl(tN - tO) m

A=

N
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Path Integral

Then the dependency of N cancels out and we get:

XN i im (xn—x9)? m
f Dx eﬁs[x] =eh2 tn-tg |—M Koy
Xo

2mih(ty — tg) =

This is the probability amplitude for a free particle to propagate from x, to xy.
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Path Integral

Addentum: The interference pattern of the double slit and the cascaded double slit.

Double slit

x—po‘?mon '/2 symmetric positions x4 for t;

Xp— T

X o —= final position x
X Ly

T tim:e

The calculation for the double slit experiment gave:

2+ 2cos (2 %Axx)

We setm = h = At = Ax = 1 and plot:

MatheGrafix.de

Cascaded double slit

x-position
A x1 xz
A
Xp
Xo ) —— final position x3
Xq ) —
T—> time
to t1 %) i3
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Path Integral

The calculation for the cascaded double slit experiment gave:

8 + 8cos (% 2xx0)

We setm = h = At = x, = 1 and plot:

k3

Y

Note: the red plot was the amplitude of the double slit case.

What would happen if we varied x;, only?

We fix xq, x4, X, and vary the x,-position from —oo to oo and omit all constant factors

Xy = const.,x, = const.,x, = const.,x, = x

Xx-position

A 2 symmetric positions x; for t;

A
::l?w final position x
T tim'e
tO t1 tz

Each path contributes to the probability of finding the particle at position x by raising it

to the exponential.
The lower path:

o7 S _ o hane((Famx0)?+(x-x0)?)

The upper path:

i i
7S[xq] = eh

oF az(Cep—20)?+(x-xp)?)
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Path Integral

We get the probability amplitude K, for a particle to go from x;, to x,:

Ky, = Z oF S (e%-s[xl] + e%-s[xu]>
paths x(t)

oF 2z (a=%0)+(=x0)?) | Fane((ro=20)*+(x=x5)?) _

i m i m
eﬁ-m(xaz—Zxaxo+x02+x2—2xax+xa2) + eﬁ-m(xbz—bex0+x02+x2—2xbx+xbz) _

m

im_, 1 im_ o, i m
e RAt a*0 o 2AC%0" o R 2ALY

im 2
eh At¥a

im im im im_L, im _, im
e RATXYY 4 oRAt*D o TRATPY0 e 2ATY0 R 2AL" e R AC'DY
We omit all constant factors:

im , _Im _im
1 + eR AP @ TRATXDX0 o TRATYDX =
im o _im, (xo—2x)
1+ erAt"P o A ALDVO =
im
14 eﬁ-A—t(xbz—xbx0+xbx)

We get the probability:

im im
(1 +eﬁ-ﬂ(xb2—xbx0+xbx)> (1 +e—ﬁ-E(xb2—xbx0+xbx)> _
im im
24 e—ﬁ-A—t(xbz—xbxo+xbx) n eﬁ-A—t(xbz—xbx0+xbx) _

242 (— 2 — + )
cos X XpX XpX
AL b b0 b

We use thatxo = X:

2 + 2cos(x?)

b

Y

If we move x,;, further outwards, we obtain oscillation with increasing frequency as the
distance x;, from x, increases.
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