Probability Current Density

This paper deals with the probability current density, a quantity used with the Ehrenfest-Theorem.
We will work with a one-dimensional access.

Related information you find at:

https://web.pa.msu.edu/people/mmoore/Lectl5 ProbCurrentl.pdf

https://web.pa.msu.edu/people/mmoore/Lectl6 ScatteringlD.pdf

Hope | can help you with learning quantum mechanics.
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Probability Current Density

The 1D barrier
Conservation of the probability current density flow at the boundary of the one-dimensional barrier
problem for a plane wave.

For convenience we have the barrier at x = 0, the energy E < V.

The wave function on the left side becomes reflected, the wave function on the right side of the
barrier will show an exponential decay.

A Vix)

v
\ 4

>

We use separate wave functions for left and right region:
P(x) = eFi¥ 4 re X forx <0
P, (x) = tet®* forx >0
Note: coefficients r and t refer to “reflection” and “transmission”.
Note: the wave function left is a superposition of incoming and reflected wave.
We will need the derivatives:
Y (x) = ikje®* — ikre ¥ forx <0
Y (x) = ik, te*r* forx >0
The functions and their derivatives must fit at border x = 0:
¥1(0) = ¥, (0)
Y1 (0) =y’ (0)
We get the match of functions left and right:
¥1(0) = 9,(0) -
eiki0 4 yo—iki0 — ¢oiks0
1+r=t
We get the match of derivatives left and right:
Y (0) =9 (0) -

ik;e®10 — ik re~thi0 = jk, tethr0
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Probability Current Density

ikl — iklr = lkrt

ik,(1—7) = ikt

o=
ko T

We resolve the system of equations for r and t:

1+ _ ki 1
T—k—( T)

-
kT‘ +T'kr = kl —T'kl

Tkr +Tkl = kl - kT

Result for r:
kl - kr
r =
k. + Kk
ki —k
1+—+—"=t¢
k. +k
ky —ky + ke +ky
k, + k; B
Result for t:
2ky
k. +k,
Case E <V,
We remember: the stationary solution of the Schrédinger equation for a free particle:
h?k?
- 2m

For the wave function on the left we use the wave number k:

For the wave function on the right (in the forbidden area) we need a real exponential and write it
somewhat complicated as:

_ J—2m(V, — E) _ i\/Zm(VO —E) i

fer h h

Note: i is necessary to have a real exponent for ¢, if E < V.

We express r and t in the new constants k and iy:

_k—iy
T_k+iy
‘o 2k
Ck+iy
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Probability Current Density

We note:

2 = (k- i)k + 1) _
(k + iy)(k —iy)

2
o = s
k? +y2

Note: |r|? + [t|? # 1, |r|? and |t|? cannot be reflection and transmission probability.

Result: The wave is reflected; a small amount (t? < 4 — t < 2) enters the barrier.

Case E =V,.
We have:
I = 2mE =k
1=
—2mV, -V,
- =T _,

We express r and t in the new constants k and iy:

k—0
"o !
2k
L= v0 - 2

Result: The wave is reflected; the part entering the barrier is maximal.

Case E > V,.
We have:
E=V0+6
I = ZmE._k
L=

\/ —2m(Vo — (Vo + 6))

k, = 5
v2mé
P
Note: k, isreal, k > 0.
We express r and t in the new constants k and iy:
_k—A <1
"Tkta
t= 2k <2
Ck+A

Note: although E > V,,, a part of the wave is being reflected or in other words — “you can stumble
over a small step ...”
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Case E > V.
We have:
I = 2mE i
I — h -
2mE
k, = Pk k
We express r and t in the new constants k and iy:
_k—k_0
"Tktk
t= 2k _ 1
Ck+k o

The wave shows no reflection. The part “entering the barrier” is more or less the wave function itself.

Probability current
We will use the example of the step barrier to develop the probability current.

Probability density
We start with the probability density:

p(x,t) = [P(x, I

The probability P a particle found between position x; and x,:
X2
P(x; < x <Xy, t) = f p(x,t)dx
X1
If we use the infinitesimal procedure and work with &, we get the probability P a particle found
between position x — e and x + ¢:
P(x,t) =p(x,t)-2-¢
We define a probability current flowing through positions x — € and x + ¢:

dP(x,t)
dt

=jlx—¢e)—jlx+e)
Positive current is defined flowing from left to right, negative current flowing from right to left.

j(x — €) is the current at position (x — €), j(x + €) is the current at position (x + €).

We convert:
dP(x,t) ( )= iGe+e)
= —&)— -
1t jix—¢e)—jlx+e¢
dp(x,t)-2¢e ]
T—J(X—S)—](x+€)
d _ jxte)—jlx—e)
ap(x)t) - = 25
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Probability Current Density

Note:

i)
et je9_d,.

We have the standard continuity equation, valid for any kind of fluid (and the probability fluid too):

d'( t) = d (x,t)
dx? Y T T g PV

If a state is an energy eigenstate, then it is stationary:
d
Ep(x: t) =0- P(x: t) = P(x: 0)

d
aj(x't) =0 ﬁj(x't) =](X,0)
p and j depend on x only.

For energy eigenstates we can conclude:
d .
if §](x, t) = 0thenj = const

Developing the probability current
We express the probability density by wave functions:

px,t) =" (x, )(x, t)

We use the standard continuity equation:
J _d B
e =—plt) =
d
—E(Eb*(x' t)ll)(x' t)) =
d . . d
- Elp (th) Eb(x't)—ll’ (x,t) Elp(x't)

Note: for convenience, in the following we omit the bracket (x, t) and write ¥ instead of ¥/(x, t), *
instead of Y*(x, t), j instead of j(x, t).

We use the Hamiltonian:

Note: H is Hermitian:

(30) =(-5m)

[ {
:_H* *:_H *
h v h v

Jat
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Probability Current Density

We calculate:
() () -
(oo (-f)-

i
= (=(HY W + 9" (HY) -

((j_m(ai) , V<x>>¢*>¢ oy <<_%(%)2 . V<x>)¢>) ]

() v )orv (-3 (3 +veow)) -
2

E( =Yy v - v () +¢*V(x)z/z>a

{
'\

Note: VV(x) commutes with 1.
. 2 x 2
() v-v i) ) -
(G v-v (D))
What we have so far is:
. e 2 2
RE(CORA )
Note: for real functions, %j = 0.

It would be nice if we could have a % too on the right side. We get this by remembering:

BE) wev (50 - () e-v(3D)

We write:

i G- (3)

We get the probability current j:

Note: This is valid up to a constant.
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Probability Current Density

With the full notation we have the result:

ih [ (0
100 = | (P2 w0 - v t)(—(x t))

Application plane wave
The wave function for a plane wave:

Y =a- e
Note: a might be a complex number.
Note: Y (x) is a function of x only.
We will need:
0y

—(x) = ika - eh*
P =at ek

Tx = —ika*-e

The corresponding probability current:

ih d
j) = ( L m)zp( ) =9 () (—”’(x))

2m
We calculate:

ih , , ' _
Jj&x) = o (—ika* - e~*q - e™¥ — g* - e~ X kg - oh¥) =
m

hklal?> , . . _
e—lkxelkx_l_e—kaelkx) —
2m (
hk
—lal?
m

We identify: %k i= vy is a velocity, |a|? == py a density.
We rewrite this:
j(x) = po vy
Note: the probability current is the probability density times a velocity.
Note: in more than one dimension j(x) and ¥, are vectors.

Application superposition of two plane waves
The wave function for a superposition of two plane waves:

P(x) = a-etk1X 4 p-etha*
Note: a; and a, might be complex numbers.

Note: 1 (x) is a function of x only, no time dependency.
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Probability Current Density

We will need:
d ) .
alp(x) = ik,a- e ¥ + ik,b - etk2*
P*(x) = a* - e"HKaX 4 p* . gikax
d ) .
&w*(x) = —ikya* - e *1¥ — jk,b* - e tkaX

The corresponding probability current:
) in d
je) = (aw*(x)) (x) — ¢(x)( (x))

ih . . . .
jx) = Zl—m((—ikla* cemaX — i, b* - emk2X)(q - et1¥X 4 p - glk2X)

— (a* - e7k1* 4 p* - e~ kX)) (ikya - eFX + ikyb - e“‘z")) =

We get:

h . . . .
%((kla* ce kX 4 o p* - e‘”‘zx)(a etk 4 p. e‘kzx)
+ (a* ceTkiX | pr. e‘”‘zx)(kla cetkaX 4 pop - eikzx)) =
h * * —ik ik * —ik ik * * * ik —ik
%(kla a+ kya’b-e Va¥etf2X + kob*a - e 2¥et X + k,b*b + kiata + kya*h - et2¥e X

+ kyab* - etF1¥e~tkaX 4 |, p*p) =

h * * * —ik ik * —ik ik * ik —ik *
ﬁ(Zkla a+2k,b*b + kya*b - eV 1*et X 4 kb a - e ¥ et X 4 k,a*h - eV 2¥e X + ki ab
_eiklxe_ikzx) —

hk hk h
a2 + —2 b2 + o ((k1a'b + kpa’b) - e Ks¥e e  (kyb*a + kyab®) - e~arelhar) =
hk hk
—lal® + —=|b|* + —(a b(ky + k) - e Ri¥elko¥ + pra(k, + ky) - e~ e¥etkax) =
hky

hk h . ) ) )
- —al? +—2 |b|2 + ﬁ(kl + ky)(a*h - e~taXetkaX 4 gp* - gmthaXglkaX) =

hky hk,

— lal* + Ib|2 +—(k1 +ky)(ah - emiakadx 4 gpr . gilka—ka)x)

The expression (a*b e~ilkamka)x 4 gp*. ei(kl‘kz)x) is of kind z 4+ z*, giving back 2 - Re(z):
a*h - e~ ikax pikox + ab* - elkixg—ikox — o, Re(abei(kl—kz)x)

We get:
j(x) = (k1|a|2 + ka|bI? + (ky + k;)Re(abeiCki-k)v))

Note: (k; + kZ)Re(abei(kl_kZ)") is called the interference term.
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Remarks
Remark 1)

The interference term (k; + k,)Re(abe!®17%2)%) vanishes if k; = —k,.
Remark 2)

For energy eigenstates k; = —k, we have (k; — kz)Re(abei(kl_kZ)x) = 0, the currents are
additive.

Remark 3)
If we have a superposition of a plane wave with itself, a = b and k; = k, = k:
P(x) = ae*™ + qe** = 2qe™**

We get the probability current:

jx) = %(2k|a|2 + 2kRe(a?)) =

kh
i@ =2 (1l + Re(a?))

We examine this expression further and replace:
a:=x+Iiy
The we get:
lal? = (x + iy)(x — iy) = x* + y?
a? = (x + iy)(x + iy) = x2 + i2xy — y?
Re(a?) = x? — y?
la|? + Re(a?) = 2x? = 2Re(a)?

The probability current becomes:
2kh 4kh
i(x) =— (2R 2Y)=—R 2
j() = — (2Re()®) = ——Re(a)

Transmission and reflection probability
We remember:

V(x)
left right

v
A 4

A ol
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Probability Current Density

We use separate wave functions for left and right region:
P, (x) = etktX 4 re~iX for x <0
We rewrite:
Pi(x) = e* 4 relCRIX for x < 0
P, (x) = tet* forx >0

Note: ¥; (x) and 1,.(x) are functions of x only.

kl_kr_
ko +k,
2k,
=t
K + K

We remember remark 1) above, the interference term vanishes because of k; and —k;. We get the
probability current for the left wave:

] h ) hk; )
Ji(x) ==k = ky|r|*) = — (@A = [r|*)
m m
The probability current for the right wave:
) hk
jr) = L+ 1ef?

We use j;(x) = j,-(x) at the boundary:

hk hk
— (@ = [r?) === |e?
m m
We transform:
mhk k
1-— 2 _ 7T, t|?2 = _r. tl?
|7 Rk |t K |t

ky
1=—-[t|]*>+|r|?
P+l
ky . . ”
Note: k—r is the ratio of velocities.
l

We derive the transmission probability T and the reflection probability R:

ky
T = — |t 2
k. |t]
R:=|r|?
We expand |r|? and [t|?:

_— 4k
- kl (kr + kl)z B

4k, k,
(kr + kl)z
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Probability Current Density

R = (kl - kr)z _ (kl - kr)z
ky+ ki) (ky + k)2

We build the sum:

AL N (ky = ky)?

(ke + k)2 (ke + k)2

Ak + (ky — ke )? 1
(kr + kl)z B

T+R

The sum of transmission probability T and reflection probability P equals 1, as it should be.

Remarks

- The probability current allows to compute probabilities in scattering problems like e. g. the
step problem

- The probability for a particle to split int the ongoing wave and the reflected wave is the ratio
of the ongoing current to the reflected current

- In 1D scattering and fixed energy, we have no interference term in the current density. We
can treat the left and right travelling components of the current independent

- For aplane wave, the current is the amplitude squared times the velocity
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