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Preface

You are studying physics and have your first lessons in quantum mechanics. You use a lecture script
or a textbook in your lessons. Naturally, sometimes some keywords need to be remembered. Here
you find a lot of keywords embedded each in a tiny quantum surrounding. Often this delivers a
second view to the way your textbook or lecture script presents these topics.

Hope | can help you with learning quantum mechanics.
Sincerely

Dieter Kriesell
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2 X 2 matrices, combining

. a;; Qg b4 b12)
Let A Bbetwo 2 X 2 1A= B :=
et A and B be two matrices (a21 a21)' (b21 byy

The matrix version of the tensor product, sometimes called the Kronecker product:

aiq a12) (bn b12>

Az1 A2z by, by,
b1, b12> (b11 b12>
aﬂ(bm bys) “12\byy by
a (bn b1z) a (bn b12)
21\by; by, 22\by; by,
ay1b11  ai11biz;  aizbyy  agzbg;
a11by1  ai1by;  ag2by  agzby;

az1by1  az1b1z  azzby  agzby;
az1by1  az1ba;  aAzzbyy  azzba;

A®B=(

Note: the matrices need not to be quadratic.

3-vector operators
State-vectors e.g. |u) for “up” and |d) for “down” describe the state of a spin. They are part of a two-
dimensional, complex-based vector-space.

The pauli-matrices oy, g5, and g, are (complex valued) operators written as matrices:

Oy = ((1) é), gy = (é _01) and o, = ((l) _Ol)

They act on state-vectors.

The vector ¢ := g, + gy + 0 is a kind of 3-vector with the components gy, g, and o, and can be

G = (1 -1|-i 1—_11.)

3-vectors (spatial coordinates):

written as:

xl X
3-vector means a vector in the ordinary three-dimensional space: X = (xz) orx = <y>
X3 VA

Orthogonal unit vectors and 3-vectors
The inner or scalar product of orthogonal vectors is zero.

A unit vector has length 1.

1 0 0
Orthogonal unit vectors (cartesian) are e.g. the three basis-vectors (0) , (1) and (0)
0 0 1

To every 3-vector you can calculate the corresponding unit vector by dividing it by its length. The
length or the absolute value of a 3-vector is: \/x? + y? + z2.
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In bra-ket notation in complex form:

X
ket |[A) = <y>, bra(A| = (x"y*z"),
z
X
(Al4) = (x"y*z" (y> =x'x+y'y+zz
z

Note: this is the square of the absolute value.

4 x 4 matrices, from combined 2 x 2 matrices

aj; Qg (bn b1z)
B =
) b21 b21

Let Aand B be two 2 X 2 matrices: A := (
az1 Q21
The matrix version of the tensor product, sometimes called the Kronecker product.

(11 Q12 by, b12>_
A®B_(a21 a22) (b21 byy)
by, b12> (b11 b12)

“11(b21 bys) “?\byy by,
by, blz) (bll b12> B
aZl(bu by2) “¥*\byy by,
ay1b11 ai1b1;  agzbyy  agpbgy
a11by1  Qi1ba;  ay2byy aAq2by;
Az1b11  Qz1b1;  Agzbyy  agzbyy
Az1by1  Qz1b3;  Azzbp1  Agaby;

Note: the matrices need not to be quadratic.
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Addition of complex numbers

Addition of complex numbers is best done in the cartesian representation.
zZ1 =x+1iy, Zy =u+1iv

Z1+z,=x+iy+tutiv=(x+u) +i(y +v)

Addition of vector, axioms:
Let |A), |B) and |C) be vectors and z, w complex numbers, then:

1. Closure: the sum of two vectors is a vector:
|4) + |B) = |C)
2. Vector addition is commutative:
|A) + |B) = |B) + |4)
3. Vector addition is associative:
{l4) + |B)} + |C) = |A) + {|B) + |C)}
4. Existence of |0):
|4) +]0) = |4)
5. Existence of the inverse:
|[4) + (—]A4)) = 10)
6. Multiplication by a scalar produces a new vector:
|zA) = z|A) = |B)
7. Distributive property:
z{|A) + |B)} = z|A) + z|B)
{z + w}|4) = z|A) + w|A)

Axioms 6 and 7 taken together are often called linearity.

Note: the zero vector |0) is often written simply as 0 because it is a vector containing only zeros.
Amplitude, probability:

Let |A) be a generic state of the up/down-spin, e.g. |A) = a,|u) + a4|d).

(u*|A) and (d*|A) are called the probability amplitudes.

Note: the probability amplitude is not a probability.

The probability is calculated by B, = (A|u){u*|A) and P; = (A|d){d*|A). Remember that we are
working with complex numbers.

Multiplying a state by a phase-factor e changes the probability amplitude but not the probability
because in (A|d){d*|A) any phase-factor e‘? vanishes: e el = ¢i0-i0 = g0 = 1,

Amplitude, for paths:

Prerequisite

A classical particle starting at position x; at time t; and arriving at position x, at time t, will follow a
trajectory according to the principle of the least (stationary) action. Action stands for the Lagrangian
between both end points. The standard method of calculus assumes that every function in a tiny
interval becomes linear (e.g. Taylor series).

End prerequisite
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For quantum mechanical system the probability amplitude C; , t
for a particle to go from x; to x, in the time interval t; to t,:

C1z = (xz]e ™™ |xy)

Note: units chosen for which A = 1.

Note: H is the Hamilton operator.

Splitting up the path into infinitesimal pieces and replacing

. . iA
et by e *¥H (for each “infinitesimal” A t) gives C; , = e* for
each path with A being the action for this individual path.

Finally, we can integrate over all possible paths and get the
amplitude for the particle to go from x4 to x;:

iA
C1,2 = f eh

paths
And-rule, formal logic:
Prerequisite
A proposition is an expression that can either be true or false.
End prerequisite

“and”, “or” and “not” are basic rules (operators) to connect propositions. They can be represented
by truth tables with “0” for false and “1” for true:

Let A and B be propositions:

A B (AorB) (Aand B)
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

There is a special logical operator, the “not”, that simply switches the truth value to its opposite:

A A
0 1
1 0

Annihilation operator:
The Hamiltonian can be expressed in terms of momentum operator P and position operator X:

1 1
H= E(PZ + w?X?) = E(P + iwX) (P — iwX)

Note: % is needed because P and X do not commute.

(P + iwX) is called the raising operator, (P — iwX) the lowering (annihilating) operator, written as
at and a”. The raising operator a™ shifts the energy level of the harmonic oscillator to the next
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possible higher level, the lowering operator a™ to the next possible lower level. Applying the
lowering operator to the ground level with Energy E, = %ﬁ annihilates this ground level. Symbolically

this is expressed as:
a”|0)=0

Note: |0) representing the ground level and 0 representing the number zero.

Anti-Hermitian operator:

An operator (a matrix) is called Hermitian if it is identical with its transposed and complex conjugated
version: A = (AY)* = (4"t == AT.

An operator (a matrix) is called anti-Hermitian if AT = —A.

Antisymmetric eigenfunctions:

A real function is called symmetric if f (x) = f(—x). It is antisymmetric if f(x) = —f(—x). The
picture below shows eigenfunctions for the lower states of the harmonic oscillator. Functions for
even numbers are symmetric, functions for odd numbers are antisymmetric.

g W00

> ~= “‘,":# ~— < T Picture courtesy AllenMcC. CC BY-SA 3.0,
E; W, (x) https://commons.wikimedia.org/w/index
.php?curid=11623546

Apparatus, measurement and Apparatus:

An experiment or a measurement can be described by an apparatus or a black box that shows the
result. This apparatus is part of the real world.

In case of spin measurement, we orientate the apparatus on any direction in space and measure.

The result will be either -1 or +1 and leave the spin measured in this state.

) up upp
A i CERY

[T (=1, |

[ =al 1 R

before measurement after measurement

Note: do not merge “3-vector” in space with “state-vector” of the spin.
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Associative property:

This is part 3 of axioms of vector addition:

3. Vector addition is associative: {|A) + |B)} + |C) = |A) + {|B) + |C)}

Atoms:

Atoms made from of neutrons, protons and electrons are the smallest constituent units of ordinary
matter (chemical elements). Typical sizes are around 100 picometers (10~1% m) so they are small
enough to shatter wave-functions. Quantum principles are needed to (better) explain and predict
their behavior.

Atoms in crystal lattice:
Atoms in crystal lattice sometimes behave like oscillators the energy levels of can be explained by the
Schrédinger equation.

Atoms, hydrogen-atoms:

(Hydrogen) atoms cannot fully be described by classical physics. Electrons orbiting rapidly get a loss
of energy and would fall into the nucleus. This gave rise to the assumption of stable orbits the
electron being able only to jump from one to another — the first idea of quantization was born. The
Schrédinger equation allows to calculate these stationary states.

Atoms, qguantum mechanics and atoms:
Quantum mechanics deals with the behavior of objects so small we humans are not equipped to
visualize them at all. Individual atoms are near the upper end of this scale in terms of size.

Atoms, size of atoms:
... about 100 picometers or 10~ 1%m.

Atoms, spins of atoms:

Some atoms have spins that are described in the same way as electron spins. When two of these
atoms are close to each other, the Hamiltonian will depend on the spins and in some situations the
Hamiltonian is proportional to the dot-product of both vector-operators. Measuring this energy is a
single measurement of the composite operator and does not entail measuring the individual
components.

Atoms, wave packets and atoms:

Quantum equation of motion looks classical if the wave packets
are unimodal (nice, centered single bump) or coherent and well
localized. If wave packets are bimodal (two-humped), it is not
always true that the time rate of change of the momentum is the
force evaluated at the expectation value of x:

(F(X)>¢F(<x>) sS4 3 2 1 f T .

The average of the function of F(x) is not equal the function of the average of x, F({x)).

T ST

Average:

a) Statistical, the average for a shifted distribution follows the shifting. If you shift every
member of a statistical ensemble, then the average of the shifted ensemble is the same as
the shifted average of the original ensemble.

Note: the variance of shifted and unshifted distribution is the same.
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b) The probability distribution P(a, b) for two completely uncorrelated variables will factorize:
P(a,b) = P4(a)Pg(b).
Opposite: if two variables are correlated, the probability correlation will not factorize:
(04){0g) # (T408).

c) The average position of a quantum mechanical particle: (|X|y). X is the position operator.

d) The velocity of a quantum mechanical particle is the time derivative of the average position:
v= %(tl)lXItp). With this we get the average momentum: (P) = muv.

e) Approximating with averages works well if the potential V() varies slowly compared to the
size of the wave packets.

Average, bra-ket notation for averages:
We have a state A of a quantum system and an observable L and expand L in the orthogonal basis of

eigenvectors of L:
1) = ailt)
L

Then (A|L|A) = };(a;a;)A; with af a; being the probability P(1;). We express the average as: (L) =
(A|L|A).

Note: |/1j) are the eigenvectors, A; the eigenvalues.

Average, defining:
From a mathematical point of view an average is defined:

(L= ) AP

Average value:

In statistics the average value is usually denoted by a bar over the quantity: X. In quantum mechanics
the average is noted as (x).

Axioms of vector space:
Let |A), |B) and |C) be vectors, then:

1. Closure: the sum of two vectors is a vector:
|4) + |B) = |C)

2. Vector addition is commutative:
|A) + |B) = |B) + |A)

3. Vector addition is associative:
{l4) +|B)} +|C) = |A) +{|B) + |C)}

4, Existence of the O:

|A) + 0 = |A)
5. Existence of the inverse:
|4) + (—]4)) =0

6. Multiplication by a scalar produces a new vector:
|zA) = z|A) = |B)

7. Distributive property:
z{|A) + |B)} = z|A) + z|B)
{z + w}|A) = z|A) + w|A)

Axioms 6 and 7 taken together are often called linearity.
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Basis of simultaneous eigenvectors:

We have a two-spin system and measure with two different operators L and M. If we measure both
spins, the system winds up in a state that is simultaneously eigenvector of L and eigenvector of M.

L has eigenvectors |A;) with eigenvalues 4;, M has eigenvectors |u,) with eigenvalues .

We assume that there is a basis of state-vectors |4;, u,) that are simultaneous eigenvectors of both
observables: L|A;, ug) = Ail A g} and M| Ay, ug) = Uql i tha)-

Omitting the subscripts for better readability, we write
LIA4, ) = A4, 1)

M4, p) = ul4, 1)
Basis vectors:

1 0 0
a) 3 — vectors: a set of three mutually orthogonal unit vectors, e.g. (0) , (1) and (O) for the

0 0 1
cartesian space.

b) |u)and |d) as a basis of the state of a spin.
Any state A can be written as |A) = ay|u) + a4|d)

c) If the state vector |A) is normalized, then (A|A) = 1 or aja, + ajay =1

1
Tz
e) If 4, and 4, are different eigenvalues of a Hermitian operator, the corresponding

eigenvectors are orthogonal, and all of these eigenvectors can form a basis of the state
space.

f) If A; and 4, are equal eigenvalues of a Hermitian operator, out of the corresponding
eigenvectors can be chosen a pair of orthogonal vectors that are necessarily eigenvectors.

g) Orthogonal basis vectors represent two distinguishable states — for all times.

h) Every normalized state |A) of a quantum system can be expanded in the orthonormal basis
of eigenvectors of L: |A) = ¥a;|4;)

i) The Hamiltonian applied to the energy eigenvectors of a state delivers the eigenvalues (the

d) Example:a;, = a, = ag = a4 satisfies c)

energy levels) of the system: H|Ej> = Ej|Ej>.

Note: |Ej) are the eigenvectors, Ej the eigenvalues resp. the energies.
j)  The elements of a matrix M can be calculated by use of basis vectors:

my, = (jIM|k) with {(j| and |k) representing the basis vectors.

Note: (j| is the complex conjugate to |j).

k) In asingle spin system, the basis vector for the |u) state is ((1)), the basis vector for the |d)

. (0
state is (1)
I) Inadual spin system, the basis vectors for the states |uu), |ud), |du) and |dd) are
1 0 0 0
0 1 0 and 0
o/)'loJ’\1 0
0 0 0 1

Note: these are tensor product states.
m) The sum over the outer product of a set of basis vectors |i) and (i| delivers the identity
matrix:
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. nul=1

n) If the measuring apparatus (for spatial spin orientation) comes into play as a quantum
system too, in the simplest description it has three states: a blank state and two outcome
states with the following basis vectors: |b), |(+1)) and [(—=1)).

The starting state at time 0 is always the blank state.
Note: sometimes these kets are written as |b}, | + 1} and | — 1} to indicate these are kets of
the measuring apparatus.

0) The quantum state of a particle with position x and momentum p: |x, p)

Note that the associated operators are the position operator X and momentum operator P.

p) Because momentum and position operators are both Hermitian operators, the sets of |x)
and |p) each define basis vectors.

Basis vectors, entangled states:
In case of a two-spin system the maximum entangled states, the singlet state sing and the triplet
states Ty, T, and T3 can be written as:

Ising) = %auw ~ lduy)

1
IT1) = ﬁ(lud) + |du))

1
|T2) = ﬁ(luw +|dd))

1
|T5) = ﬁ(luw — |dd))

Basis vectors, labelling:
A combined system S,;, can be constructed of two systems S, and S, by use of the tensor product:
Sap = S, ®S}. Basis vectors of the combined system are labeled |ab).

Basis vectors, product states:
Given two states, |4) = ay |u) + a4|d) and |B) = B, |u) + B4ld).
The product state describing the system is: |product state) = {a, |u) + a4|d)}®{By|u) + Bald)}.

Expanding and switching to composite notation gives

|product state) = a, Sy |uu) + a, Bqlud) + agfy|du) + agBq1dd)

Bell, John:
John Stewart Bell (1928 — 1990) was a physicist from Northern Ireland and the originator of Bell's
theorem.

Bell’s theorem:

Bell's theorem proves that quantum physics is incompatible with local hidden variable theories. It
was introduced by John Stewart Bell in a 1964 paper titled "On the Einstein Podolsky Rosen Paradox",
referring to a 1935 thought experiment that Albert Einstein, Boris Podolsky and Nathan Rosen used
to argue that quantum physics is an "incomplete" theory. (wikipedia)

Two computers simulating an entangled spin system can represent a case of Bell’s theorem.
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Boolean logic:

Boolean logic is a formalized version of the classical logic of propositions.

In classical physics, the order of the measurements (propositions) is not important: (A or B) gives the
same results as (B or A). First measuring A and second measuring B gives the same result as first
measuring B and second measuring A.

In guantum mechanics measurements are not gentle and can lead to a collapse of the state function.
First measuring A can set the system in the state A —and that maybe is not the state it was in before.
Analog first measuring B can set the system in the state B. The order of measurements can play a
role.

Bracket or Bra-ket notation:

The quantum mechanical notation for the statistical average of a quantity q is Dirac’s bracket
notation (g).

Bra-ket notation for averages:
We have a state A of a quantum system, an observable L and expand L in the orthogonal basis of

eigenvectors of L:
)= aild)
L

Then (A|L|A) = };(a; a;)A; with af @; being the probability P(4;).
We can express the average as follows: (L) = (A|L|A).

Note: |/1j) are eigenvectors, A; eigenvalues.

Bras (bra vectors):
Bra vectors satisfy the same axioms as ket vectors. Please take care of the complex conjugate.

z|A) gives the corresponding (A|z".

a

If the ket |A) is represented by the column vector (az), then the corresponding bra (4] is
as

represented by the row vector (a] a; a3).

Bras, inner product and bras:
The inner product of bra (B| and ket |A) is written as (B|A).

The axioms for the inner product:

1. Linearity:
(CI{1A) + |B)} = (C|A) + (C|B)
2. Complex conjugation:
(B|A) = (A|B)*
3. Reality:
(A|A) e R

In concrete representation by row and column vectors, the inner product is defined in terms of
components (dot product).
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j4) =

By
(5
1B =1 g,
B
(Bl =(B; B3 B3 B
aq
(BIAY = (B1 B3 B3 B | o | = Bics + Bics + Bicts + ficty
2%
By
(A1B) = (@i @ @ | |2 | = aifs + ashy + a3ps + aiy
B

For complex values this gives (A|B) # (B|A) and (B|A) = (A|B)".
For real values (A|B) = (B|A).
If the inner product (4]|4) = 1, then the vector is normalized (unit length).

If the inner product (4|B) = 0, then |A) and |B) are orthogonal.

Bras, linear operators and bras:
We have a linear operator M and a bra (B|.

The notation for multiplying is: (B|M.
In detail:
myp Mz Mz Myy

% px px ey | 21 Moz M3z Mpy
(B1B2B3ﬁ4-) m31 m32 m33 m34 -

((Bimyy + Bomay + Bimay + Bimyr) () (Bimyg + Bymyy + Pamay + ﬁ:m44))

Bras, outer products and bras:
The outer product of ket |A) and bra (B| is written as |A) (B].

In concrete representation by row and column vectors, the outer product is defined in terms of
components.

14 = (o). €41 =Cai @3, 18) = (), <81 =87 5, 16) = (1), 41 =0ri v

|A) (B| = (Z;) B B3) = (alﬁf 0135)

afi axfs
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The outer product of ket and bra gives an operator.

Operations with bras, kets, and linear operators are left distributive:

_(aPBr a3\ (Y1 _ (a1Piv: t a1fay2) (% « .
a enioy = (gt o) (7n) = (e T gnt) = (an) Gin + aufir)

BI0) = () <(ﬂi‘ £ (ﬁ)) = (o) Gira+ i) = (rgm T Hr)

() Biv + afirz)
We get (14) (BDIC) = |A)((BIC)).

Note: any operation (JA) (B|)|C) or |A)((B|C)) corresponds to a multiplication of the first ket |A) by
a factor.
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Canonical momentum (conjugate to x):
The Lagrangian is kinetic energy minus potential energy:

1 1
L= Exz —E(uzxz

For a one-dimensional system there is only one Lagrange equation, namely:
dL d dL
dx  dtox

We carry out the operations on the Lagrangian:

right side:
oL | - .
Fr =x This is called the canonical momentum p
d oL
—_—=X
dtdx
left side:
oL
2
— = —w°X
dx
Result:
—w?x =%
The Hamiltonian for the harmonic oscillator:
H=px—1L We have only on degree of freedom
By using the canonical momentum, we calculate:
1 1
H = pZ —EJ.CZ +§(1)2X2 =
1 1 1
2 2 2.2 2 2.2
—sp Tt swxt = opttoswx
2P T3 2P T3
This is the classical Hamiltonian:
1 1
H=-p*+-w?x?
2P T3

Note: the Hamiltonian represents the total energy of the system and does not change if the system is
conservative.

Cartesian coordinates: A

Cartesian coordinates are coordinates for the three-dimensional space with
the axes x, y and z. '

¢
SRy
T sind sing

For problems dealing with rotating vectors in space the better choice are
spherical coordinates.

Please do not confuse vectors in space and state-vectors.
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Cartesian representation of complex numbers:

A complex number consists of a real part and an imaginary part. We can write itas z = a + ib with
a, b € R. The imaginary unit i has the propertyi-i = —1ori? = —1.

We can represent complex numbers by a plane with horizontal real axis and vertical imaginary axis.
This is called the cartesian mode.
Im

z=a+bi=re'?
2

... graphic courtesy of

Wikipedia ...
» _W—J

C

A second way of representation describes a complex number by the angle ¢ it has with the real axis
and its length r resp. the absolute value.

This is called the gaussian mode. In this mode we write a complex number as r - ¢*¥. Note: r is a real
number.

We can switch from one representation to the other:

Givenz = a + ib: |z] or r = Va? + b? 7} =arccos(%) ifb>0
resp. ¢ = —arccos (g) if b <O0.
Givenz = re'?: a =r1-cos(p) b =r-sin(p)

or z =71+ (cos(p) + i-sin(p))

Every complex number z has a complex conjugate number, marked as z*. The complex conjugate
switches the imaginary part to the opposite sign. z = a + ib changes to z* = a — ib and vice versa.

With that we get new formulas:

|z| = Vzz*
z+z"
re(z) ora =
2
z—2z"
im(z) or b = 5

Additions and subtraction of complex numbers are best performed with the cartesian
representation.

(a+ib) + (c+id) = ac + ibd
Multiplication and division are best performed with the gaussian representation.

rel? - rel = rr,el@+o)
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Cauchy-Schwarz inequality:
For real vector spaces holds:

|X|[Y| = |X Y|
This can be derived from the triangle inequality.

Cauchy-Schwarz inequality and triangle inequality:
The triangle inequality for real vectors:

IX| + Y| = |X +7]

squared:
- -\ 2 - —,2
(x| +]¥])" = [X +Y]
left side:
S 182 ) 02 IR This is the
(X1 +1¥])" = X[ +[¥]" +2[x||r| dot product
right side: ..
X+ = X+7)(E+7) =R + |7 +2(X°7)
We get:

[X][¥] = [X -]
Squared this is called the Cauchy-Schwarz inequality:

512152 [E—
£ 2 1% 7]

Cauchy-Schwarz inequality, triangle inequality for complex valued vectors:

Note: we omit the arrows over the vectors, X > X and write the complex conjugation by an overline,
X.

Note: this will become a little bit tricky ...
For complex vector spaces we have to prove:
21X1lY] = KX1Y) + (Y [X)|
We assume vectors X and Y being nonzero.
Let A be:

_XIr)

“om (X[Y) = K¥|Y)

With this we can conclude:

We try:

0 < (X —AY|X — AY)
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Right side:
(X1X) — XX|Y) — MY |X) + ANY|Y) =
(X1X) — AX|Y)Y — ANY|Y) + ANY|Y) =

(X1X) — MX|Y) =
X1 —W-(XIY)
Intermediate result:
0<|X|?- W (X|Y)
%-(XIY) <X

XYy -(X|Y) < |X|?|Y|?
(XIY)? < |XI2]Y|?
KXIY) < [X]|Y]
We multiply the result by 2:
2(X|Y) < 21X]|Y|
We get the following chain:
2|1X[[Y] = 2(X|Y)| = KXY + KXIY)] =
(XIY)| + KY1X)| = KX|Y) + (Y[X)]
We get the form of the Cauchy-Schwarz inequality that is applicable for the uncertainty principle:
2|1X[1Y] = (X[Y) +(Y[|X)]|

Change in classical physics:

In classical physics, the space of states is a mathematical set, the logic is Boolean and the evolution of
states over time is deterministic and reversible. In other words, information is never lost. If two
identical systems start out in different states, they stay in different states. Moreover, in the past they
were in different states. If two identical systems are in the same state at one point, then their future
and past must be identical.

Change, continuity, unitarity and incremental change:

Time-development in quantum mechanics is expressed by use of a unitary time-development
operator U(t).

Continuity means that for small periods of time € the unitary operator U(¢) is close to the unit
operator.

We write

U(e) =1—icH
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With UT(e) = I + ieHT we stick these U’s together:
Ut(e)U(e) =1= (1 +ieHT)(I — ieH)
We get:
I=(+ieH)(I —icH) =1? — lieH + icH'I + e?H'H =
I—ieH + ieHT + e2HTH
Omitting the second order in € we get:
—H+HY"=00rH =HT

H is called the quantum Hamiltonian. It is a Hermitian observable (operator) with a complete set of
orthonormal eigenvectors and eigenvalues.

Classical equations, quantization and classical equations:

An often-used procedure in quantum mechanics is to quantize a classical system. The procedure is as
follows:

1. Start with a classical system, a set of coordinates x; and momenta p; and search the classical
Hamiltonian.

2. Replace the classical space with a linear vector space and find a wave function Y (x;).

3. Replace the x;'s and p;’s with position operators X; and momentum operators P;.
Each X; multiplies the wave function by x;.
Each P;:

0P (x;)

dx;

4. With these replacements the classical Hamiltonian becomes the quantum mechanical

Hamiltonian, an operator.

Pp(x;) —» —ih

Classical limit:
If a potential V varies slowly compared to the size of a wave packet, then the motion can be
described by classical physics. In this situation holds: A p A x > h.

If a potential V varies rapidly across the wave packet there is a good chance that the wave packet will
get broken up. Its behavior must be described by quantum physics.

This situation occurs when A p A x = h.

Classical physics, change in classical physics:

In classical physics, the space of states is a mathematical set, the logic is Boolean and the evolution of
states over time is deterministic and reversible. In other words, information is never lost. If two
identical systems start out in different states, they stay in different states. Moreover, in the past they
were in different states. If two identical systems are in the same state at one point, then their future
and past must be identical.
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Classical physics, change in expectation values over time and classical physics:
We use the Poisson bracket formulation of classical mechanics.

Let L(q, p) be an arbitrary function of position in the phase space, varying along the trajectory.

With the Hamilton equations the time derivative of L can be expressed as:
L_Z(GL JdH 0L 6H)
: dq; 0p; 0p; 9q;

The right-hand part of this equation is called the Poisson bracket and written as {L, H}. We get a
short form:

L ={L H}

In quantum mechanics the time derivative of an operator L (L being any observable, H being the
quantum Hamiltonian) is

dL i

— =——[LH
i~ bt

with [L, H] being the commutator of L and H: (LH — HL).

The formal identification between commutators L, H and Poisson brackets is:
[L,H] < ih{L,H}

Combining classical physics and quantum mechanics we get:

dL i

Classical physics, commutators and classical physics:
Let X be the observable for position (the position operator) and P the observable for momentum
(the momentum operator).

X acts on an arbitrary wave function 1 (x):

Xip(x) = x(x)

P acting:
x
PY(x) = —ih dip(x)
dx
Together the product XP acts on ¥ (x):
dip(x)

X(PY(x)) = —ihx I

PX acting on (x):

POt — i 2CPE) w(x>) . dw( )

— i (x)
Now we check the commutator relation [X, P]y(x):= (XP — PX)Y(x):

dp(x) (_m dy(x)

(XP —PX)yY(x) = —ihx

- - ith(x)) = iy (x)
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From this follows
[X, PJ(x) = itp(x)
[X,P] =ih

X and P don’t commute. We compare this to the corresponding Poisson bracket {x, p}. With the
equivalence [X, P] & ih{x, p} we can conclude that {x, p} must be 1 which is the classical relation
between coordinates and their conjugate momenta.

Classical physics, momentum in classical physics:
The momentum in classical physics is mass times velocity: p = mv = mx.

In quantum mechanics we define a differentiation operator D:

The momentum operator P is defined as:

P =—ihD = 'hd
= —ihD = —ih -~

Classical physics, particle dynamics and classical physics:
We use a very simple Hamiltonian operator H, a fixed constant times the momentum operator P:

H = cP

A classical physicist using Hamilton’s equations to describe a particle:

aH_,

ap_x
and

aH_ )

ox p

Carrying out the partial derivatives with our simple Hamiltonian H = cP, these become

aH___

ap—x—c
and

c’)H_ —0

ox p=

In the classical description of the particle, the momentum is conserved, and the particle moves with
constant speed c.

In quantum mechanical description, the whole probability distribution and the expectation value
move with velocity ¢ — quantum description and classical description match.

Note: this resembles the description of a neutrino.
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Classical physics, pure/mixed states and classical physics:
Classical physics has its notion of pure and mixed states, although they are not called by those
names.

We consider a system of two particles orbiting. According to the rules of classical mechanics, we can
calculate the orbits of the particles if we know the values of their positions x; and x, and momenta
p; and p, at a certain time. The state of the system is completely specified by four numbers x4, x5,
p, and p,. Knowing these gives a complete description of the two-particle system — there is no more
to know. We call this a classical pure state.

Often, we don’t know the exact state, but only have in form of a probability density p(x4, x5, p1, 2)-
The classical pure state is a special case of this with p being nonzero at only one point. In general, p
extends over a range in which case we could call it a classical mixed state.

The difference between classical physics and quantum mechanics: if you are in the pure classical
state for the combined two-particle system, you know everything about each single particle.

A pure state for two classical particles implies a pure state for each of the individual particles.

In guantum mechanics this is not true. The state of a composite system can absolutely be pure, but
each of its constituents must be described by a mixed state.

Classical physics, quantum mechanics vs. classical physics:
Quantum mechanics differ from classical physics in two ways:

1. Quantum abstractions are fundamentally different from classical ones. The idea of a state in
guantum mechanics is conceptually different from its classical counterpart. States are
represented by different mathematical objects and have a different logical structure.

2. Inclassical physics measurements show the state. In quantum mechanics measurements and
states are two different things and the relationship between them is nonintuitive.

Collapse of the wave function:
Suppose the state-vector of a system (just before the measurement of L):

Z %)
j
with 33 ajz = 1, eigenvectors |/1j) and eigenvalues A;.

Any measurement of L will randomly measure an eigenvalue A; with probability |aj|2. After the
measurement the system will be in a single eigenstate of L, one of its |/1j).

This we call the collapse of the wave function from a superposition to a single term.

Column vectors:
A column vector:

az
as
Ay
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Column vectors, kets and column vectors:
A column vector:

The corresponding ket might be called |@).

Column vectors, spin states as column vectors:
Spin state vectors usually are labeled as |u) and |d) with the meaning “up” and “down”.

The corresponding column state-vectors are ((1)) for up and ((1)) for down.

Please do not try to give them a spatial meaning.

Commutation relations:
1)

Commutation relations for operators gy, g, and g, by using the representation as Pauli matrices:

Oy = ((1) é), gy = ((l) _Ol) and g, = ((1) _01)

The general commutator relation for operators: [4, B] = AB — BA

Applied to the operators g, and g,:
re= o =ose=() o)} )G GG o)=

(b 2-G 9= 5=z

[O'x, O'y] = 2io,
The other pairs:

[ay, O'Z] = 2io,

[0z, 0x] = 2io,
Note: pairs of the kind [O'y, ay] always give zero.
2)
Two observables can be measured simultaneously only if the associated operators commute.
No two spin components can be measured simultaneously.
3)

[P2X] = PPX — XPP = PPX — PXP + PXP — XPP =

P(PX — XP) + (PX — XP)P = P[P, X] + [P, X]P
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4)

Let X be the observable for position (the position operator) and P the observable for momentum
(the momentum operator).

The following commutator relation holds:
[X,P] =ih
5)

Let X be the observable for position (the position operator) and P the observable for momentum
(the momentum operator.

We define:

at := (P + iwX) the raising operator,

a” = (P — iwX) the lowering operator and

N := ata~ the number operator.

Note: w is a real number.

We get a set of operators that closes under commutation:
[a”,a*t]=1,[a",N] =a and[a®,N] = —a*

Commutative property:

This is part of axioms of vector addition:

2. Vector addition is commutative: |A) + |B) = |B) + |A)

Commutator algebra:

We define:

at := (P + iwX) the raising operator,

a” = (P — iwX) the lowering operator and

N := ata~ the number operator.

Note: w is a real number.

The commutator relations:

[a,at] =1
[a”,N]=a~
[a*,N] = —a*

[a*,N]:=a*N — Nat = —a* ()

With the number operator we write the Hamiltonian:

1
H = wh(N +§)
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Suppose we have an eigenvector |[n) with eigenvalue n of the operator N:
N|n) = n|n)
Consider a new vector a™ |n), obtained by acting with a*on |n).
We check (this is a little bit tricky):
N(a*|n)) = (a*N — (a*N — Na*))|n) =) (@*N + at)|n) =
at*(N+1Dn)=at(n+ D|n) = (n+ D (at|n))
In summa:
N(a*|n)) = (n+ 1)(a*|n))

The result of this operation: a*|n) is eigenvector to the operator N with eigenvalue n + 1. Analog
we can handle the lowering operator and get:

N(a~|n)) = (n — 1)(a”|n))
a~|n) is eigenvector to the operator N with eigenvalue n — 1.

Whilst the raising operator raises “endless”, the lowering operator comes to an end. Applying the

. . h .
lowering operator to the lowest energy state, |0) with Energy E, = %, the result will be zero:
a”|0)=0

Note: the vector |0) is a state-vector with a definite energy level. “0” is the zero-vector whose
components all are zero. With this commutator algebra we find the entire spectrum of harmonic
oscillator energy levels, consisting of energy values:

£ h( +1>_ h(l 35 )
n=wh|n > =w 515
Commutators:

1.

Given two operators or matrices, the combination LM — ML is called the commutator of L with M
and denoted by LM — ML = [LM].

2.

We can write the change with time of the expectation value of an operator L in a simple form (H is
the Hamiltonian):

—(L _———i L H
dt< ) h<[' ]>
3.

Let Q be an observable. The condition for (Q) not to change with time is:

[Q.H] =0
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4,
Any operator commutes with itself:
[HH] =0
H (the total energy of the system) is conserved.
5.

With the Pauli matrices

Oy = ((1) (1)), gy = ((l) _Ol) and g, = ((1) _01)

we get the commutators
[0, ay] = 2io,, [ay, o,| = 2iay, [0z, 0] = 2i0,

Note: pairs of the kind [, g, | always give zero.
6.
Let |y) be any ket and let A and B be any two observables with expectation value zero.
We define |X) and |Y) as follows:

|X) = Alp) and |Y) = iB[))
and plug them into the Cauchy-Schwarz inequality:

21X[IY] = KX1Y) + (Y |X)|
We get

2\(A%)X(B?) = |(Y|ABlY) — (P|BAIY)| = I(WI[A, Blly)| = K[A, B])I

A and B have expectation values of zero.
(A?%) is the square of the uncertainty in 4: (A A)?
(B?) is the square of the uncertainty in B: (A B)?

We rewrite the result as:

AAAB = %I([A,B])l

The product of the uncertainties cannot be smaller than half the magnitude of the expectation value
of the commutator.

7.

We replace:

A by X: the observable for position (the position operator)

B by P: the observable for momentum (the momentum operator)

The commutator [X, P] = ih
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We get the Heisenberg Uncertainty Principle:

1
AX APz (XPDl =

8.

Any potential that is a function of x: V' (x) commutes with the observable of position (the position
operator) X:

X, V(x)]=0

The classical version of Newton’s law:

dtp_

. L . . p?
We transfer it to quantum mechanics via the use of the Hamiltonian: H = P + V(x).

i
CAP) = 5 (1P P + £ (IVC0), P)
The first term on the right side is zero because an operator commutes with any function of itself.
For the second term holds: [V (x), P] = ih%V(x).

We get:

Commutators, classical physics and commutators:
Commutators have great similarity to Poisson brackets. If we take the operator symbols L and M, we
get:

[L,M] & ih{L, M}
[L, M] denoting the quantum commutator, {L, M} denoting the Poisson brackets.

Let X be the observable for position (position operator) and P the observable for momentum
(momentum operator).

X acts on an arbitrary wave function Y (x):

Xip(x) = x(x)

P acts like
dip(x)
P = —ih
Y() = —ih—
Together the product XP acts on Y (x):
dip(x)

X(PY(x)) = —ihx Ix

PX acting on ¥(x):

P(XY(x)) = —ih

x@=— dlp( ) — i (x)
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Now we check the commutator relation [X, Py (x):= (XP — PX)y(x):

) ([ dbE)
dx l dx

(XP —PX)yY(x) = —ihx — ihl/)(x)> = ip(x)

From this follows
[X, PIp(x) = iap(x)
[X,P] =ih

X and P don’t commute. We compare this to the corresponding Poisson bracket {x, p}. With the
equivalence [X, P] & ih{x, p} we can conclude that {x, p} must be 1 which is the classical relation
between coordinates and their conjugate momenta.

Commutators, operators and commutators:
The Hamiltonian expressed in terms of position operator X, the observable for position and
momentum operator P, the observable for momentum:

1
H=Z(P? + w*X?)
(This is a classical as well as a quantum mechanical Hamiltonian, so it would be correct to use the
classical lowercase symbols p and x.)

The idea is to use the properties of X and P, especially the commutation relation [X, P] = ih to
construct three new operators, called creation (or raising) operator, annihilation (or lowering)
operator and number operator.

The names are program.

The raising operator produces a new eigenvector that has the next higher energy level.
The lowering operator produces a new eigenvector that has the next lower energy level.
The number operator returns the “number” of the energy level.

The construction process.

Using complex numbers, we can split up a sum according to a? + b? = (a + ib)(a — ib) to
1 . .
H~§(P + iwX)(P — iwX)

n

~" because of the quantum mechanically behavior of X and P: they don’t commute.

We expand the Hamiltonian:
1 1
E(P +iwX)(P —iwX) = E(PZ + iwXP — iwPX — i?w?X?) =
1 1
E(PZ + (UZXZ) + Ela)[X,P]
We know the value of the commutator: [X, P] = if and get:

1 . _ 1 1
E(P + iwX)(P —iwX) = E(PZ + w?X?) — Ehw
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Our correct Hamiltonian:
1 . ) 1
H :E(P + iwX)(P — iwX) +Ehw

We define our new raising and lowering operators.
a” = (P —iwX)
at = (P +iwX)
N:=a%a”

Stated in terms of the number operator, the Hamiltonian becomes:
1
H = hw(N + E)

Commutators, Poisson brackets and commutators:
1.

In guantum mechanics we have:

aL i (L, H]

dt h "’
We can think of this equation that it tells us how the centers of probability distribution move around.
This resembles the Poisson brackets of classical physics. The formal identification between

commutators and Poisson brackets is:
[L,H] < in{L, H}

We combine and get:

dL i i’h
= =~ [LH] = ——{LH} = {LH}
L ={L H}

2.

Commutators have a great similarity to Poisson brackets. If we take the operator symbols L and M,
we get [L, M] & ih{L, M} with [L, M] denoting the quantum commutator, {L, M} denoting the
Poisson brackets.

Let X be the observable for position (position operator) and P the observable for momentum
(momentum operator).

X acts on an arbitrary wave function 1 (x):

XP(x) = xp(x)

P acts like
dip(x)
P = —i
Y = —ih—
Together the product XP acts on Y (x):
dip(x)

X(PY(x)) = —ihx

dx
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PX acting on ¢ (x):

d(xp(x)) dl/J( )
X ——-==
dx

P(Xy(x)) = —ih — ihip(x)

Now we check the commutator relation [X, P (x):= (XP — PX)y(x):

dpeo) (. dp@)
dx

(XP - PX)Y(x) = —ihx h— — lhtp(x)) = i) (x)

From this follows
[X, PIp(x) = itah(x)
[X,P] =ih

X and P do not commute. We compare this with the corresponding Poisson bracket {x, p}. With the
equivalence [X, P] & ih{x,p} we can conclude that {x, p} must be 1 which is the classical relation
between coordinates and their conjugate momenta.

Commutating variables, complete sets of commutating variables:

Hint: For better readability we omit indices belonging to the respective bases.

In a two-spin system, we measure each spin separately and associate these measurements with two
different operators L and M. Every measurement leaves the system in an eigenstate. If we measure

both spins in a two-spin system, the system switches to a state that is simultaneously an eigenvector
of L and an eigenvector of M.

Every operator has his set of eigenvectors and eigenvalues: L with eigenvalues 1 and eigenvectors |1)
and M with eigenvalues u and eigenvectors |u).

We assume that there is a basis of state-vectors |4, 1) that are simultaneous eigenvectors of both
observables:

L|A, u) = A|A, u) and M4, u) = p|A, 1)
|4, 1) being simultaneous eigenvector of L and M implies:
LM|2, p) = ML|A, )
[L, M]|A, ) = O
The condition for two observables to be simultaneously measurable is: they must commute.

A set of commuting observables that all commute among themselves is called a complete set of
commuting variables.
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Commutating variables and wave functions:

Suppose we have a basis of states for some quantum system. The orthonormal basis vectors are
called |a, b, c, ...) with a, b, ¢ ... the eigenvalues of some complete set of commuting observables
A B,C, ..

Consider an arbitrary state vector |i). Since the vectors |a, b, c, ... ) form an orthonormal basis, |y)
can be expanded in terms of them:

) =Zabc w(a,b,c,..)|a,bc,..)

The quantities Y (a, b, c, ...) are the coefficients. Each of them is equal to the inner product of the ket
|} with one of the basis vectors:

l/)(a; b; G ) = (a; b; (T WJ)

The set of coefficients ¥(a, b, c, ...) is called the wave function of the system in the basis defined by
the observables 4, B, C, ....

The physical meaning of the wave function is important. The squared magnitude of the wave
function is the probability for the commuting observables to have values a, b, c ...:

P(a,b,c..)=v*(a,b,c,..)¥(a,b,c,...)
The form of the wave function depends on which observable we choose to focus on.

For example, in the case of a single spin the inner products ¥ (u) = (u|y) and Y(d) = (d|y) define
the wave function in the g, basis.

The probabilities of a complete set of commuting observables must sum to 1:

Z P(a,b,c..) = Z Y*(a,b,c, .. )¥(a,b,c,..)=1
ab,c,... ab,c,...

This holds in the case of a single observable, a single spin e.g. in the up-down-basis:
Z _ Plabec.) Z Plud) =P() +P(d) = ¥ (Y () + P (@p(d)
a,n,c,... Uu,

Conclusion: the term wave function refers to the collection of coefficients (components) that are
coefficients of the basis vectors in an eigenfunction expansion:

W=, al)

with |1/J]-) being orthonormal eigenvectors of a Hermitian operator. The collection of @; is what we
mean by the wave function.

Again, in the example of a single spin in the up-down-basis:

The basis ket vectors: |u) = ((1)), |d) = ((1)) and their bras (u| = (10),(d]| =(01)

An arbitrary state-vector: [Y) = ai|u) + az|d) = a4 ((1)) + a; ((1)) = (Z;)
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The wave-function Y (u, d):
P = (ulp) = (10) (o)) = @y and " () = a°

(@) = (@) = O 1) (o) = @z and (@) = a,’

The set of coefficients Y¥(u, d) = Y (u),Y(d) is called the wave function of the system in the basis
defined by the observable “spin up”.

. . . . ] () _ .
To calculate the probability 1"y we write this as a vector: Y (u,d) = (Eb(d)) = (az) and build the

dot product with its transposed complex conjugate (((u, d))*)T = pw)*P(d)* = (afa3):
* * % al * *

Yy = (aja; (az) =m0 + aza;

As this is the total probability it should give 1.

Complex conjugate:

Every complex number z has a complex conjugate number, marked as z*. The complex conjugate
switches the imaginary part to the opposite sign.

In cartesian coordinates: z = a + ib changes to z* = a — ib and vice versa.
In polar coordinates: z = re'? and z* = re~'¢.

Please note that zz* = r? = |z|?

Complex conjugate numbers:

aq
— 0(2 _ * k% ok
Ket |A) = as | bra (A| =(a; a3 az ay).
Ay
aq
a
Inner product: (A|A4) = (a7 a; a3 a}) ai =aja + a0, + azaz + aa,
Ay

Note: bras are always the complex conjugated and not explicitly written as (A*|.
Complex conjugation for operators:

The equation M|A) = |B) needs a counterpart (A|MT = (B|.

M1 we get out of M by transposing and complex conjugating M:

We transpose a matrix:
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We complex conjugate this matrix:

a d g a* d* g
Mr:<b ‘ h)awz(b* o h*>
c f k ct fr k*
Please note the symbol: MT stands for MT*.

Explicit:

l
Let |B) = <m) and accordingly (B| == (I'm*"n™):
n
a b c l al+bm+cn
M|A) = (d e f) <m> = <dl + em+fn>
g h k/\n gl+hm+kn

a- da g a‘'l*+b*m* + c*n*
(AIMT = (I'm*n™) (b* e” h*) = <d*l* +e'm* + f*n*)

Obviously (A|MT = (M|A))*. This fits with the convention that (B| is the complex conjugated of |B).

Complex numbers:

A complex number consists of a real part and an imaginary part. We can write it as z = a + ib with
a, b € R. The imaginary unit i has the propertyi-i = —1ori? = —1.

We can represent complex numbers by a plane with the horizontal real axis and the vertical
imaginary axis. This is called the cartesian mode.
Im

z=a+bi=re'"
2

A B 1 0 T ] T Re ... graphic courtesy of

Wikipedia ...
» _W—J

A second way of representation describes a complex number by the angle it has with the real axis
and its length resp. the absolute value. This is called the gaussian mode. In this mode we write a
complex number as r - %®.

We can switch from one representation to the other:
Givenz = a + ib: |z| or r = Va? + b2 7 =arccos(%) ifb>0

resp. ¢ = —arccos (g) if b <O0.
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Given z = re'?: a =r1-cos(p) b =r-sin(¢)
or z=r1"(cos(p) +i-sin(p))

Every complex number z has a complex conjugate number, marked as z*. The complex conjugate
switches the imaginary part to the opposite sign. z = a + ib changes to Z = a — ib and vice versa.

With this we get new formulas:

|z| = Vzz*
z+ 2z
re(z) ora =
2
z—2z"
im(z) or b = >

Additions and subtraction of complex numbers are best performed with the cartesian
representation.

(a+ib) + (c +id) = ac + ibd
Multiplication and division are best performed with the gaussian representation.
rel? - ryel = rr,el@+o)

A number of the form z = €' has the absolute value 1: |e!?| = Vei®e~i® = Ve® = V1 = 1.1tis
called a phase factor. No measurable quantity, no observable is sensitive to an overall phase-factor,
so we can ignore it when specifying states.

Note: complex numbers often are used for “a trick” in calculations. With complex numbers you can
transform a sum into a product: (x + iy)(x — iy) = x? + y2.

Complex numbers, addition of complex numbers:
Additions and subtraction of complex numbers are best performed with the cartesian
representation.

(a+ib) + (c +id) = ac + ibd

Complex numbers, eigenvalues and complex numbers:
An operator M (a Matrix M) can have complex valued eigenvectors:

w0 0= ()=

Complex numbers, multiplication of complex numbers:
Multiplication and division are best performed with the gaussian representation.

re'? - ryelf = rr,el@+o)

Complex numbers, phase factors of complex numbers:

A number of the form z = €% has the absolute value 1: |ei‘p| =Vel@e i = e =+/1=1.1tis
called a phase factor. No measurable quantity, no observable is sensitive to an overall phase-factor,
so we can ignore it when specifying states.

An observable is always something like the product of a complex number by its complex conjugated.
In this process the phase factors cancel each out.
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Complex numbers, representations of complex numbers:
We can represent complex numbers by a plane with the horizontal real axis and the vertical
imaginary axis. This is called the cartesian mode.

Im

z=a+bi=re'"
2

' ... graphic courtesy of

Wikipedia ...
» _W_J

A second way of representation describes a complex number by the angle it has with the real axis
and its length resp. the absolute value. This is called the gaussian mode. In this mode we write a
complex number asr - e%?.

We can switch from one representation to the other:

Givenz = a + ib: |z] or r = Va? + b? 7} =arccos(%) ifb>0
resp. ¢ = —arccos (g) if b <O0.
Given z = re'¢: a =r-cos(p) b = r - sin(¢p)

or z=r1"(cos(p) +i-sin(p))

Complex vector spaces, orthonormal basis and complex vector spaces:

The dimension of a space can be defined as the maximum number of mutually orthogonal vectors of
length 1, called an orthonormal basis. Any vector |A) in the space can be represented by:

14) =) ailk

k

|k) representing a set of vectors that form an orthonormal basis.

The same principle is true for complex vector spaces, a; being complex numbers.

Component matrices and tensor products:
Let A and B be two 2 X 2 matrices:

(11 Q12
A= (a21 a21)
b ba
B = ( 11 12)
by1 by

The matrix version of the tensor product, sometimes called the Kronecker product:

A®B = (a11 a12) ®(b11 b12> _

az1 Ay by by,
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a (211 Z12> L (211

21 D22 21
- (211 212) s (Zn

21 D22 21
a11b11 Qi1b1z  aizbiy
a11by1  ay1byy  agabyg
az1b11 az1b1z  azbqs
Az1b21  Az1by;  azzbyq

We combine state vectors.

The up and down state vectors for each subsystem:

0=(3)

=)

We combine:

luu) = [W)®|u)

The same way the other combinations:

lud) =

7

(=Nl ]

We combine operators.

=(o)®

|du) =

(o) =

and |

(=2 e )]

/1 0 0o 1 [\
GZ®T’C_(0 _1)®(1 0)_ 0(0 1) =1
1 0
We apply 0,1, to |ud):
01 0 0
(10 0 o
0 0 -1 0

For tensor product holds a kind of distributive rule.

b12>
b,
b12)
b,
a12b1
a12b5

azzby,
az2by;

dd) =

(=l ]

Let 4, B be two 2 X 2 matrices and u, v two 2 X 1 column vectors:

ba,,
by,

A= (g o) g (i
u:= (Z;), Vi = (2),

o O O

SO O O

)

S O O

S O r O

S OO

|uu)
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£ Ui

t (172 ) U v,

u®u vy | = | wyvy
uz (UZ) uz vz

a11b11 Ai1biz Aiabin Aqzbyn
AQB:= A11ba1  Ay1byy  Aiby1 aAgzbyy
az1b11  Az1b1z  aAgpbi1 Agzbyy
az1bz1  Az1bay  aAzzby1  agzba;

To prove:

(A® B)(u®v) = (Au ® Bv)
Left side (A ® B)(u ® v):

a11b11 aq1biz  aipbin agzby; U1
Ay11b21 a11baz  @i2by1 Agzbyp || WV
az1b11  Gz1b1z  Azzbiy aAgbyp || Ui
Az1b21  A21baz  Az2b31  azzby; Uzv2

ay1b11U V1 + a11b1ui vy + ag2b11 UV F Ay b UL Y,
A11b21U1V1 + Q11D23U Uy + A12D31 U vy + A1y un vy
Az1b11U1V1 + Az1b12U Uy + Agab11UR Yy + Agabipun Yy
Az1b21U1 V1 + Az1b22U 1V, + Agba1 U V1 + AgaDa5u v,

Right side (Au ® Bv):

ai1 A2\ (U1 ai1Uq + aq2Up
Au = =
A1 A2/ \Up az1U1 t AUy

Bv = (bll blz) (vl) = (bllvl + blzvz)
by byy) \V2 by1v1 + byyv,

a;uq t+ a12u2) (b11171 + b12172>

az1Uq T AUy by1v1 + b,

bi1vy + blzvz)
by1v1 + byov,
bi1v; + b12172>
by1v1 + byov,

(Au ® Bv) = (

(aj1uy + agpuy) (

(az1uq + azauy) (

ay1Uy (b11V1 + by2v2) + ag2uz(by1vy + byavy)
a11U1 (b21V1 + byov3) + aiouy(ba1 vy + byav;)
az1Uy (b11V1 + b1aV;) + azouy (b11v1 + biav)
az1U1 (b21V1 + baavz) + azauz (bzy vy + bapvy)

a11Uyby1 V1 + a1U bip vy + AU by vy F agUs by Y,
a11U1ba1V1 + Q11U by + agpUs by vy + agpUsbay vy
Az1U1b11V1 + Qp1U D1 V; + Apous by Vg + Qg by
Az1U1bz1 V1 + AU D22V, + AgUs by V1 + gousban v,

Obviously both sides are equal.

Component:

Component is the collective name for columns, rows, and matrices you use to represent vectors and
linear operators.
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Component of 3-vector:

1.
a

A 3-vector <b> is a vector in “ordinary” space.
c

a
<b> is a short form for using the standard orthonormal basis:

)00

The coefficients a, b, and ¢ need a basis to be unambiguous.
2.

The operators oy, gy, and g, are the components of the spin operator 0 = (oy gy d,) along the
three axes in space.

o behaves like a 3-vector because it has three independent components.

To build a spin operator that is oriented along any axis is space we first need the appropriate unit 3-

nx
vector fi := (le) that goes in this direction. Then we construct the vector-operator:
nZ
My
o, =0-A=(0,0,0,)" (le) = gyny + oyny, + o0,
nZ

This is a new type of vector, a 3-vector operator.

3.

A classical spin (a charged rotor) in a magnetic field B= (Bx B, BZ) has an energy depending on its
orientation, the energy proportional to the dot product of spin and magnetic field.

The quantum version of this is:
H~G-B = 0yB, + 0,By, + 0,B,
Note: H is the quantum Hamiltonian, o, gy, and g, are the spin operators.

Component, addition of components:
The addition of vectors by adding the components:

()+()-(3)

Component of angular momentum:
The classical rotor in a magnetic field (oriented along the z-axis) has an angular momentum that is
precessing in the x- and y-components.

This holds for matrices analog.
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In quantum mechanics the expectation values are “precessing” despite of every measurement giving
IIO" Or 111”.

Component of basis vector:

The advantage of representing vectors and linear operators concretely by columns, rows, and
matrices (components) is that those components provide a complete, explicit set of arithmetic rules
to work with, depending on a specific choice of basis vectors.

The underlying relationships between vectors and operators is independent of any basis, the
concrete representation obscures this fact sometimes.

Component of generic state:
The space of states for a single spin has only two dimension, “up” and “down”. By choosing |u) and
|d) as the two basis vectors we could write any state |A) as a linear superposition of them:

|4) = ay|u) + ayl|d)
a,, and a, are the components of |A) along the basis directions.

Component, inner products and component:
1.

The rule for inner products is essentially the same as for dot products: add the products of
corresponding components:

a,

(BlA) = (B1 B2 B3) - (“2> = Biay + Braz + f3as

as
Note: row vectors always use the complex conjugated values.
2.

The ket |A) can be written as:

4= & 1))

J

|i) are basis vectors.

We use {j|A) = a;, the components of a vector are its inner products with the basis vectors and

14) = > Gl 1) = D 114)
j J

write:

Note: (j|A) is just a number.

Component, multiplication of component:
A component can be multiplied by a (complex) number:

“()-(2)

This holds for matrices analog.
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Component of phase-factor:
A phase-factor is a complex number z of “length” 1: |z| = 1.

For phase-factors holds:
zz* =1
z=e
Z = cos@ +ising

Component of spin:

1. Measuring one component of spin destroys the information about the other components.

2. Proposition A: The z component of the spin is +1.
Proposition B: the x component of the spin is +1.
According to classical logic, this could be tested by measuring either
a) first A and then B,
b) first B and then A.
In quantum mechanics this is not possible. First measuring A sets the spin is in state 4,
subsequent measurements B gives random results +1 and -1.

3. (particle has position x) and (momentum p) is not measurable in quantum mechanics. We
can only measure (particle has position x) or (momentum p).

4. The components of spin, g, ay, 0, are observables.

5. Possible values of any of the components of spin are + 1.

6. A spin operator can only provide information about the spin component in a specific
direction.

7. o0y, 0, 0, are operators (matrices) that correspond to the three measurable components of
spin. They behave much like 3-vectors.

8. Any state of a single spin is an eigenvector of some component of the spin.
Given any state |[A) = ay |u) + a4|d)
there exists some direction 71 such that (¢ - n)|A) = |A).
The states of a spin are characterized by a polarization vector, and along that polarization
vector the component of the spin is predictably +1.

9. If the expectation value of a component of ¢ is zero, this means that the experimental
outcome is equally likely to +1 or -1.

Component of state-vector:
1.

The state of a system is represented by a unit vector in a vector space of states. The squared
magnitudes of the components of the state-vector represent probabilities for various experimental
outcomes.

Let |A) = \/% |u) + \/% |d), with |u) and |d) as the basis vectors.

2 2 2
|A) is normalized: (\/%) + (\/—15) = 1, the probabilities for the outcomes are (%) = %each.

Note: regularly the coefficients are complex so the normalization rule is: aj,a, + azag = 1 and the
probability for outcomes a;,a,, resp. aja,.

page 62 of 433



quantum-abc

2.

You can think of the wave function as a set of components of the state-vector in a particular basis.
These components can be stacked up to form a column vector.

[) state-vector

Y(A) wave function associated with |i) in the (one of many possible) L-basis
|4) set of orthonormal eigenvectors of L

A the according eigenvalues

PY(A) = (A]yY) the projections of inner products of the state-vector onto the eigenvectors:

Y(iy)
Component of vector:

The spin-operator o with its components gy, g, g, resembles a vector.
Measuring a spin along any axis in space doesn’t give fractions but always +1 or -1.

The fraction you get only by the statistics of the +1 and -1 outcomes of several measurements.

Component, wave functions and component:
The term wave function refers to the collection of coefficients (also called components) that multiply
the basis vectors in an eigenfunction expansion.

You can think of the wave function as a set of components of the state-vector in a particular basis.
These components can be stacked up to form a column vector.

|Y)  state-vector

WY(A) wave function associated with [1)) in the (one of many possible) L-basis

|4) set of orthonormal eigenvectors of L

A the according eigenvalues

Y (A1) = (A|yY) the projections of inner products of the state-vector onto the eigenvectors:
()

A wave function is one of many possible representations of one state-vector.

Component form of addition:
1.

Additions and subtraction of complex numbers are best performed with the cartesian
representation.

(a+ib) + (c+id) = ac + ibd
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2.

a
We construct a vector by stacking up a pair of complex numbers, (a;) and identify this with the ket-
vector |A). The complex numbers are the components of |A). You can add two column vectors by

adding their components:
(al) n (31) _ (a1 + ﬁl)
a2 B2 az + B>
Component form of bra-vectors:

(Bl = (B1 Bz - Bn)

Note: the values are implicitly complex conjugated.

Component form, equation in component form:
The equation M|A) = |B) in component form:

myy Mqyp; Myz\ /0 myqQq + My + My303 B1
My My Maz || Az | = | My + My +Myzasz | =| B,
ms; Mz Mgz3z/ \Q3 mz1q + M3y + M33a3 B3
The equation (A|MT = (B| in component form:
* * *
mp; My M3zq
* * * * * * _
(afj az az)| my; my, mz, |=
* * *
my3 Mp3 Mg33
* * * * * * * * * * * * * * * * * * _ * * D*
(aimi; + azmi, + azmis ajmy; + azmy, + azmy;  ajmgy + azms, + azmsz) = (B Bz B3)
Note: there is an implicit complex conjugation when switching from ket to bra.

The state-vector |A) = \/—15 [u) + \/—15 |d) written in component form:

1 1 1 1 1
=gl 750 =50+ 50 =50

Component form of multiplication:

Applying a matrix to a vector normally changes the vector to a new one. Exception from this rule are
the eigenvectors of a matrix. Applying a matrix to an eigenvector simply multiplies the eigenvector by
a number, its eigenvalue.

M|A) = A|A) in component form:

my; My My3z\ /%1 aq
My My Myz || a2 | =A @2
mgzq M3y Mgz/ \a3 as

Component form of tensor product operators:
We are working with a two-spin state, g, is the operator working with Alice’s spin.

N

We must widen Alice’s operator with the tensor product: g, = 0,QI.
g, is the operator of Alice, g, is the operator of Alice in the two-spin system.

The tensor product: |[ud) = u®d
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We calculate (g,)|ud). We get:
(a)|ud) = (0, (U®d) = 0,|w)®I|d) = [u)®|d) = |ud)
Note that (0,&1)(u®d) can be interpreted in two ways.
In detail
First, there is a kind of distributive rule we used above.

Second, we could work with the matrices.

o, = ((1) _01),1

Il
—~
O =
= O
—
<
~
Il
—~
O =
~—
B
~—
Il
—
=)
~

1G9 o@D\ (690
Cen=( o D= 16 A ): 00 3 o
0 1 0 1 0((]j 2) —1(3 2) g 8 01 _01
1O\ (3
wed) =(g)@(}) = o ]=|o
0 1 0((1)) 8
10 0 0)\/0 0
(0,1 (u®d) = g (1) _01 8 (1) - é
00 0o -1/\o 0

If we want to be absolutely correct, we can widen things more.

The coefficients of a Matrix M are the result of: m;, = (j|M|k) with |j) and |k) representing basis
vectors.

In our two-spin system we have the following four basis vectors:
|luw), lud), |du), |dd)
We write (0, Q1I):

(uulo,®Iuu) (uulo,®Iud) (uulo,®I[du) (uulo,®I|dd)
(ud|o,®Iuu) (ud|o,®Iud) (ud|o,®I|du) (ud|o,®I|dd)
(dul|o,®Iuu) (dulo,®Iud) (dulo,®I|du) (dulo,®I|dd)
(dd|o,®Iluu) (dd|o,®I|ud) (dd|o,®I|du) (dd|o,®I|dd)

(GZ®I) =

We are free whether to apply the g, to the left and I to the right or vice versa. The outer basis
vectors will cancel everything not on the diagonal of the matrix. We will get again:

1 0 O 0
{01 0 o
0 0 0 -1
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Component matrices:

Let A and B be two 2 X 2 matrices: A := (

aiq
az1

aip
az1

)=

(bll
b21

ba;,
byy

The matrix version of the tensor product, sometimes called the Kronecker product:

A®B = (
b

n (bi
b

421 (bi

a11b1y
ay1bzq
az1b1q
az1by1

ai, a12) ® (b11
a1 Ay byq
b12> a (b11
b, 12\byq
b12) a (bn
by, 22\by,
a11b12  aq2b11
Ay1by;  ai2bzq
az1b1z  azzb1q
ay1by;  azzbaq

b12) _
b,

The tensor product of the up and down state vectors:

=3

0=()

n (1! ((1))

luu) = (U)Q|u) = ((1)) ® (0) = N~

We combine:

The same way the other combinations:

0 0
lud) = é , |du) = (1) and |dd) =
0 0
We combine operators. g, = (é _01), Ty (2 (1))
o= )0 D=1 0 °G, 0
0 (1 0) -1 (1 0)
We apply 0,1, to |ud):
01 0 O 0 1
oo} 9 0 0 )(1)-(0
0 0 -1 O 0 0
For tensor product holds a distributive rule.
Let 4, B be two 2 X 2 matrices and u, v two 2 X 1 column vectors:
A= e = 5

S O O

== =)

S O r O
S OO

|uu)

page 66 of 433



quantum-abc

u (U1) U
LRV = vy /| _ [ w2
N vy | | Uy
Uz 4,
2 uZUZ
a11b11  ay1b1z  aszbiy agzby;
a;1b a1b a,-b a-b
AQ®B: = 11921 11922 12021 12022

az1b11  az1b1z  azzbyy aggby;
Az1by1  az1byp  Azaby1 aAgby;

To prove:

(A®B)(u®v) = (Au ® Bv)
Left side (A ® B)(u ® v):

a11b11 Ai1biz  Aibin Aizbyn U v
a11bz1  ay1ba;  aqzbyy aqzby; U vy
ay1b11  az1b1z;  Azbiy by |\ U2V:
ay1by1  Az1byp  azzby1  Azby; Uz

ay1b11U V1 + a11b1u vy + aq2b11 UV F Ay b UL Y,
A11b21U1V1 + Q11D2U Uy + A12D31 U vy + A1 byun vy
Az1b11U1V1 + Az1b12U Uy + Agpb11URV; + Agabipun Yy
Az1b21U1 V1 + Az1b22U 1V, + Agba1 U V1 + gpba5us v,

Right side (Au ® Bv):

_ (M1 Qg2 (U1) _ (Qq1Uq T A1pUp
Au = =
az1 A2/ \Up az1Uy + AUy

_ (bq1 blz) U1\ _ (b11v1 + b12172>
Bv= (b21 by, (UZ) ~ \ba1v; + byyvy

11Uy + aq2Up by1v1 + b1V,
Au ® Bv) = ( ) ® ( -
( ) Az1U1 T AUy by1v1 + byyv;
bi,v1 + b12172>
by1v1 + by, v,
by, + b12172)
by1v1 + by,

(a;1uy + agpuy) (
(az1uq + azauy) (

ay1Uy (b11V1 + by2v2) + ag2uz(by1vy + byavy)
a11U1 (D21V1 + byov) + a1y (ba1 vy + byavy)
az1Uy (b11V1 + b1aV;) + azouy (b11v1 + biav)
az1U1 (b21V1 + baavz) + azauz (bzy vy + bapvy)

A11Uyby1V1 + a1U b1 V; + AU by Vg F AgUs by Y,
a11U1Da1V1 + QU by + agoUs by vy + agpUs oy vy
Az1U1b11V1 + Qp1U D1 V; + Apous by Vg + Agous by
Az1U1bz V1 + AU D22V, + AgUs by V1 + agousban v,

Obviously both sides are equal.
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Composite observables:

We have a two-spin system in an entangled state, the state |sing) := % (lud) — |du)).

Can Alice (o) and Bob () simultaneously measure their own observable? Only, if the operators
commute.

In fact, every component of ¢ commutes with every component of 7.

Check:
. (1 0 (0 1y,
We combine operators. g, = (0 _1), Ty = (1 0).
0 1 0 1 01 0 0
0. ®1 :(1 0)®(0 1): 1(1 0) 0(1 0) _(1 0 0 0)_,
=\ -1 10 0(0 1) _1(0 1) 0 0 0 -1
1 0 1 0 0 0 -1 O
1 0 1 0 0 0 1 O
I.®0 :(0 1)®(1 0): 0(0 —1) 1(0 —1) _[{0 0 0 -1 _B
T 0 0 -1 1(1 0) 0(1 0) 1 0 0 0
0 -1 0 -1 0 -1 0 0
The commutation relation: [4, B] = AB — BA
01 0 O 0 0 1 o0 0 0 0 -1
AB = 10 0 O 0 0 0 -1})_[{0 01 O
0O 0 0 -1 1 0 0 O 0 1 0 O
0 0 -1 O 0 -1 0 O -1 0 0 O
0 0 1 O 01 0 O 0 0 0 -1
BA = 0 0 0 -1)f1t 0 0 O)_(O0 01 O
1 0 0 O 0 0 0 -1 0O 1 0 O
0 -1 0 O 0 0 -1 O -1 0 0 O
Obviously AB = BA, so the operators commute, [4, B] = 0.
We try this explicit.
1 0 0 0
. 0 1 0 0
The basis vectors for the states |uu), |ud), |du) and |dd) are olloll1 and ol
0 0 0 1

The state|sing) = \%Qud) — |du)):

/ 0 0 \ 0
singd === [ 4 ]-( 9] [=55( *
V2110 1 NAR!
\ 0 0 / 0
We apply operator A to the state |sing):
01 O 0 0 1
1o o0 oflf1])_{(o0
0 0 0 -1/y2\-1 0
0 0 -1 0 0 1

page 68 of 433



quantum-abc

Then we apply operator B to the result:

0 0 1 0 1 0
0 o 0 —1|1fo}_1/(-1
1 0 0 0 )yz\of 2|1
0 -1 0 0 1 0

We see that |sing) is eigenvector to the observable 0,1, or 7,0, with eigenvalue —1.

Alice and Bob can measure any component of their spin and get opposite results because |sing) is
eigenvector to both with eigenvalue —1.

Composite operator, composite vectors and composite operator:

A composite operator g,QI is operating on a composite vector |d)® |u) to produce a new
composite vector —|d)® |u):

azldu) = (a,@1)(|d)® |u)) = o|d)RI|u) = —|d)®|u) = —|du)

Alice’s composite operator acts only on the left half of the composite vector |du). Analogous Bob’s
composite operator I®t, acts on the right half.

Composite operator, energy and measurement of composite operator:

Example: Some atoms have spins that are described in the same way as electron spins. When two of
these atoms are close to each other — for example, two neighboring atoms in a crystal lattice — the
Hamiltonian will depend on the spins. In some situations, the neighboring spins’ Hamiltonian is
proportional to g - 7. If that happens to be the case, then measuring ¢ - T is equivalent to measuring
the energy of the atomic pair. Measuring this energy is a single measurement of the composite
operator and does not entail measuring the individual components of either spin.

Composite state, two spin:
We are working in the z-basis: |uu), |ud), |du), |dd).

The simplest state for the composite system is called a product state, the result of completely
independent preparations by Alice and Bob.

Alice prepares her spin in state a, |u) + @4|d), Bob prepares his spin in the state B, |u) + B4|d).
Crucial for a composite state is that each state separately is normalized:
aytty + agag = 1and BBy + Bafa = 1.
The product state describing the combined system is:
[product state) = {a, |u) + ag|d)}®{Bylu) + Bald)} =
ayPyluu) + ayfalud) + agfy|du) + agfqldd)

The entangled state superposes the basis vectors in a general way

wuuluu> + l/)udlud> + l/)duldu> + lpddldd)

with only one normalizing condition:

lpl*tulpuu + lp;dlpud + lleulpdu + lp:idlljdd =1

This state has six real parameters and therefore is richer than the combined state, it is entangled.
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The four entangled states are the singled state and three triplet states:

1

singlet) = —=(ud) ~ |dw))
62) = = fud) + )
62) = 5 () + )
65) = 5 () = )

In the product state there is some direction for which the measurement of spin gives +1. The
expectation values satisfy the condition (g, ) + (0y)* + (0,)* = 1.

In the entangled state we get (0, )* = (ay)2 = (0,)? = 0 both for Alice and Bob, we have no access
to the single parts of it. This is in contrast to classical physics. If you know the state for two classical
particles you also know all about the individual particles.

Composite systems, mixed and pure states and composite systems:
Prerequisite

The trace of an operator Tr (or any square matrix) is the sum of its diagonal elements. The trace of a
projection operator is 1.

We have a combined state. Alice prepares her spin with 50% probability either in state |¢) or |8).

The expectation value of any observable L is:

o 1 _ 1 1 _
(1) = (5TrloXolL +5Trlo)6IL) = Tr<(5|<p><<p|L +5|9><9|L)> =

1 1
Tr ((5|<o><go| + 5|9><9|)L)

The expression % loXe| + % |6)(6] is an operator, called density matrix p that encodes Bob’s

knowledge of Alice’s preparation. It can be expanded to a sum of states Alice could prepare with
different probabilities Py, Py, ...
p = PiloiX@1] + P2 lo{@2| + -

When the density operator corresponds to a single state, it is a projection operator onto that state,
the state called pure. In general, the density operator is a mix of several projection operators and
represents a mixed state.

The density matrix p comes into life when a basis is chosen for the density operator. Suppose we
choose the basis |a), then the matrix representation of the operator p is p,,, = {(a|p|a’) and the
matrix representation of L is L,,,. The expectation value (L) represents a mixed state and becomes:

(Ly = z Ly Paar *

a,ar

End prerequisite
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The state of a composite system can be absolutely pure (~single state), but each of its constituents
must be described by a mixed state.

We take a system composed of two part, A and B. We suppose that Alice has complete knowledge of
the state of the combined system, she knows the wave function Y (ab). Alice is interested only in
system A and wants to have complete knowledge about system A. She selects an observable L that
belongs to A and does nothing to B when it acts. The rule for calculating the expectation value of L:

L) = D B @D aryaptb(ab)

ab,arbr

The observable L was chosen to act on A only and let B unchanged, it acts trivially on the b-index (it
leaves b unchanged, so b’ = b and the sum over the b separable):

D)= ) W @b)Lgrah(@b) = ) Lyg ) ¥ (@b)p(ab)

a,b,ar a,ar b

The sum
>t @byp(ab) = poa
b

is the density matrix for all a,a’ in the combined system.

(L) = Z La’,a Pa,ar

a,al

We write:

and get the same expression as *.
Result:

Despite the fact that the composite system is described by a pure state, the subsystem A must be
described by a mixed state.

Composite systems, observables in composite systems:

We are in a two-spin system of Alice and Bob. The operators of Alice: oy, 0y, 0, act on her state
vectors |u) and |d). The same holds for Bob with his operators 7, ,, T, and state vectors |u) and
|d).

In a composite system we use the tensor product to combine both operators and state vectors and
get a four-dimensional system, a product state.

We write o, |uu), o, |ud), o, |du), o, |dd) with o, acting only on Alice’s half, the left half of |uu) etc.
and analog 7, |uu), 7, |ud), T, |du), 7,.|dd) for Bob with Bob’s operator acting only on the right half of
|luu) etc.

We extend:
0(10)1(10) 0 010
v q rremeer=(F ey ={ 0 8 0 6100 o
0 1 0 1 01 0 O
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0 1 0 1 01 0 O
s Dsnowror= () 00 H=("G o) )10 0
0 0 1 0

The combination of state-vectors:

uw) = [WB|u) = ((1)) ® (3) - 1E
(

(e)

0)
)
|ud) = [w)®|d) = (3)®(f1’) = )

SO RO OO OoOK

1
13
()

We check whether an operator of Bob is acting on Bob’s observable. 7, |uu) should give |ud)
because T, |u) in the one spin system gives |d).

01 0 0\ /1 0

00 o\lo 1
=19 o o0 1)lo] {0 ] D

00 1 0/\o 0

In a composite system the expectation values of the components satisfy:
(00)* +(0y)* +{0,)* = 1

We check this with g, and |uu): (o,) = (uu|o,|uu) with (uu| = (100 0).

10 10 10 0 0
aZisnowaz®I=(é _01)®(é 2): ;Eg (1); _01(&)1 13) g (1) _01 8
0 1 0 1 00 0 -1
1
|uu)=<8>
0
10 0 0\/1
(00 = uuloyhuw) = caul [ 0 o ° 0 |0 )=
00 o -1/\o
1 1
(uu 8 —(1000) 8 —1
0 0

The other expectation values with |uu) will give 0. The equation (g, ) + (g;)* + (g,)* = 1is valid.

This is not true for entangled system. We show this in the symbolic representation only ...

In the up-down-basis the entangled state |sing) := % (Jud) — |du)) and (sing| :=%((ud| — (dul).

Remember that basis vectors are orthogonal.

We calculate the expectation value of {(g,).
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(0,) = (sing|o,|sing) = <sing o

75 (1ud) = |dw) = {sing| 7= (jud) + |du)) =
(5 G = )| 5 Gy + 1)) = 5 Q) + Gucla) — dukud) ~ (duldu) =

1
S1+0-0-1)=0
The same holds for the other variants. We get (o) = {(0y,) = {(0;) = 0

Composite systems, product states:

The simplest state for the composite system is called a product state, the result of completely
independent preparations by Alice and Bob. Alice prepares her spin in state a,, |u) + a4|d), Bob
prepares his in the state 5, |u) + B4|d).

In a composite state each state is normalized separately:
aytty + agag = 1and BBy + BaPa = 1.
The product state describing the combined system is:
Iproduct state) = {ay|u) + aq|d)}®{By|u) + Bald)} =
ayPyluu) + ayfalud) + agfy|du) + agfqldd)

Composite systems, tensor products and composite systems:
Imagine two systems. Alice throws a coin, Bob a die.

0

The system of Alice has two states and two basis vectors (I(-)I) and (T

), represented as (I;)

In classical physics they are exclusive, a coin can giver either H or T when thrown, so the above

representation in (17_{) makes sense with exclusive H =1orT = 1.

In quantum mechanics there is allowed also every superposition:

(o) + or 7)

(arr)
arT
ay|H) + ar|T)
The system of Bob has six states and accordingly six basis vectors |1) through |6), represented as:
1 1 0 0
2 0 2 0
3

4 or, more detailed

0 0 0
0 + 0 o 0
2 o o)\
6 0 0 6
Again, in classical physics a die could show only one number, one of these basis vectors, but in
guantum mechanics any superposition:
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a1l
/aZZ
a33
aq|1) + a3|2) + a3|3) + a,l4) + as|5) + ag|6) or 4

a55
g6

The combination of both basis vector systems is performed by the tensor product:

1 H1 H1 0
/2\ H?2
131
H 4

I
N

H3
H4
H5
H6

5

6

1 T1
(2 T2
13

4

5

—

N T

—

®
DNUT DA WN =

Il

! T3
T4
TS5
6 T6

T

coococoococoooo
coocococococoocoo
Focococococoocococoo

(@)

For example, the state-label H4 denotes a state in which Alice’s coin shows H and Bob’s die shows 4.

We could represent the H4 state explicit by writing |H)®|4) or |H)|4). Usually it is more convenient
to take the composite notation |[H4). This emphasizes that we are talking about a single state with a
two-part label. The left half labels Alice’s subsystem, the right half labels Bob’s subsystem.

Once the basis vectors are listed — in this case, twelve of them, the basis vectors for the S45 system —
we can combine them linearly to form arbitrary superpositions. A superposition of two basis vectors
might look like:

ap3|H3) + ap,|T4)

In each case, the first half of the state-label describes the state of Alice’s coin, and the second half
describes the state of Bob’s die. The coefficient a3 results out of the multiplication of a; from
Alice’s system and a3 from Bob’s system — it is a (complex) number.

Sometimes, we will need to refer to an arbitrary basis vector in S,5. To do that, we will use ket-
vectors that look like |ab) or |a'b").

There is one aspect of this notion that is tricky. Even though our S,z state-labels have a double index,
ket-vectors like |ab) or |H3) represent a single state of the combined system. We are using a double
index to label a single state — this will take some getting used to. Alice’s part of the state-label is
always on the left, Bob’s part is always on the right.

Composite vectors, composite operators and composite vectors:

A composite operator g,®I acts on a composite vector |d)®|u) and produces a new composite
vector —|d)®]|u), in this case only on Alice’s half of the system.

The composite operator IQTt, acts on a composite vector |d)®|u) and produces a new composite
vector |d)®|d), in this case only on Bob’s half of the system.

Both composite operators act only on their half of the composite vector. We check this explicitly.
T, |uu) should give |ud) because 7, |u) in the one spin system gives |d).
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01 0 0\ /1 0
100 0\lo 1
=1 o o 1/lo]={0]= D
00 1 0/\o 0

Conservation:

Conservation of distinctions:
Let us consider a closed system (no external forces etc.) and two distinguishable states that changes
with time t: |@(t)) and |6(t)).

The states at time t are given by some operation that we call U(t), an operator acting on the states
at time zero:

lp(1)) = U] (0))

(p®)] = (pO|UT

16(2)) = U(t)16(0))
U is called the time-development operator for the system.

If |¢p(0)) and |6(0)) are two distinguishable states in a closed system, this must be valid for all times.
Distinguishable states are orthogonal, so {¢(0)|6(0)) = {(@(t)|6(t)) = 0.

We take a look at (¢ (t)|6(t)):
(p®16()) = 0 = ((0)|UT()U()|6(0))
From this follows that UT(£)U(t) must be the identity operator I:
ut@u) =1

An operator that satisfies Ut (t)U(t) = I is called unitary, therefore time evolution is unitary in
guantum mechanics.

Conservation of energy:
The condition for an observable Q to call it conserved is that its expectation value (Q) does not
change with time (or the expectation value of any power of Q, e.g. (Q™)).

The change over time for an observable Q in quantum mechanics:

Q) i
T —E([Q,HD
or shorthand
dQ B i
T —%[Q,H]

The right side of this equation becomes zero if Q and H commute: [Q, H] = 0. H is the Hamiltonian,
the energy of a system both in classical physics and in quantum mechanics. Every operator
commutes with itself, so:

aH i

— =——[H,H] =
I - [H,H] =0
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Energy is conserved in quantum mechanics under very general conditions. From

dQ i
T _E[Q’H]

we can derive:

dQ? _ dQ _ 2iQ
o " Ty el

and again, this is zero if @ and H commute. This holds for every power of Q.

Conservation of overlaps:
If A and B are any two state vectors, the inner product of |A) and |B) is the same as the inner
product of U|A) and U|B) provided U is unitary.

We check:
U|A) - (A|UT
(AlUTU|BY = (A|B) » UTU =1
This is called the conservation of overlaps and expresses the fact that logical relations between states

are preserved with time.

Continuity:
Continuity is a principle when working with incremental changes. It means that state-vectors changes

smoothly. The time-development operator U(t) for e-amounts of time becomes U(e) = I — ieH.
With this UT(e) = I + ieHT.

Ut@U(t) =1, s0 UT(e)U(e) must be I too.
I1=UT(e)U(e) = (I + ieH")(I — ieH) =
I-1—TieH + ieH'I + e2HTH =
I—ieH +icH + e2HTH

We omit the second order in € and get:

I=1-ieH + ieHt

0 = —icH + ieHt
0=-H+H'
H=Ht

H must be a Hermitian operator too and it follows that H is an observable with a complete set of

orthonormal eigenvectors and eigenvalues — it is the quantum Hamiltonian.

Continuous functions:

We begin by picking an observable L with eigenvalues A and eigenvectors |4).

Let [1) be a state-vector. Since the eigenvectors of a Hermitian operator form a complete
orthonormal basis, the vector |) can be expanded as Y1~ ; ¥(4;)|4;).
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The quantities Y (4;) are called the wave function in the L-basis of the system, so their actual form
depends on the observable chosen.

Note: other observable — other wave functions, even if we talk about the same state.
The eigenvectors are orthogonal to each other: (/li|/1j> = ;.

We can identify the wave functions with the inner product, the projections of the state-vector [)
onto the eigenvectors |A): Y (1) = (A|P).

You can think of the wave function in two ways. First of all, it is a set of components of the state-
vector in a particular basis, the components forming a column vector:

(1/)(/11))
Y(4n)
You also can think of the wave function as a complex valued function of the discrete variable A: ¥ (A4).

A single spin system has a two-dimensional space of state.

In contrast the coordinates of a particle, moving on the x-axis can be found on any real value of x, the
observable has an infinite number of possible values: x € R.

The former discrete wave function y(x;) becomes a function of a continuous variable 1 (x).

Continuous functions as vectors:

Let us consider the set of complex functions ¢ (x) of a single variable x: x = ¢ (x) with ¢(x) € C.
With appropriate restrictions, functions like ¢ (x) satisfy the mathematical axioms that define a
vector space (algebraic structure):

Closure: @(x) + 8(x) =9(x)
Commutative property: @(x) + 6(x) = 6(x) + ¢(x)
Associative property: (¢(x) + 8(x)) + 9(x) = p(x) + (6(x) + 9(x))
Zero: p(x) + 0 = ¢(x)
Inverse: @(x) + (—p(x)) =0
Multiplying property: zp(x) = 7(x)
Distributive properties:
a. z[e(x)+60(x)] =zp(x) + z0(x)
b. [z+w]p(x)=zp(x) +wep(x)

NowuswNe

We can identify the functions ¢ (x) with the ket-vectors |@) in an abstract vector space. The
corresponding bra vectors are ¢*(x).

Continuous functions require:

a) Integral replaces sum
b) Probability density replaces probability
c) Dirac delta function replaces Kronecker delta
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a) Integral replaces sum:
The inner product {¢|0):

was:

Z ®; 66
ij

[o¢]

f @*(x)0(x)dx

b) Probability density replaces probability:

was:

|A) state-vector, observable L, the probability to observe value 4;:
P(4;) = (Al4;X2;14)

is:

probability density: P(a, b):

b b
fP(x)dxzj " (xX)p(x)dx

a a

Analog to the discrete case we define a normalization condition:

f P*(x)p(x)dx =1

c) Dirac delta function replaces Kronecker delta:
Consider a vector F; in a discrete, finite dimensional space.
Zi,j(&ij) gives Fj because §;; is nonzero only for i = j.

The Dirac delta function performs this: §(x — x') is something that
returns zero for all x # x’ and "o0" for x = x’. With this: .

f 5(x — ) fF(x)dx' = f(x) :

Note: the Dirac delta function can be thought of as lim ne~mo?,
n—-oo
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Continuous functions, integration by parts:
The rule for integration by parts:

b b
deGzFGV,;—f GdF
a a

We work with normalized functions that span the entire x-axis and go to zero at infinity, so the
expression FG |2 becomes zero. With this we get an expression that is often used in physics:

deGz—deF

Continuous functions, linear operators:
An operator L acting on wave functions is linear:

Additivity: L(¢(x) + 6(x)) = Lo(x) + LO(x)
Homogeneity: L(z<p(x)) = zLp(x)
Note: z is a (complex) number.
Two examples:
a) The “multiply by x” operator with the symbol X: X¢(x) = x@(x) withx € R

de(x)

b) The “differentiate” operator with the symbol D: Dp(x) = T

Both are linear operators.

X is called the position operator, D transforms to the momentum operator P.

Continuous functions, Hermitian linear operators:
By definition, a Hermitian operator: LT = L. Note: (L*)¢ := Lf

For a Hermitian operator L holds: (¢ (x)|L|0(x)) = (8(x)|L|@(x))
The position operator X is Hermitian: Xp(x) = x@(x):
Discrete:
(P)IX16(x)) = (9(x) 20 (x)) = x((x)]8(x)) = xp* (x)8 (x)
(BOIX () = (B () |xp(x)) = x(B()|p(x)) = x0* (1) (x)
(¢*(0)8(x))" = p(2)8" (x) = 0" (X)9(x)
We get (9(x)|X|6(x)) = (6(x)|X|@(x)), the operator X is Hermitian. Remember x € R.
Continuous:

In the continuous version the inner product of two wave functions is defined as

o]

(0]6) = j ¢° (00 (X)dx
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For the X operator we get:

(01X18) = (p|x8) = f x* ()0 (x)dx

(01X19) = (6lxg) = f x6" (1) p(x)dx

Again, we use ((p*(x)B(x))* = @(x)0"(x) = 8" (x)p(x) and the two integrals are the same.

Is the “differentiate” operator D, Dp(x) = d(g—ix), Hermitian?

We have no discrete case, so we check the continuous case. The inner product of two wave functions
is defined as

(0l6) = f 9" (08 (x)dx

For the D operator we get:

@10y = o] G = [ o2 ax = [ g0

For better “workability” we write this as [ ¢*d#.

©o d (00
(@Ilg) = (6] 24 = j_wg*(x)%dx - f_wg*(x)d(p(x)

We write this as [ 6*dg.
We use integration by parts [ FdG = — [ GAF and rewrite [ 0*dgp = — [ pd0*.
We get:
(¢|D]6) = —(6|D|¢p)*
The D operator is not Hermitian, instead, it satisfies D = —Dt. This is called anti-Hermitian.

We can construct a new Hermitian operator out of D by multiplying D with —i#A (the A for
convenience purposes in later applications, the —i would be sufficient in this place).

The new operator —ihD is Hermitian:

do(x)
dx

—ihDp(x) = —ih
Continuous functions, wave functions and continuous functions:
We begin by picking an observable L with eigenvalues A and eigenvectors |4).
Let |y) be a state-vector.

Since the eigenvectors of a Hermitian operator form a complete orthonormal basis, the vector [i)
can be expanded as Yi—; ¥ (1;)|4;)-

The quantities Y (4;) are called the wave function in the L-basis of the system, their actual form
depends of the observable chosen.

Note: other observable — other wave functions, even if they represent the same state.
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The eigenvectors are orthogonal to each other: (/11-|/1j) = ;.

We can identify the wave functions with the inner product, the projections of the state-vector [i)
onto the eigenvectors |1): Y (1) = (A|YP).

We can think of the wave function in two ways. First of all, it is a set of components of the state-
vector in a particular basis, the components forming a column vector:

(VJ(M))
Y (4n)
We can think of the wave function as a complex valued function of the discrete variable A: 1(1).

A single spin system has a two-dimensional space of state. The coordinates of a particle, moving on
the x-axis can be found on any real value of x, the observable has an infinite number of possible
values: x € R.

The former discrete wave function y(x;) becomes a function of a continuous variable 1 (x).
Note: in the appendix you find a complete transformation from a discrete wave function to a

continuous one.

Correlation:

Correlation of near singlet state:
For near singlet states (partially entangled states) correlation is between -1 and +1, but neither
—1/4+1 nor exactly 0. They are partially correlated.

Correlation of product state:
For product states the correlation is zero because they are independent.

Correlation of singlet state:
For singlet states (maximum entanglement) the correlation is -1. Whenever you measure the first
spin the other one takes the opposite direction, they are maximal correlated.

Correlation test for entanglement:

Correlation between observables is defined in terms of average (expectation) values. The correlation
C(4, B) between two observables A and B is defined:

C(4,B) = (AB) — (A)B)
C(A,B) isintherange [—1, +1].
If C(A,B) = 0, then A and B are not correlated.

The more the magnitude of |C (4, B)| approaches the value 1, the more entangled the state is. If
|C(A4,B)| =1, then A and B are maximum correlated.

Note: in a product state the correlation is zero, there is no correlation.
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Creation operators:

The Hamiltonian expressed in terms of operators X, the observable for position and P, the
observable for momentum:

1
H =2 (P + w*X?)
(This is a classical as well as a quantum mechanical Hamiltonian, so it would be correct to use the
classical lowercase symbols p and x.)

The idea is to use the properties of X and P, especially the commutation relation [X, P] = ih to
construct three new operators, called creation (or raising) operator, annihilation (or lowering)
operator and number operator. The names are program. The raising operator shall produce a new
eigenvector that has the next higher energy level, the lowering operator shall produce a new
eigenvector that has the next lower energy level. The number operator returns the “number” of the
energy level.

The construction process.

Using complex numbers, we can split up the sum according to a? + b2 = (a + ib)(a — ib) to

1
H~> (P +iwX)(P - iwX)

"

~" because of the quantum mechanically behavior of X and P: they do not commute. The problem
are the products PX and XP.

We expand the Hamiltonian:

1 . . 1 . : 2, 2y2
E(P+la)X)(P—la)X)=§(P2+la)XP—leX—l w?X?) =

1 1
E(PZ + w?X?) + S lw[X,P]
We know the value of the commutator: [X, P] = ih and get:
1 : , 1 1
E(P +iwX)(P — iwX) = E(P2 + w?X?) — Ehw
Our correct Hamiltonian:

1 1
H =§(P + iwX)(P — iwX) +§hw

We define the creation operator a® and the annihilating operator a™:
a” = (P —iwX)
at = (P +iwX)

Note: the number operator is defined as N := ata™ and “returns” the number of the energy level.

Crystal lattice:

If an atom in a crystal lattice is displaced slightly from its equilibrium position, it gets pushed back
with an approximately linear restoring force — so we have the case of a harmonic oscillator in three
dimensions and three independent oscillations.
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Degeneracy

Observable quantities in quantum mechanics are represented by Hermitian operators — this is a
fundamental theorem.

e The eigenvectors of a Hermitian operator are a complete set, any vector the operator can
generate can be expressed by a sum of its eigenvectors.

e If A; and A, are two eigenvalues of a Hermitian operator with A; # 4, then the
corresponding eigenvectors are orthogonal.

e [f two eigenvalues are equal, the corresponding eigenvectors span a subspace. For the
corresponding subspace can be found an orthonormal basis via the Gram-Schmidt
procedure.

Two eigenvalues being equal is called degeneracy.

Density matrices

The scenario: suppose Alice has prepared a spin using an apparatus oriented along some axis. Bob
only has the information that the spin might be oriented along the x-axis or the y-axis.

What does Bob do? How can he use this information to make predictions?
If Alice prepared a spin in the state |y), then the expectation value of any observable L is

WILIY) = Trlp)YIL

with Tr being the trace of an operator or a square matrix. The trace of an operator is the sum of its
diagonal elements. The trace of a projection operator is 1.

Check (Y|L|y):
We try this explicitly.

1

Let [¢) = |u) + = |d) \/15 and the observable L be “spin up” or g,: ((1) _01) .
V2

Then (Y| = %(u| + \/ii(d| = (\/% «/ii) (real coefficients only).

The expectation value (L) = (Y|L|y) = <\%(u| + iz L % |u) + % |d)> =

e L
GR| 6 |7 |-Ga| 1]
V2 V2

This is according to the laws of quantum mechanics, “spin up” and “spin down” appears with equal
possibilities, so the average is zero.

Check Tr|yY){y|L:

N[ RN -
N[ RN =

§||HN =

[ 10 o). [
o6 )2
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Tri)yyIL = Tr

N RN -

giving the same result.
If Alice prepared the spin in the state |6), then the expectation value of any observable L is
(61L16) = Tr|oX6|L

Bob assumes a 50:50 probability giving an expectation value of (L):

=it L+=TrioxelL) = Tr( (2 LtoioxeiL)) =
(>_<E riY)WIL + S Tr]6)(6)] )— r((gltl})(tl}l + 516X ))—

1 1
Tr ((ijxzm + 5|9><9|)L)

G [VY| + % |9)(9|) is the density matrix p, half the projection operator onto [) plus half the

projection operator onto |6).
[P)| and |0)(0] are square matrices of the same rank.

With this density matrix computing the expectation values becomes:

(L) =Tr(pL)

Note: p is an operator and becomes a matrix if a basis is chosen. Suppose we have the basis |a), then
the density matrix with respect to this basis is p,q, = (a|p|a’). If the matrix representation of L with
respect to this basis is: L,,, = (a’|L|a), we can write the expectation value of L:

(L) = Z LaraPa,ar

a,al

Density matrices, calculating density matrices:
Suppose we know the wave function of a composite system, ¥(a, b), but we are only interested in
the subsystem of Alice. Let L be an observable of Alice’s system. L can be represented as a matrix:

La’b’,ab = (a,bllLlab)

Lgrp qp is @ matrix index L;; you get by sandwiching the Matrix with the appropriate basis vectors (i|
and |j).

Explicitly:

luu,uu luu,ud luu,du luu,dd
lud,uu lud,ud lud,du lud,dd
ldu,uu ldu,ud ldu,du ldu,dd
ldd,uu ldd,ud ldd,du ldd,dd

By multiplication with the basis vectors e.g. (01 0 0) and we get

(=N el ]

page 84 of 433



quantum-abc

luu,uu luu,ud luu,du luu,dd 0 luu,du
lud uu lud ud lud du lud dd 0 lud du
0100 ’ ’ ’ ’ =(0100 ’
( ) ldu,uu ldu,ud ldu,du ldu,dd 1 ( ) ldu,du
ldd,uu ldd,ud ldd,du ldd,dd 0 ldd,du
luu,du
l
©100) 4% | = Ly,
ldd,du

The index of row 3, column 2, so we can say: L4 g, = (ud|L|du)

L shall be an Alice-observable meaning it does nothing to Bob’s subsystem, so any elements of L that
could have an effect to Bob’s system must be filtered out by setting it to zero.

This L gets the special form:
La’b’,ab = La’a®6blb
The expectation value of (L) = (Y|L|Y) = Xapa' o ¥ (@', D) Lgpraptp(a, b)

Because of b’ = b:

(L) = WILW) = ) ¥ (@ D)Laat(@h) = ) $"(@b(@,b)loa =

a,b,a arb,a

> W @h@, b Loa

an,a b

The quantity
> W @@, D) = pase
b

is the density matrix of Alice.
We get the expectation value of L (the 2 X 2 version):
(L) = Z Paralaar
ara
. 1 1
Consider the state-vector |Y) = O|uu) + % lud) + N3 |du) + 0|dd).
The values of Y(a, b) are:
1 1
V2 V2

Next, we expand the factors in the density matrix pg, o = 2 Y™ (a, b)Y (a’, b).

Yu,u) =0,Yu,d) = —,P(d,u) =—,P(d,d) =0
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Remember that we are summing over the second index b, the first index a being unchanged:

1 1 1

Puu :1/) (u,u)l/)(u,u) +l/J (u!d)l/)(u;d) = 00+ﬁﬁ:§
Pua = V" (WP, ) +9* (d, D, d) = 0
Pau = l/)*(u, U)l/)(d, U.) + l/)*(u! d)lp(d! d) =0

Paa = ¥*(d, WP(d,u) + ™ (d, DY(d,d) =

N| -

These values are elements of a 2 X 2 matrix:

1/2 0
”:( 0 1/2)

The trace of this density matrix is 1 as it should be for density matrices.

Density matrices, entanglement and density matrices:

The state of a composite system can be absolutely pure (~single state), but each of its constituents
must be described by a mixed state.

We take a system composed of two subsystems, 4 and B. We suppose that Alice has complete
knowledge of the state of the combined system, she knows the wave function Y (a, b). Alice is
interested only in system A and want to have complete knowledge about system A. She selects an
observable L that belongs to A and does nothing to B when it acts.

The rule for calculating the expectation value of L is:

L) = ) W @b )Ly aptp(ab)

ab,a'br

The observable L was chosen to act on A only and let B unchanged, so it acts trivially on the b-index
(it leaves b unchanged, so b’ = b and the sum over the b separable):

D)= ) W @b)Lgrah(@b) = ) Lyg ) ¥ (@b)p(ab)

a,b,ar a,ar b

The sum
>t @byp(ab) = poa
b
gives the density matrix in the combined system.

(L) = z La',a Pa,ar

a,ar

With this we can write:

the expectation value of a mixed state.

Note: in Y, Y*(a’'b)y(ab) = pg q the right-hand index of p, 4, (the index a’) belongs to the
complex conjugate vector 1 *(a’b). This is a consequence of our convention L,,, = (a|L|a’) for
labeling the matrix elements of an operator L.
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Applying this convention to

p = Y)Yl

results in
Paa = {alp)pla’) = P(a)y~(a’)

Density matrices of near singlet state:

The near-singlet state is a state of partial entanglement and has the state-vector

V0,6lud) — v0,4|duw).

The state-vector leads to the following wave-function:

Yy = 0Juu) Yua = mlud> Yau = _mldu)

As the values are all real, the complex conjugated are identical: ¥, = " etc.

2
The wave function is normalized: 02 + /0.6 + (—v0.4)? + 02 = 1

Y = 0]dd)

Y (a, b) takes the form Y(a,b) = Pyuq + Pgu = Vv0.6|ud) —v0.4|du)
and results in: YVuu =0, Yyg = v0.6, Ygu = —V04, Yuq =0
The density matrix of Alice: Para = 2p ¥ (a,b)y(a’,b)

expanded a, a’ (with * = 1 due to all coefficients being real):
Puy = P (WP, w) + P (u, d)p(u,d) = 0.6
Pua = P (wwPp(d,w) +P*(u, d)p(d,d) =0
pau =¥ (d WP, u) +P*(d, d)Pp(u,d) =0
Paa = Y (d, wWP(d,uw) +¢*(d, d)P(d,d) = 0.4

Alice’s density matrix:

p= (066 0(.)4)

Density matrices, notation for density matrices:

paa = ) (@ bY(a’,b) = ' (@p(a)

Please note the reverse order of indices in p,,, and the product of the wave functions ¥*(a)y(a’).

Density matrices of product state:

The product state is a state of independent subsystems and has a generalized state-vector:

ayPuluu) + ayfqlud) + agfyldu) + agfqldd)

The normalization conditions are a;,a, + agag = 1 and B, L, + Bafa = 1.

The state-vector leads to the following wave-function:

Yuu = ayfyuu) Yua = ayPalud) Yau = agPyldu)

VYaa = aaPaldd)
Yuu = @B Yua = Wba Yau = XaPuw Paa = %aBa

page 87 of 433



Degeneracy - Dual number systems

The density matrix of Alice: Para = 2pW*(a, b)Y(a’, b)
expanded a, a”:
Puu = P (W WP (u,u) +* (u, d)p(u, d) =
BB + @BaauBa = aiay (BaBu + BiBa) = anay
pua = P (wwPp(d,w) +¢P*(w, )y(d, d) =
a,fuaafy + ayfaaafa = ayaq(Buby + Baba) = ayaq
Pau = P (d, W (u,u) +9*(d, d)p(u, d) =
agBactu, + agf gy = agou(Bif, + BBy = aza
paa = Y (d,wWP(d,w) + P (d, d)P(d,d) =
agBudtaf, + agfyaaf, = aiaa(BiB, + ByB,) = aa
Alice’s density matrix:

(aﬂau a;ad)
o Agay,  ayag

We check a) a density matrix must be Hermitian and b) the trace of a density matrix must be 1.

Our density matrix fulfills these conditions: it is Hermitian, a;,a; = (@ja, )" and the trace is 1:
a,ay, + ayag = 1, this is the normalization condition.

Note: the density matrix in case of a product state is independent of Bob’s variables 3.

Density matrices, properties of density matrices:
e Density matrices are Hermitian: p,q, = pasq (Please note the reverse order of indices)
e The trace of a density matrixis 1: Tr(p) = 1
e The eigenvalues of a density matrix are all positive between [0,1]
e For pure states hold:
p? = p meaning the matrix has a single entry “1” on the diagonal
Tr(p?) =1
e For mixed states hold:
p*#p
Tr(p?) # 1
Note: every Hermitian matrix can be diagonalized.

Note: let A, B be two matrices, then Tr(AB) = Tr(BA) even if AB #+ BA.

Density matrices for a single spin:
For a single spin we have the state-vector |) = a|u) + B|d) giving the wave-functions ¥(u) = «,

Y(d) = B and accordingly Y *(u) = a*, Y*(d) = B*.

The density matrix:

(5 50
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Density matrices of singlet state:

The singlet state is a state of maximum entanglement and has the state-vector % (Jud) — |du)).
The state-vector leads to the following wave-function:

1 1
Yoy = 0un) Yua = Elud> Yau = _ﬁldu) Y = 0|dd)

The values are all real, the complex conjugated are identical: 1, = ¥~ etc.

The wave function is normalized: 02 + % + (—=)2+02=1
' V2 V2
Y (a, b) takes the form Y(a,b) =Pug + gy = \/_15 |lud) — % |du)
. 1 1
and results in: Yuu =0, Yyugq = 7 Yoy = ~ 7% Yia=0
The density matrix of Alice: Para = 2p ¥ (a,b)y(a’,b)

expanded a, a’ (with ¥* = 1 due to all coefficients being real):

puu = '(/J*(u, u)lp(u' u) + lp*(u; d)lp(u: d) =

N| -

Pud = lp*(u' u)l,l)(d, u) + lp*(u' d)ll](dr d) =0
Pdu = lp*(d, u)lrb(uv u) + lp*(dr d)ll](u' d) =0

N =

Pdaa = '(l)*(d, u)l,l)(d, u) + lp*(dr d)ll](dr d) =

Alice’s density matrix:

S N e
N| = O

Alice knows nothing about her system, all outcomes are equally likely.

Density matrices, two-spin system and density matrices:
For a single spin (Alice only) we have the state-vector |Y) = a|u) + f|d) giving the wave-functions

Y(u) = a, Y(d) = B and accordingly Y *(u) = a*, Y*(d) = B*.

The density matrix:

= (55 51

For a two-spin system the composite state has a generalized state-vector:
ap|luu) + ay|ud) + az|du) + a,|dd)

The normalization conditions is ajay + a;a, + azas + aza, =1
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The state-vector leads to the following wave-function:
Yuu = aq|un) Yua = azlud) Yau = asldu) Yaq = asldd)
Yuu = a1, Yug = @z, Yau = a3, Yaqg = a4
and
Yuu = 01, Vg = @2, Pau = a3, Paa = a4

The density matrix of Alice: Para = 2p ¥ (a,b)y(a’,b)

expanded a, a’ — note that we are summing over the second index b:
puu =P (W WP w) + Y (w, )Py, d) = aja; + xa,
Pua = ll)*(u, u)l»b(d' u) + ll)*(u, d)l»b(d' d) = aIa3 + aé%
pau =¥ (d, WP, u) +P*(d, DY (u,d) = aza; + aza,
Paa =P (d,WP(d,u) +P*(d, d)P(d,d) = azaz + aya,

Alice’s density matrix:

. (a{al +a;a, ajaz+ a§a4)
T \ajay +aja, ajas+ aza,

This matrix fulfills the properties of a density matrix. The trace of the matrix is aja; + asa, +
azas; + aza, = 1, this is exactly the normalizing condition. The matrix is Hermitian because
(a1as + asa,)" = aqa3 + aay.

Note: in the composite case the density matrix of Alice depends on all four parameters of the state-
vector.

In case of a product state we have two independent subsystems. The state vector is generalized:
ayPyluu) + ayfalud) + agfy|du) + agfqldd)
The normalization conditions:
aha, + ey = 1and Bufy, + fafa = 1
The state-vector leads to the following wave-function:
Yuy = @y Pyluu) Yua = ayPalud) Yay = aqfyldu) Yaa = aqPfaldd)
Yuu = APy Yua = wBa Yau = %aPu Yaa = AaBa

The density matrix of Alice:

Paa = ) W' (@,bp(a’b)
expanded a, a’— note that we are summing over the second index b:
Puu = Y (wwWPw,w) +*(u, d)yp(u, d) =
O BuauBu + auBatuBa = @y (Bubu + Baba) = anay
Pua = Y (w,wp(d,u) +Y*(u,d)yp(d,d) =

PPy + ayBaagBa = ayaq(Buby + Baba) = ayaq
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pay = Y (d, WP, uw) +¢*(d, DYP(u,d) =

agBactu, + agB by = agou(BiB, + ByB,) = azat
paa = " (d,W(d,uw) +P*(d, d)p(d,d) =

agBadtaB, + agByaaB, = azaa(BiB, + ByB,) = aiaa

This gives Alice’s density matrix:

(aﬂau aﬂ“d)
p= a:tau azq

We check a) a density matrix must be Hermitian and b) the trace of a density matrix must be 1.

Our density matrix fulfills these conditions: it is Hermitian, a;,a; = (@za, )" and the trace is 1:
a,ay, + ayag = 1, this is the normalization condition.

Note: the density matrix in the case of a product state is independent of Bob’s variables £.

Density matrices test for entanglement:

To calculate correlations, you have to know about both Bob’s part and Alice’s part of the system,
along with the system wave function. But there is another test for entanglement that only requires to
know Alice’s or Bob’s matrix. Suppose the state |i) is a product state of Bob’s factor |8) and Alice’s
factor |[9). Then the composite wave function also is product of Bob’s factor and Alice’s factor:

Y(a,b) =9(a)6(b)

Alice’s density matrix:
para =9 (@)0(a) ) 6°(D)6D)

As the state |y) is a product state of Bob’s factor |#) and Alice’s factor |9), both Alice’s and Bob’s
state separately are normalized, so:

Z 0" (b)a(b) = 1
b

Alice’s density matrix becomes p,,, = 9*(a)9(a’).

We prove a theorem: for product states the density matrix of Alice or Bob has exactly one eigenvalue
of value one.

The eigenvalue equation for Alice’s matrix pg,q:

Z Pa'qla = A0g =
Zaﬁ*(a)ﬁ(a’)aa - ﬁ(a’)zaﬁ*(a)aa

Yo 9" (a)a, has the form of an inner product. If the column vector « is orthogonal to 9, then
Y. 9" (@)a, is zero giving an eigenvector with eigenvalue zero.

In a space state of dimension N we have N — 1 vectors orthogonal to 9, so we have only one
possible direction for an eigenvector with nonzero eigenvalue 9(a):

9" (a)a, = 0foralla, # 9(a) and 1 for a, = 9(a).
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Alice’s system is in a pure state, all of her observations are described as if Bob never existed.

In a maximally entangled system on the other hand Alice’s density matrix is proportional to the unit
- . 1
matrix with all equal eigenvalues I

1

Pa’'a = N‘S

a'a
As the density matrix gives the probability for an outcome this means that every outcome has equal

possibility.

For partial entanglement the weights of p,,7, move from the equal distribution towards a
concentration on a single value 1 on the diagonal of the density matrix.

Although in a maximum entangled state Alice can’t predict the outcome of her experiments, she
knows (after the experiment has been done) exactly about the relation between her and Bob’s
outcomes.

Determinism

Determinism in classical physics:
In classical physics, the space of states is a mathematical set, the logic is Boolean, and the evolution
of states over time is deterministic and reversible.

An alternative formulation: information is never lost. If two identical isolated systems start out in
different states, they stay in different states and formerly were in different states. If two identical
isolated systems start out in identical states, they stay in identical states and formerly were in
identical states.

A third formulation: classical physics allows to predict the results of experiments.

A fourth formulation: in classical physics there is no difference between states and measurements.

Determinism in quantum mechanics:
Quantum evolution of states allows to predict the probabilities of later measurements.

In quantum mechanics we get statistical expectation values.

Differentiation operator:
The differentiation operator D applied to a wave function 1 (x):

dy(x)
dx

Dy(x) =
The differentiation operator D is a linear operator but not a Hermitian operator (it is anti-Hermitian).

Dimensions:

We throw a dice — the result will be a number between one and six.
We are interested only in the result.

The dice shows any number, e.g. the two. We throw the dice — it shows e.g. the five.
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The mathematical model to describe this immediate transition is the model of a vector space. We
can do the transit from two to five in one step without the need to go theroute2 -1 -2 -3 —
4 — 5 or something like this. It is a kind of random access as used in the memory of a computer.

The vector space for this model has 6 dimensions.

The same holds for a pair of dice. All possible results from 1,1 to 6,6 can be accessed randomly, so
we describe it best by a vector space of 36 dimensions.

This model gives us the advantage to use all properties of a vector space, especially that of
orthogonality and the use of matrices.

Note: in the beginning, especially with the model of spins, this can be confusing. The space of states
of the spin is two-dimensional, it can be up or down or anything in between. The conditions up and
down are mutually exclusive — orthogonal, the spatial directions itself are not.

Dirac, Paul:
1.

Dirac invented the bra-ket notation for the expectation value of an observable L:
DEPWHIH
i

The expectation value is a sum weighted with the Probability function P.
2.

Dirac formulated the structural connection between classical mechanics and quantum mechanics in
respect to commutators [F, G| and Poisson brackets {F, G}:

[F,G] & ih{F,G}
Especially if we replace G by the Hamiltonian H:

[F,H] & ih{F,H}
which leads to

dF
—={F,H
——={F,}

3.

Dirac established the theoretical basis for antiparticles.

Dirac delta functions:

The transition from discrete functions to continuous functions requires the Kronecker delta function
to be replaced by an appropriate function that works with integrals.

Remember the Kronecker delta. Let F; be a vector in a discrete, finite dimensional space:

Zi,j(%"})

gives F; because §;; is nonzero only for i = j.
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In the integration concept the Dirac delta function performs Vi)
the same: 6 (x — x") is something that returns zero for all
x # x" and "®" for x = x'.

With this:

f 8(x — xo) F(X)dx = £(xo)

Note: the Dirac delta function can be thought of as

lim ne‘("(x‘xo))z.

n—oo

Example: let X be the position operator in a one-dimensional vector space,
e.g. the x-axis. The position operator should give back the position of a particle:

X)) = xolYp)
In terms of wave function this becomes:
xh(x) = xo9p(x)
We rewrite this:
(x —x0)p(x) =0
The property of the Dirac delta function is to be zero on every x # x, and to be nonzero at x = x,.
The wave function Y (x) = §(x — x,) represent the state in which the particle is located exactly at

the point xy on the x-axis.

Dirac, bracket notation:
Dirac invented the bra-ket notation for the expectation value of an observable L:

1) =) 4PG)
i
The expectation value follows statistics, it is a sum weighted with the Probability function P.

Example:

We begin with a spin A oriented along 7 and confirm that measuring of o gives +1 (fixing that spin A
is oriented in this direction).

Then subsequent measurements in direction 71 with unchanged spin A gives the statistical result
(A) = m - 1. To a certain degree, averages of quantum measurements follow the laws of classical
physics.

Distributive property:
This is part of axioms of vector addition:
7. Distributive property:

z{|A) + |B)} = z|A) + z|B)
{z + w}|A) = z|A) + w|A)
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Dot product:
1.

Analogous to the dot product for spatial 3-vectors is the inner product of bra (B| and ket |A), written
as (B|A). The axioms for the inner product:

1. Linearity:
(CI{14) + |B)} = (C|A) + (C|B)
2. Complex conjugation:
(B|A) = (A|B)*
3. Reality:
(AlA) e R

In concrete representation by row and column vectors, the inner product is defined in terms of
components.

al Bl
14y = 2 ) (Al =Gai s a3 i), 18) = | 2 | <B1 =81 63 5 )
Ay Ba
a
(BlAY = (5 B B3 ) | o | = Bic + B3 + Bias + Bie
27
By
(A1B) = (@i @ @ | 7 | = aifs + ashy + ashs + @iy
By

For complex values this gives (A|B) # (B|A) and (B|A) = (A|B)". For real values (A|B) = (B|A).
If the inner product (4]|A) = 1, then the vector is normalized.

If the inner product (4|B) = 0, then |A) and |B) are orthogonal.

2.

The Cauchy-Schwarz inequality states that, given any two vectors X and 17, the product of their
lengths is greater than or equal to their dot product:
[X][¥] = [X -]

Squared this is called the Cauchy-Schwarz inequality:

3.

In a two-spin system of Alice and Bob both can measure their spin with individual apparatuses, Alice
measuring ¢, Bob measuring 7. Quantum mechanics insists that some kind of apparatus can be build
that measures the observable 6 - T = 0,7, + gy Ty + 0,T,. As Alice and Bob cannot simultaneously
measure the individual components of their spin, because they do not commute, the observable - 7
is not accessible for them.
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Example: some atoms have spins that are described in the same way as electron spins. When two of
these atoms are close to each other — for example, two neighboring atoms in a crystal lattice — the
Hamiltonian will depend on the spins. In some situations, the neighboring spins’ Hamiltonian is
proportional to g - 7. If that happens to be the case, then measuring ¢ - T is equivalent to measuring
the energy of the atomic pair, a single measurement of the composite operator without measuring
its components.

Down state:

1), the basis vector for the down-state |d) is (0)

The basis vector for the up-state |u) is (0 1

Dual number systems:
Every complex number z has a complex conjugate z*:

z=x+iy » z"=x—1y

zi=r-e 5 z*=p.g7

Every complex conjugate is itself a complex number, but it is often helpful to think of z and z* as
belonging to separate “dual” number system. Dual here means that for every z there is a unique z*
and vice versa.
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Eigen-equation for momentum:

. . N ., d
Let P be the momentum operator, defined in terms of the derivation operator: P = —lﬁa .The

"minus i" is necessary to make the operator P Hermitian.

The eigen-equation in abstract vector notation is:

Ply) =pl)
with p as an eigenvalue of P. We can write the eigen-equation as:
, dp(x)
PI) = —ih———= = py(x)
or
dip(x) _ip
P gll)(x)

This is a differential equation with a solution of the form:

Yp() = Ac T

The subscript p is a reminder that ¥, (x) is eigenvector of P with the specific eigenvalue p. It is a
function of x, but labeled by an eigenvalue of P.

Eigenfunctions of position operator:
Let X be the position operator. We can write the eigen-equation as:
X[Y) = xol¥)

In terms of wave functions:

xp(x) = xop(x)
We rewrite the equation:

(x —x0)p(x) =0

The properties of Y (x): P (x) must be zero for all x # x; and can be anything for x = x,. This is the
property of the Dirac delta function:

P(): = 8(x = xo)

Y (x) is eigenfunction of the position operator X with eigenvalue x,:

xP(x) = x8(x — x¢) = %08 (x — xp) = %P (x)

Note: for discrete vector spaces it would be sufficient for §(x — x) to be 1 at x = x,, the Dirac delta
function thus becoming the Kronecker §.

For continuous functions “one wouldn’t be enough”. The Dirac delta function can be approximated

by lim ne_(”(x_xo))z.

n—oo

page 97 of 433



Eigen-equation for momentum - Experiments, apparatus and two state system

Eigenfunctions, symmetric and antisymmetric:

A real function is called symmetric, if f(x) = f(—x). Itis antisymmetric, if f(x) = —f(—x). The
picture below shows eigenfunctions for the lower states of the harmonic oscillator. Functions for
even numbers are symmetric, functions for odd numbers are antisymmetric.

Ey W Picture courtesy AllenMcC. CC BY-SA 3.0,
ho _ - https://commons.wikimedia.org/w/index
hov2 X .php?curid=11623546

- . S . -

Eigenfunctions for energy levels of harmonic oscillator:

_w,2
If we apply the raising operator a* := (P + iwX) to the ground-state wave function, e 22" , we get
the first energy level:

Y1(x) = (P + iwX)Py(x) =

A w2 2Xw W2 _W .2
(—lh—+ lwx)e 2" =jh——e 2" +iwxe 28" =
0x 2h
Yo(x)(iwx + iwx) = 2iwxyy(x)
Y (x) = 2iwxpy(x)

Applying the raising operator to 1, (x), omitting the factor 2iw we get:

Wy () = (P + iwX)y (x) = (—ih:—x + iwx) Xy (x) =

0 _ﬂxz
(—ih— + ia)x) xe 2" =
0x

—ih (1/)0(x) +x(=2) ¢0(x)> + iwx?h(x) =
Yo () (—ih — ix(—xw)) + iwx?Po(x) =
Yo () (—ih + iwx? + iwx?) =
Yo (x)(—ih + 2iwx?) =
iPo(x)(—h + 2wx?)
Y2 ()~ () (—h + 2wx?)

The important pattern we see here is, that each eigenfunction is a polynomial in x of increasing
degree. This explains why successive eigenfunctions alternate between being symmetric and
antisymmetric.

Note: the polynomials in this sequence are the Hermite polynomials.
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Eigenstate, collapse of wave function and eigenstate:

Experimental physics is measuring observables. Even if we know the state-vector exactly, we don’t
know the result of any given measurement although the state-vector evolves in a perfectly definite
way, according to the Schrédinger equation.

Explicit: suppose the state vector just before the measurement of L is:

Z a;14;)

]

2 . .
, the apparatus measures value A; and leaves the system in a single

Randomly, with probability |a]-
eigenstate of L, namely |/1j). The entire superposition of states collapses to a single term.

Eigenvalues:
1.

In general, if a linear operator acts on a vector, it will change the direction of the vector. But for
particular linear operators M there will be certain vectors |1) whose directions are the same after the
action. These special vectors are called eigenvectors, and they will be multiplied by a factor A, the
eigenvalue:

M|A) = A|A)

Note: A is a real or complex value, |A) is a vector.

Example: M = (0 _01), 1) = G)

1
ww = )0 =G)=:)
The eigenvalue A in this case is the imaginary unit i.
2.

The possible results of a measurement are the eigenvalues of the operator that represents the
observable, usually called 4; with the according eigenvector |/1j).

Eigenvalues of density matrix:
1.

The eigenvalues of a density matrix are all positive and lie between 0 and 1 (a probability density). If
there is an eigenvalue with value 1, all other eigenvalues are 0, the corresponding state being a pure
state. If not — mixed state. This can be used to distinguish between entangled and unentangled
states.

2.

In a product state of Alice and Bob the density matrix of Alice (and analog Bob) depends on the
variables of Alice. Both systems are unentangled (product state), so the density matrix of Alice has
exactly one eigenvalue 1, the rest being zero.
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Explicit:
The density matrix of Alice:

Para =Y (a) P(a')

The eigenvalue equation for the density matrix p of Alice:

D Paratta = Y W @p(a)a, =
@) Y P (@ =

The quantity Y., ¥*(a)a, has the form of an inner product. If the column vector « is orthogonal to
1, the sum becomes zero and so the left side of the equation —we have an eigenvector with
eigenvalue zero.

There is only one possible direction for an eigenvector with nonzero eigenvalue, namely the vector
P(a). Together with the normalizing convention we get, that a,: = ¥ (a) is eigenvector of p with
eigenvalue 1.

Note: the decomposition of the phase-state in eigenvectors of an operator is complete, so all
eigenvectors are orthogonal to each other.

Eigenvalues, energy:
Let H be the Hamilton operator, E; eigenvalues and |Ej> eigenvectors. The equation:

H|E}) = E|E;)

is the time-independent Schrodinger equation. Because H represents energy, E; are the energy
eigenvalues with |Ej) the energy eigenvectors.

Note: you can read this equation in two ways.
a) you put in a particular value of Energy E; and look for the ket-vector |Ej) that solves the equation.

b) you put in an arbitrary value of E;. In general, there will exist no solution, so you can search for
possible energy eigenvalues of the system.

Explicit:

H|yg) = ElYg)

If we compose the Hamiltonian out of the position operator X and the momentum operator P, we
get:

h? 92 1
_7;‘DTEz(x)+§w2lepE(x) = EYg(x)

To solve this equation, we must:

a) Find allowable values of E (the energies) that permit a mathematical solution,
b) Find eigenvectors and possible eigenvalues of the energy.
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The problem is that for every value for E including all complex numbers, there is a solution for this
equation, but most of them makes physical no sense. Physically solutions of the Schrodinger
equation must be normalizable. Y (x) must become zero for x approaching +co.

Eigenvalues of Hermitian operators:
Eigenvalues of Hermitian operators must be real.

Hermitian operators satisfy:
M= Mt
In terms of matrix elements, this can be stated as:
my; = mg;
Flipping a Hermitian matrix about the main diagonal and taking the complex conjugates delivers the
original matrix.

Suppose A and |A) represent an eigenvalue and its corresponding eigenvector of the Hermitian
operator L.

In symbolic style:
L12) = A|14) = (A|L]|2) = (A|2]|2)

Working with the corresponding bra:

@AILT = @
As L is Hermitian:
(AL = (A|A*
We have:
(AL = (A" = (A|L|2) = (4]27]|2)
It follows:

(A = QA" |A) » 2 =2
A = A" requests A being real.

Eigenvalues of operators:
1. Operators are used to calculate eigenvalues and eigenvectors.
2. Operators act on state-vectors, not on actual physical system.
3. If an operator acts on a state-vector, it produces a new state vector.

Note: measuring an observable is not always the same as operating with the corresponding operator
on the state.

Example: we have a spin is prepared in the right-state |r). This is not an eigenvector of g,.

In the up — down-system we describe |r):

)= —lw) + 1)
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. : : 1 1
We act with the operator o, on this state vector, the result is the state-vector 7 |u) — N |d).

But, a measurement of the spin in the z-axis would either set the spin in this direction or would not
change the spin at all.

Eigenvalues of position:
Prerequisite

The inner product in terms of wave functions:

(W) = f P (00 dx

End prerequisite

If the position of a particle is an observable, there must be a Hermitian operator associated with it.
The “multiply by x” operator X is a suitable candidate.

Xp(x) = xp(x)
The eigen-equation for X is:
X)) = xo[)
In terms of wave functions this becomes:
xp(x) = xop(x)
We rewrite this:
(x —x0)pp(x) = 0
This is the property of the Dirac delta function § (x — x,). The wave function
P(x) = 6(x = xo)

represents the state in which the particle is located exactly at the x, on the x-axis. Every real number
X, is eigenvalue of the operator X. The corresponding eigenvectors (eigenfunctions) are
concentrated at x = Xx,.

Consider the inner product of a state [i) and a position eigenstate |x):
(xo0l1)

We can write this:

+0oo

(xolp) = f xo (X)dx = f xo8(x — xo)dx =

— 00

+00
xo_[ 6(x — xp)dx = x,
We use:

xo = P (x0)

page 102 of 433



quantum-abc

Because this is true for every x,, we can drop the subscript and write:

(x[p) = P(x)

Y (x) is referred to as the wave function in the position representation.

Eigenvalues of spin operator:
The spin operators are gy, g, and 0;:

0= D=0 o= 0)

Eigenvectors of g, are:
1 1 1
n=2)*+ 50 -50)

0= 50505

Both vectors are orthogonal to each other:

1 1,1 1 1 1
<r|z>=ﬁ(11)-ﬁ(_1)=§(11)-(_1)=§(1-1+1-(—1))=o

Note: the bra (r| to the ket |r) is the complex conjugated, but as |r) is real (r*| = (r]|.

We check the eigenvector property:
0 1y 1y 1Too-141-17y_ 101
() = (7 ) ﬁ(l) - \/2(1-1 fo1)= ﬁ(l)
|r) is eigenvector to the operator g, with eigenvalue 1.
(0 1y 1,1y 1 (0-1+1-(—1)>_ 1,1
(=3 o) \/Z(—l) V21400 (-1)) T ﬁ(—l)
|1} is eigenvector to the operator g, with eigenvalue -1.

Eigenvectors of g, are:
) 1 [ 1
|l) :=,12 ((]j)+,llz (2)=112(1)

1 [ 1
o)y =17 (0)- % (1)= 5(_11-)
Both vectors are orthogonal to each other:

(1l0) = = (1 () -iz( D=zacm-(L)-=

2 V2 \-
1 . . 1 =
5(1'1+(—1)'(—1))=§(1+l )=0

Note: (i| is the vector "in".

Note: the bra (i| to the ket |i) is the complex conjugated.
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We check the eigenvector property:

w10= D 50=5(000) =50

i) is eigenvector to the operator gy, with eigenvalue 1.

0 =iy Loy 1/ 01442 \_ 1.1
<"y'0>_(i 0) ﬁ(—i)_ﬁ(i-uo-(—i))_ ﬁ(—i)
|o) is eigenvector to the operator gy with eigenvalue -1.

Eigenvectors of g, are:

Both vectors are orthogonal to each other:

(uld)=(10)-(2)=(1-0+0-1)=0

Note: the bra (u| to the ket |u) is the complex conjugated, but as |u) is real {u*| = (u|.
We check the eigenvector property:
(1 0N (1\_(1-140-0\_ (1
oz lu) = (0 —1) (0) = (0-1 - 1-0) = (0)
|u) is eigenvector to the operator g, with eigenvalue 1.
/1 0\ (0y_(1-040:0y_ (0
{ozld) = (0 _1) (1) - (0-0 _ 1-1) - (1)

|d) is eigenvector to the operator g, with eigenvalue -1.

Eigenvectors:
1.

For particular operators M there will be certain vectors |1) the directions are the same after the
operator acted on them. These vectors are called eigenvectors, normally multiplied by a factor, the
eigenvalue:

M|A) = A|A)
Note: A denotes a number, the eigenvalue, |1) the eigenvector.

Example:
win=( DE)=G1310=-6=30)

1y. . | A
(1) is eigenvector to the operator (2 1) with eigenvalue 3.
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= D()=G11 D=0 =-1(%)

1Yy. . 1 2\ .., .
(_1) is eigenvector to the operator (2 1) with eigenvalue -1.

Eigenvectors form an orthogonal base of the vector space:

()()-1-1-0

For all other vectors this is not valid.

Example:

= (@) =C120=(0)=()
(é) is not an eigenvector to the operator (; i)

Note: eigenvectors and eigenvalues can have complex values.

Example:

= )01 ()
(}) is eigenvector to the operator (2 _01) with eigenvalue —i.
This holds for bra-vectors too:

(AIM = (A|A

Example:

(A|M:=(11)(% i)=((1-1+1-2)+(1-2+1-1))=(33)=3(11)

(11) is eigenvector to the operator (; i) with eigenvalue 3.

Note: switching from ket to bra implies complex conjugation.

Example:
M == (] ) =(@0-i- D+ (=D =i-0) = ((-D(-D) = ~i(1(-))
(1(—1)) is eigenvector to the operator ((1) _01) with eigenvalue —i.

2.

If |A) is the state-vector of a system, and the observable L is measured, the probability to observe
values 4; is:

P(4;) = (A|2;){4;]4)

Note: in P(A;), A; are the eigenvalues of L. In (4|4;) and {(1;|A) we have the eigenvectors in bra and
ket form.
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Eigenvectors of annihilation operator:
Note: annihilation operator and lowering operator are used synonym.

Note: What meant here is the annihilation operator acting on the eigenfunctions of the harmonic
oscillator.

Applying the lowering operator to the ground state of a harmonic oscillator “destroys” it to zero.

Applying the lowering operator to excited energy wave-functions (eigenfunctions) brings up the
wave-function (eigenfunction) of the previous lower energy level.

We begin with the Hamiltonian expressed in terms of the position operator X and the momentum
operator P:

_ P? +w?X?
N 2

Out of this we can extract the annihilation operator:

i i d
a =——(P—iwX =—(—ih——iwx)=
VZa)h( ) V2wh dx
1 d
—(h— + a)x)
2wh\ dx

The annihilation operator applied to the ground state wave-function annihilates it:
a_(l/io(x)) =0
This leads to a differential equation:
(hi + a)x) Yo(x) =0
dx
Solution:

Po(x) = 2

The energy eigenfunctions of a harmonic oscillator (by subsequent applying the raising operator a™)
in ascending order are:

PYo(x) = e_%xz

2 _ﬂxz 2
() = [Toxe T = S ape()
(0 = (~1+2220) et = (<14 2222 ) gy 0
Yy(x) = 7 x“)e = 7 x o (x

Applying the annihilation operator to the first excited energy state ¥, (x):

2w _ﬂxz
a —xe 2h =
h
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1 (h d N ) 2w 2
— - wX —Xe =
2wh dx h
2
di(xe_zﬂ;le)_i_wx e_zﬂ;lxz —.
X

. d —ﬂxz)
T— 3
First part: T (xe 2

wx? 9,2
Second part: =—e 2n”*

Merging:
2 2
w x X
e thz 1 _w_ w_e_zhxz =
h h
sx (] a)x2+a)x2
e e —— —_— ] =
h h
w
e prd

The annihilation operator grades the first excited state down to the ground state.
Eigenvectors of creation operator:
Note: creation operator and raising operator are used synonym.

Note: What meant here is the raising operator acting on the eigenfunctions of the harmonic
oscillator.

Applying the raising operator to the ground state of a harmonic oscillator “raises” it up to the next
level ...and soon ...

We begin with the Hamiltonian expressed in terms of the position operator X and the momentum
operator P:

—i —1 d
+: - P [ X =—(—. _— [ ):
a m( + iwX) Tron Lhdx+lwx

\/Z_Tih(_i) (h;_x_ wx) = \/;—Tlh(h%_ a)x) =
1

The raising operator applied to the ground state wave-function:

a* (o (%)) = Y1 (x)
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The energy eigenfunctions of a harmonic oscillator (by subsequent applying the raising operator a™)
in ascending order are:

Po(x) = e 20"
_ﬂxz 2w
P1(x) = [5—xe 27" = Txlpo(x)
Y,(x) = (—1 +27wx2)e_ﬁx2 = (—1 +wa2)¢0(x)

w
Second part: — wxe 21"

Merging:
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2w

79“/)0(95)

The raising operator raises the ground state to the first excited state.

Eigenvectors of energy:
1.

Matrix representation
The Hamiltonian H represents energy:
H|E;) = Ej|E;)
This is called the time independent Schrodinger equation and works in a specific matrix basis.
Note: Ej is a number, the energy eigenvalue. |Ej) is the corresponding energy eigenvector.
2.
Wave function
Hlpg) = E|Yg)
Again, this is the time independent Schrodinger equation.

The classical Hamiltonian:

1 1
H = EXZ +Ea)2x2

In quantum mechanics we do not have a velocity operator. With the Lagrangian £ we can translate
velocity in momentum:

A
P=5x= "

We rewrite the Hamiltonian:

1 1
H==p2+=w2x2
2p +2a)x

Again, this is a classical Hamiltonian. We turn it into a quantum mechanical equation by
reinterpreting x and p as operators acting on Y (x).

The position operator X multiplies the wave function by x:

X|Ye(x)) = xpg(x)

The momentum operator is the derivative:

0
Plg(x)) - _ihﬁlpE(x)

Both operators operate twice. The position operator is ok, for the momentum operator we get:

0 0 02
(PlpsCOD? ~ —iha<—ihawg(x)> = 12— Pp(x)
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Our quantum Hamiltonian:

2 92 1
Hl|yg) = —7ﬁ1/)5(x) +Ew2lep5(x) = EYp(x)

A solution to this are the energy eigenfunctions:

Po() = 2

1,1)1(95)—\/:953 2R \/:xllfo(x)

Y, (x) —( 1+7x2)e 27 = 1+—x )l/)o(x)

with the according eigenvalues 1, ’27“’ X, (—1 + 27(‘)962),

Eigenvectors of Hermitian operator:
The fundamental theorem:

a) The eigenvectors of a Hermitian operator form a complete set. Any vector the operator can
generate can be expanded as a sum of its eigenvectors.

b) If A, and A, are two unequal eigenvalues of a Hermitian operator, then the corresponding
eigenvectors are orthogonal.

c) Even if two eigenvalues are equal, the corresponding eigenvectors can be chosen to be
orthogonal. This situation is called degeneracy.

Note: the eigenvectors of a Hermitian operator form an orthonormal basis.

Check a)

For the example of the R® we change the basis vectors.

1 1 0
Let <0) ) (1) and (1) be a set of vectors By, B, and B; that form a basis B of R3.

1 0 1
1
0
1 1
0 1
1 0

They are linear independent:

We transform this:

1 1 00 1 0 -10 2 0 00 2 0 00 2 0 00
0 1 10— 01 1/0- 0 1 1/0~ 0 1 110~ 0 1 0|0
1 0 10 1 0 10 1 0 10 0 0 10 0 0 10

The only solution to thisisa=b=c=0.
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The linear independent vectors define a matrix P, a linear map:

1 1 0
P=({0 1 1
1 0 1

X1
Let <xz) be a vector with respect to this basis B: x = x;B; + x,B; + x3B3.
X3

X1 1 0 0
Then P <x2> give the coordinates of X in the canonical basis E;, E; and E5: (0) , (1) and (0)
X3 0 0 1
X1 1 1 0\ /% Xt X
PlX2 =10 1 1]|[X2]=|x2+x3
X3 1 0 1/\x3 X1+ X3

-
-
-6

To get this the other way around we must find the inverse matrix P

110\, /1 00
(o 1 1>|<0 1 0)
101/ \o o0 1
1 1 0y, /1 0 0
<0 i 1>|<0 1 o)
0 -1 10 1

Check:

OFRr kR OFRFR ORFF
—_ O Rk RO
\_/v
/\/_\
\_/v
/\/\
_m, O OR R ROR
~—

110 0 0
(0 1 1)| 1 0)
00 2 11
/ 1 1 1 \
10 2 T2 2
0 1 | 1 1 _l line 3 divided by 2
0 0 2 2 2
1011
1 1 1
2 2 2
10 1 1 1
01 ' 2 2 2
00 \ 1 1 1 /
2 2 2
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(1 )
2—1 1 1

Applied to the linear independent vectors By, B, and Bj this gives the canonical basis E;, E; and Ej.

The inverse matrix P~1:

Check:
1 1/1 -1 1\/1 2 1
P‘10=§1 1 -1]lo)==l0]|=][0
1 -1 1 1/\1 0 0
1 1/1 -1 1\/1 0 0
P-11=§1 1 —-1ll1]==(2])=(1
0 -1 1 1/\0 0 0
0y 1/1 -1 1)\/0 1/0
P‘11=§1 1 -1){1)=5l0]={0
1 -1 1 1/\1 2 1
Check b)

According to the definition of eigenvectors and eigenvalues, we can write:
L|/11> = /11|/11)
L|Az) = Az]43)

Note: 4; is an eigenvalue, a number. |4;) is an eigenvector. L is a Hermitian operator, we can switch
from ket to bra in the first equation without modification:

(A1|L = /11</11|
We have:
</11|L = /11(/11|
L|Az) = A2142) = [22)4;

We form the inner product of the first equation with |A,) and the inner product of the second
equation with (44 ]:

(A1|L|22) = A1(A1]12)
(A1|L|22) = (11122022 = 25(A41|13)
The left side of both equations is identic, so we get:
A1{A1122) = 22{A1|42)
It follows:
A1{A1122) — 2221 |22) = 0
(A —22)(A4142) =0

If the eigenvalues 4, and A, are different, the inner product {1, |1,) must be zero.
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Check c)

Even if two eigenvalues are equal, the corresponding eigenvectors can be chosen to be orthogonal.

This situation is called degeneracy. Again, we write
L|/11> = A1)
L|Az) = Az]43)

with 4; = 1, := A but |[4;) # |1,). We choose a linear combination of both eigenvectors:

|4) = ald1) + BlAz)

We apply the operator L on both sides:

L|A) = La|A1) + LB|A2) = aL|A) + BL|Az) =
ak|dq) + BAAz) = Aa|Ay) + BlA2))

Result: any linear combination of both eigenvectors is eigenvector again.

Out of two non-parallel vectors we can construct a pair of orthonormal vectors by the Gram-Schmidt

procedure (not shown here).

Eigenvectors of momentum:

The momentum operator in quantum mechanics is called P, it is defined in terms of the operator

—ihD:

P = —ihD = —ih o
T T

Note: the factor —i is necessary to make the operator Hermitian, the factor # is needed to be

dimensional correct.

In terms of wave functions:

dy(x)
dx

P(y(x)) = —ih

In terms of vector notation:
PlY) =plyp)
Note: P is the momentum operator, p an eigenvalue of P.

We combine both equations:

dip(x)
dx

—ih = pyp(x)
We get:

dp(x) _ p_
dx — —ih

Y = ()

This is a differential equation with the solution:

1 ipx
Yp(x) = Ee h
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It represents the momentum eigenvector (eigenfunction) in the position basis. It is a function of x.

1 . L
The factor —=is result of normalization.
V2T

Eigenvectors of operators:
a) Operators are the objects we use to calculate eigenvalues and eigenvectors.
b) Operators act on state-vectors, not on real physical systems.
c) Operators acting on state-vectors produce new state-vectors.
d) If the new state-vectors are the old ones, multiplied by a constant, they are called
eigenvectors, the constant called eigenvalue.

Eigenvectors of position:
Prerequisite

|x) is an eigenvector of position.

The inner product in terms of wave functions:

+ 00

Wloy= [ ¥ ()6(x)dx

End prerequisite

If the position of a particle is an observable, there must be a Hermitian operator associated with it.
The “multiply by x” operator X is a suitable candidate.

Xp(x) = xp(x)

The eigen-equation for X is:
X[Y) = xolh)

In terms of wave functions this becomes:

xp(x) = x(x)
We rewrite this:

(x —x0)p(x) =0
This is the property of the Dirac delta function & (x — x;).
The wave function

P(x) = 6(x —x0)
represents the state in which the particle is located x, on the x-axis.

Every real number x, is eigenvalue of the operator X because it is a potential candidate for a position
on the x-axis.

The corresponding eigenvectors (eigenfunctions) are infinitely concentrated at x = x,.

Consider the inner product of a state [i) and a position eigenstate (eigenvector) |x;):

(xol¥)
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We can write:

400

(xolih) = f xo (0)dx = f x68(x — xg)dx =

—00

+00
xof 6(x — xp)dx = x,

and
xo = P(xo)
Because this is true for every x,, we can drop the subscript and write:
(xl) =p(x)

The wave function Y (x) of a particle moving in the x-direction is the projection of a state-vector [i)
onto the eigenvectors of position |x). ¥/(x) is referred to as the wave function in the position
representation.

Eigenvectors of projection operator:
The outer product of a normalized ket with its corresponding bra is called a projection operator:

W)Wl

A projection operator acting on another vector |A):

(XD 14) = ) ((plA)

As (1| A) is a number, the result is a vector proportional to |).
A projection operator projects a vector |A) onto the direction defined by |).
Properties of projection operators:

- Projection operators are Hermitian
- The vector |y) is eigenvector to its projection operator with eigenvalue 1:

(XD 1Ap) = [) (DlY)) = [)

- Any vector orthogonal to [i) is eigenvector to (Jy)(y]) with eigenvalue 0.
- The square of a projection vector is the same as the projection operator itself:

(pXwD? = (¥X¥D

- If we add all the projection operators for a basis system, we obtain the identity operator:

Zw»«m =1

Tr )yl =1

- The expectation value of any observable L in state |y) is given by:

(WILIY) = Tr [Y) | L

- The trace of a projection operator is 1:
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We check the last property:
TrBIIL = ) WILINIY)

Using
> 1wl =1

we get:

> @ILINI) = WILIp)

Eigenvectors, simultaneous eigenvectors:

In complex systems, we may have multiple observables that are compatible, their values can be
known (exactly) simultaneously. Example: a composite system of two independent spins. We can
measure each spin separately and associate these measurements with two different operators,
called L and M.

If we measure both spins in a two spin (composite) system, the system changes into a state that is
simultaneously eigenvector of L and eigenvector of M, a simultaneous eigenvector of the operators
L and M.

Example:

We have an operator L and an operator M. There is a basis of state-vectors |/1i,,uj) that are
simultaneous eigenvectors of both observables. The eigenvalues A; belong to operator L, the
eigenvalues u; belong to operator M with the subscripts running over all possible outcomes of
measurements of L and M:

LI, pj) = Al 1)
M4, 1) = w1l A 1)
For better readability we omit the subscripts and write:
L|A, u) = A|A, 1)
M|, 1) = p|A, 1)
In order to have a basis of simultaneous eigenvectors, the operators L and M must commute:
LM|A, ) = Lu|A, u) = Au|d, u) = pA|A, u) = MA|A, u) = ML|A, )
LM|A, pu) = ML|A, p)
LM|A,u) — ML|A,u) =0
With the commutator:
[L,M] =LM — ML
we can write
[L,M]|A4,u) =0

Note: “0” means the zero-vector |0).
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Eigenvectors of spin operator:
Note: the names up-down, left-right, in-out refer to the spatial arrangement:

Z up-down

Y in-out

X
right-left

Note: the ordering z, y and x is due to the fact that we chose up-down as starting point, so the other
pairs are derived from this.

The three spin operators (Pauli-matrices) are oy, gy, 9,

Iz = (é —01)
Iy = (? _ol)
%=(1 o)

The up and down state-vectors are |u) and |d), written as state-vectors:

0= (ons )= ()

The in and out state-vectors are |i) and |o0). They are linear superpositions of |u) and |d):
1

ﬁw+im

i) = 7

1 i
lo) = ﬁlm —ﬁld)

Note: |i) is a vector, i the imaginary unit.

Written as state-vectors:
1 ' 1
0=2(0)* () =5 0)

i 1/
=770 =5 )

The right and left state-vectors are |r) and |l). They are linear superpositions of |u) and |d):

) = —=lw) + —=1d)
1=l +

V2 V2

) = = ) - — @)
== |
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Written as state-vectors:
11y, 10 11
Ir) = ﬁ(o) +ﬁ(1) = 6(1)
1.1
11y = Iu) |d) = —
V2 \/_ 7
We check the eigenvector/eigenvalue properties.

For |u) and |d):
oy =(o ) (o) =(127:0)=()
|u) is eigenvector to g, with eigenvalue 1.
oz|d) = (é —01)((1)) - (éﬁgfﬁ’ﬁ}) - (—01) - _((1))
|d) is eigenvector to g, with eigenvalue —1.

For |i) and |o):

- 1 1 i 1
=€ D05 )50

|i) is eigenvector to g, with eigenvalue 1.

_in 1 1 1 = (—i 1,
aylor = (] ol)ﬁ(—li):ﬁ(oi-l1—lo(-il)):ﬁ(il):_

|o) is eigenvector to g, with eigenvalue —1.

51~
VN
|
o
N—

For |r) and |l):
0 11y 1eo-1+1-1y_1n
o) = 3 0)\/5(1) B \/5(1 110017 ﬁ(l)
|r) is eigenvector to g, with eigenvalue 1.

1 1 . C(— 1, 1
7l = (} é)ﬁ(_ll) = ﬁ(o i) = 5 =-5)
|l) is eigenvector to o, with eigenvalue —1.

Einstein, Albert:

Einstein realized, in accepting quantum mechanics we are radically leaving the classical view. It
seems that in quantum mechanics, we can know everything about some composite systems —
everything there is to know — and still know nothing about their constituent parts. This weirdness of
entanglement disturbed him, together with the “spooky action at a distance” that he claimed was
implied by quantum mechanics.

Electric current:

In the context of harmonic oscillator, the electric current in a circuit of low resistance often oscillates
with a characteristic frequency. The mathematics of these circuits is identical to the mathematics of
masses attached to springs.
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Electromagnetic radiation in cavity:
Consider the example of electromagnetic radiation in a
cavity, a region of space bracketed by a pair of perfectly
reflecting mirrors that keep the radiation bouncing endlessly back and forth.

There is only one important number associated with a harmonic oscillator, its frequency and the
corresponding wavelength:

_27‘[C
=77

In classical physics, the frequency is just the frequency.

In quantum mechanics, the frequency determines the quantum energy of the oscillator. The energy
contained in waves of length A has to be:

( + 1) h
n —
5 W

The term %hw is the zero-point energy which we ignore here. Then the energy of waves of length 1
becomes:

2mhc

n
A

. . e . 2mh .
The energy of an electromagnetic wave is quantized in indivisible units of HTC These units are called
photons, the quantized unit of energy in a quantum harmonic oscillator.

Electromagnetic waves:

Just like any other wave, a light wave or a radio wave oscillates when it passes you. The same
mathematics that describes the oscillation particle also applies to electromagnetic waves.

Electrons:
1.

Electrons are frequently used as objects of study. Our sensory organs are simply not built to perceive
the motion of an electron. The best we can do is to try to understand electrons and their motion as
mathematical abstractions.

2.

Atoms are collections of nucleons and electrons, each of which could be considered a quantum
system in its own right.

3.

Large masses and smooth potentials characterize the classical limit. A particle with low mass, moving
through an abrupt potential, behaves like a quantum mechanical system. This holds for electrons too.
They behave classically e.g. if you place it between two capacitor plates separated by a centimeter. In
the smooth electric field between them, the electron crosses the gap like a coherent, almost classical
particle. On the other hand, the potential associated with the nucleus of an atom always has a sharp
feature in it. If an electron wave packet hits this potential, it will scatter.
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Electrons, spin of electrons:
1.

Electrons have an extra degree of freedom called its spin.
2.

When a classical spin (a charged rotor) is put into a magnetic field, it has an energy that depends on
its orientation. The energy is proportional to the dot product of the spin and the magnetic field.

3.

Some atoms have spins that are described in the same way as electron spins. When two of these
atoms are close to each other, the Hamiltonian will depend on the spins.

Electrons, wave packets and electrons:

Electrons behave classically e.g. if you place it between two capacitor plates separated by a
centimeter. In the smooth electric field between them, the electron crosses the gap like a classical
particle. On the other hand, the potential associated with the nucleus of an atom always has a sharp
feature in it. If an electron wave packet hits this potential, it will scatter.

Energy:

Composite operator and energy:
Let there be an observable that can be thought of as the dot product of the vector operators of Alice
and Bob, & and T:

0T = 0yTy +0yT, + 0,7,

The observable ¢ - 7 could not be measured because Alice and Bob only can measure one component
at a time. To measure ¢ * T a new apparatus must be built that measures ¢ - T without measuring the
components.

Some atoms have spins that are described in the same way as electron spins. When two of these
atoms are close to each other — for example, two neighboring atoms in a crystal lattice — the
Hamiltonian will depend on the spins. In some situations, the neighboring spins’ Hamiltonian is
proportional to ¢ - 7. If that happens to be the case, then measuring ¢ * T is equivalent to measuring
the energy of the atomic pair. Measuring this energy is a single measurement of the composite
operator and does not entail measuring the individual components of either spin.

Conservation of energy:
The commutator of two operators A4, B is defined as:

[A,B] = AB — BA
Two operators commute if the commutator is O:
[A,B] =AB—BA=0
Every operator commutes with itself:

[A,A] =AA—-AA =0
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If an operator Q commutes with the Hamiltonian H, the expectation values of all functions of Q are
conserved:

[Q,H]=QH—-HQ =0
As the Hamiltonian is the energy of the system, we see that the energy is conserved:
[HLHl]=HH —-HH =0

Creation and annihilation operators and energy:
Note: annihilation operator and lowering operator are used synonym as well as raising operator and
creating operator.

We begin with the Hamiltonian expressed in terms of the position operator X and the momentum
operator P:

_ P?+w?X?

H
2

With complex numbers we can rewrite the sum of squares:
a? + b? = (a — ib)(a + ib)

Applied to the right side of the Hamiltonian equation:

1 1
5 (P +iwX)(P — iwX) = 5 (PP — iwPX + iwXP + 0?XX) =

1
E(P2 + w?X? + iw(XP — PX)) =

P? + w?X?

1,
5 +3 (iw(XP — PX))

We know the value of the commutator [X, P] = XP — PX, it has the value iA.

We write:
1 _ _ P? +w?X? 1
—(P+iwX)(P—iwX) =—+ —(iwih) =
2 2 2
P? + w?X? wh
2 2

2+(L)2X2

The term % (P + iwX)(P — iwX) is smaller than the term PT by — —.

PZ+w?x?
2

If we want to substitute by % (P + iwX)(P — iwX) we must add the correction factor %h and

get the new Hamiltonian:
1 wh
H = E(P + la)X)(P - l(UX) + 7

The two factors (P + iwX) and (P — iwX) are called raising and lowering operator.
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The official definitions are:

—i
at = —— (P + iwX)
V2wh
i
a” =——(P —iwX)
V2wh
The annihilation operator applied to the ground state wave-function annihilates it:
a” (Po(x)) =0

This leads to a differential equation:

d
(ha + a)x)lpo(x) =0
Solution is the ground state:

_W.2
Yo(x) =e 20
The lowering operator acting on a valid energy level of the spectrum of harmonic oscillator energy is

stepping down to the next lower level. Analog the raising operator is stepping upwards.

Frequency and energy:
Prerequisite

If we know the Hamiltonian, the time-dependent Schrédinger equation tells us how the state-vector
of an undisturbed system changes with time:

o) _ . i 0lY) _
hW_ iH|[y) orih o = H|y)

The time-independent Schrodinger equation, written with the Hamiltonian in ket-style:
H|E;) = E;|E;)

The Hamiltonian operator H acting on an energy eigenvector |Ej) delivers the eigenvalue of this
eigenvector Ej.

End prerequisite

Suppose we found all energy eigenvalues E; and the corresponding eigenvectors |Ej). We use that
information to solve the time-dependent Schrédinger equation by the fact that eigenvectors form an
orthonormal basis. We expand the state-vector |i) in that basis:

() = > alE)

J

Since the state-vector [) changes with time and the basis vectors |Ej) do not, it follows that the
coefficients a; must depend on time:

0
5W©) = ) 6OIE)

J
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We feed this back into the time-dependent Schrodinger equation fl% = —iH|y) and get:

R G (O1E) = —iHl)
J

> 4OIE) =~ H)

j

Za](t)|E Hz o (D)|E;)

J

With H|E;) = E;|E;) we build the final result:

Za](t)|E ZEa](t)|E

J

Za](t)lE ZEa,(t)w

J

J

We rearrange this:

As the |Ej) are basis vectors, every coefficient must be zero. For each eigenvalue E; we have the
differential equation:

i
—— E;a(t)

a ) = h

The solution is:
a;(t) = a;j(0)e ™/

. . . . E;
The real part (the result of any measurement must be real) is oscillating with cos(— #t}. Frequency

and energy are connected throughout quantum mechanics.

Harmonic oscillator and energy:
Prerequisite

. . e 1, . 1
The classical oscillator with kinetic energy mez and potential energy Ekxz.

The Lagrangian:
1 1
L= Ea’cz - szxz

The equations of motion for a one-dimensional system:

oL _ d oL
dx  dtox

oL . . .
Note: 72 the canonical momentum conjugate p to x.
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Right side:
doL d .
dtox dt.
Left side:
g—i = —w?x
We get:
¥ =—w?x

End prerequisite

We need the Hamiltonian to find the possible energies of the one-dimensional harmonic oscillator.
The state of a particle moving on a line is represented by a wave function (x).

P* (x)p(x) is the probability density P(x) to find a particle at position x:

P ()P(x) = P(x)

The canonical momentum conjugate to x (classical):

B oL .
P=ox="%

The Hamiltonian for the harmonic oscillator is
H=px—-L

The Lagrangian is kinetic energy minus potential energy.

The Hamiltonian is kinetic energy plus potential energy — the total energy:

1 1
H = EXZ +E(JJ2X2

There is no velocity operator in quantum mechanics, only position x and momentum p. We take the
classical momentum:

oL
P=ox= "

and rewrite the Hamiltonian:
1 1
H=-p*+-w?x?
2P 73

We interpret x and p as operators, defined by their action on ¥ (x). The operator X multiplies the
wave function by the position variable:

X (x)) = xp(x)

The operator P derives:

PRY)) — —ih (o)
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. . I 1 1
We replace p and x in the classical Hamiltonian H = Epz + szxz and get the quantum

Hamiltonian:

Both operators act twice. For the momentum operator we get:

df d d?
PlpGOY? - —ma(—maw(x)> = —R2 ()

Our quantum Hamiltonian:
2 342

HIPGO) = =2 () + 5 022 ()

The Hamiltonian is the energy of the system, the energy of the quantum mechanics harmonic
oscillator:
h? d? 1.,
—7ﬁlp(x) towx Y(x) = EY(x)

. d .. 0 . . . .
Note: instead ofa we should better write P because 1 depends on time. The partial derivative

would indicate that we are describing the system at a fixed time.

Energy of particle with negative momentum:

In general, the energy of a particle with negative momentum is negative, and the energy of a particle
with positive momentum is positive. The problem of negative energy for particles with positive
momentum was solved by Dirac, who used it to establish the theoretical basis for antiparticles.

Energy of photon:
2mhc

E(A) = 1

The shorter the wavelength of a photon, the higher its energy.
Energy eigenvalues and Energy eigenvectors:
1.
Matrix representation
The Hamiltonian H represents energy:
H|E;) = E;|E;)
This is called the time independent Schrodinger equation and works in a specific matrix basis.
Note: Ej is a number, the energy eigenvalue. |Ej) is the corresponding energy eigenvector.
2.

Wave function

HW’E) = EW’E)

Again, this is the time independent Schrodinger equation.
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The classical Hamiltonian:

1 1
H = EXZ +E(1)2X

2

In quantum mechanics we do not have a velocity operator. With the Lagrangian £ we can translate
velocity in momentum:

oL
P=%%~
We rewrite the Hamiltonian:

1 1
H =Ep2 +§a)2x2

Again, this is a classical Hamiltonian. We turn it into a quantum mechanical equation by
reinterpreting x and p as operators acting on Y (x).

The position operator X multiplies the wave function by x:

X|Ye(x)) = xpg(x)

The momentum operator is the derivative:
0
Plg(x)) - —lhalpE(x)
Both operators operate twice. For the momentum operator we get:
) . a 0 ) 92
(Plpe()N* - —lha —lhall)zs(x) =—h WIIJE(X)

Our quantum Hamiltonian:

2 12

1
Hl|yg) = —7ﬁ¢5(x) +Ea)2x21/)5(x) = EYp(x)

A solution to this are the energy eigenfunctions:

PYo(x) = e_%xz

w
Pa () = j;xe o waooo

$o(0) = (- +7x)ezh - 1+—x)wo(x>

with the according eigenvalues 1, ’Zwa, (—1 + Z%xz),
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Energy levels, eigenfunctions for energy levels:

The energy eigenfunctions of a harmonic oscillator in ascending order:

Po(x) = e T

lpz(x)—( 1+—x2)e 2" =( 1+—x )1/)0(x)

I YL (x)
E-
Y (x)
E¢
Es W (x)
- i i - P yr(x)
----- = =N _ ,é‘\ 3 - I e
< g - i
~= ===
E; W, (x)
E, YL (x)
Ex - W, (x)
= | Picture courtesy AllenMcC. CC BY-SA 3.0,
ho N W (%) https://commons.wikimedia.org/w/index
- - 2 .php?curid=11623546
haov/2 X
T 0 boaciias

Energy levels, harmonic oscillators and energy levels:
The quantum Hamiltonian for the harmonic oscillator (time-independent Schrédinger equation):
2 32

1
Hl|yg) = _7ﬁ¢5(x) +E‘U2x2¢5(x) = EYp(x)

To solve this equation, we must find the allowable values of E that permit a mathematical solution,
filter out the solutions that make physically sense and find the eigenvectors and eigenvalues for the
energy.

Physical solutions of the Schrédinger equation must be normalizable.
The solution for the ground state energy eigenfunction is:
_W,2
Po(x) =e 2k

Applying the Hamiltonian to this eigenfunction delivers the eigenvalue:

2 12

1
Hlpo(x)) = _7@1/)0(95) + szlel)o(x) =
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2
Left part of the sum (without the multiplying factor — h?):

2

multiplying the factor — %;

2 \h? h
2
W wh w2
2 —5FX
——X“+—)e 2
Right part:
1 w2
2,2, 55X
—w*x“e 2h
Zw
Merging:

Yo (x) is eigenfunction to the Hamiltonian operator with eigenvalue %

We can rewrite the Hamiltonian in terms of the position operator X and the momentum operator P:

_ P2+ w?X?
2

We write the sum as complex product:

1 wh
H = E(P + la)X)(P - l(UX) +7

2 2y2
Note: %ﬁ is needed because the product % (P + iwX)(P — iwX) does not exactly give ProrX
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The two factors (P + iwX) and (P — iwX) are the raising operator a® and lowering operator a™.
The official definitions are:

—i
at = —=(P + iwX)
V2wh
=P —iwX)
=——P—-iw
V2wh
The lowering operator applied to the ground state wave-function annihilates it:
a_(lpo(x)) =0

The lowering operator applied to any other state produces an eigenvector whose eigenvalue is one
unit lower. Analog the raising operator applied to any state produces an eigenvector whose
eigenvalue is on unit higher.

Entangled states:
Prerequisite

Suppose Alice prepares her spin in state:
aylu) + agld)
Bob prepares his spin in state:
Bulu) + Bald)
As they are separate, each state is normalized:
a, o, +aza; =1
BubBu+ BaBa =1
The product state is combined with the tensor product:
{aulu) + agld}®{By|u) + Bald)}
In composite notation:

ayPuluu) + ayfqlud) + agfyldu) + agfqldd)

As there are two normalizing conditions and two overall phase factors, out of the eight factors «,,
etc. remaining 4 independent parameters — two for every spin system.

End prerequisite
The most general vector in the composite space of states:

wuuluu) + l/)udlud> + l/)duldu> + lpddldd)

In contrast to the product state we have only one normalizing condition:

lpl*tulpuu + lp;dlpud + ¢Ziulpdu + lp:idl/)dd =1

and there is only one overall or global phase to ignore.

Note: global phase means that a state |4) is equivalent to the state e'?|4).
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With this we can conclude that out of the eight factors 1,,,, etc. there remain six independent
parameter.

Obviously, the composite state is richer than the product state — it is an entangled state.

Entanglement:
In classical physics knowing all about a combined state means knowing all about its components.

In quantum mechanics knowing all about an entangled systems not necessarily means knowing all
about its components.

Entanglement, Bells Theorem and entanglement:

The non-locality in quantum mechanics only relates to the specific spin-information of two entangled
spins. A measurement of Alice’s spin cannot be used to instantly transmit any other information to
Bob at great distances, and even Bob will not be able to tell independently whether or not Alice has
measured her spin. So, there is no information travelling faster than the speed of light.

Entanglement, classical entanglement:
If we perform a number of separate measurements g, and gy, in classical physics (always the same
measurement g, and g3,) we can calculate the average of the respective results, (a,) and (gy,).

If the measurements are independent, then (o, ){(d,) = (0,05), the product of the averages of single
measurements will be equal to the average of the product of both measurements.

If this is not the case: (g, )(g},) # (0,03), then there is a correlation between the two measurements,
they are not independent — a kind of classical entanglement. In classical physics this leads to an
investigation to find the cause of the correlation, to search for the missing information.

Entanglement, combining quantum systems:
We use two single spin system of Alice and Bob. The basis vectors in the system of Alice are |u) and
|d), the basic vectors in the system of Bob are |u} and |d}.

If we combine the two systems to one, we write |ab) to label a single basis vector of the combined
system, in our case: |uu), |ud), |du) and |dd). The corresponding bra to |ab) is (a'b’|.

Example: consider a linear operator M acting on the space of states of the composite system of Alice
and Bob. It can be represented as a matrix. The elements of the matrix can be extracted by
sandwiching the operator between the basis vectors:

(a’b'[Mlab) = M1y g

Basis vectors usually are orthonormal, this means that the inner product {(a’b’|ab) gives the
Kronecker delta:

(a,bllab) = 5aa’6bb’

With the basis vectors we can write any state vector in the composite system as:

)= ) (a,b)lab)
a,b

For a product state of Alice and Bob this gives:

) = Y, wuw) + Y(u, d)|ud) + Y(d, w)|du) + Y(d, d)|dd)
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In summa:

The basis vectors in the two-dimensional system of Alice are |u) and |d), the basic vectors in the two-
dimensional system of Bob are |u} and |d}. If we combine the two systems to one, we get a four-
dimensional combined system with basis vectors |uu), |ud), |du) and |dd).

|uu) is one four-dimensional basis vector. The labelling |uu) etc. is chosen to indicate the origin: |uu)
is composed out of |u) Alice and |u} Bob.

Entanglement, composite observables:
We have a two-spin system in an entangled state, the state |sing) := %(lud) — |du)). Alice (¢) and

Bob (1) simultaneously can measure their own observable if the operators commute. In fact, every
component of ¢ commutes with every component of t.

Check:
. _ (1 0 _ (0 1y
We combine operators. g, := (0 _1),Tx = (1 0).
0 1 0 1 01 0 O
nor=(1 2)e(® 1)= 1(; o) 9@ o) (10 0 o)_,
2=\ -1 10 0(0 1) _1(0 1) 0 0 0 -1
1 0 1 0 0O 0 -1 O
1 0 1 0 0 0 1 O
o= (0 He(l 0)- o 2) 1o 2D\ o 0 o -1 s
2T\ o0 0—1_1(1 0)0(1 0)_1000_
0 -1 0 -1 0O -1 0 O
The commutation relation: [A, B] = AB — BA
01 0 0 0O 0 1 0 0 0 0 -1
ap=[10 0 offo 0o 0o -1)_[0 01 0
0 0 0 —-1Jl1T 0 0 O 0 1.0 O
0 0 -1 0 0 -1 0 0 -1 0 0 O
0 0 1 o0 01 0 O 0 0 0 -1
BA = 0 0 0 -1)f1t 0 0 O)_(O0 01 O
1 0 0 O 0o 0 0 -1 0O 1 0 O
0 -1 0 O 0 0 -1 O -1 0 0 O
AB = BA, the operators commute, [4, B] = 0.
We try this explicit.
1 0 0 0
. 0 1 0 0
The basis vectors for the states |uu), |ud), |du) and |dd) are olloll1 and 0
0 0 0 1
) 1
The state|sing) = TE(|ud) — |du)):
0 0 0
|sing) :=i L_[0 =i 1
NARK 1 VZ\ -1
0 0 0
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We apply operator A to the state |sing):

0 1 0 0 0 1
1o o0 oflf1])_{(o0
0 0 0 -1/y2\-1 0
0 0 -1 0 0 1
Then we apply operator B to the result:
0O 0 1 o0 1 0
0 0 0o —-1)1fo)_1[-1
1 0 0 0 [y210 NARR!
0 -1 0 O 1 0

We see that |sing) is eigenvector to the observable ag,7, or 7,0, with eigenvalue —1.

Alice and Bob can measure any component of their spin and get opposite results because |sing) is
eigenvector to both with eigenvalue —1.

This has no classical analog.

What Alice and Bob are not able to do is: measure the dot-product ¢ - 7 == 0,7, + 0yTy + 0,7,. They
are not able to measure simultaneously even two components of the sum, because they (the
operators for this) do not commute.

Entanglement, correlation test for entanglement:
The correlation between two observables A and B is defined in terms of average values:

C(A,B) = (AB) — (AXB)

The expectation value of the product minus the product of the expectation values. If C(4,B) # 0
then A and B are correlated and the state is entangled.

Correlation lie in the range —1, +1. The greater the magnitude of C(4, B), the more entangled. If
C(A,B) = 0, there is no correlation and no entanglement.

Entanglement, density matrices and entanglement:
The state of a composite system can be absolutely pure (~single state), but each of its constituents
must be described by a mixed state.

We take a system composed of two part, A and B. We suppose that Alice has complete knowledge of
the state of the combined system, she knows the wave function ¥ (a, b). Alice is interested only in
system A and wants to have complete knowledge about system A. She selects an observable L that
belongs to A and does nothing to B when it acts. The rule for calculating the expectation value of L:

L= D P @by ayb(ab)
ab,arbr

The observable L was chosen to act on A only and let B unchanged, so it acts trivially on the b-index
(it leaves b unchanged, so b’ = b and the sum over the b separable):

D)= ) W @b)Lgrah(@b) = ) Lyg ) ¥ (@b)p(ab)

a,b,ar a,ar b
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The sum
> ' @byp(ab) = poa
b

gives the density matrix in the combined system.

(L) = Z La',a Pa,ar

a,al

With this we can write:

the expectation value of a mixed state.

Note: in Y., Y™ (a’'b)y(ab) = pgq in the right-hand index of p, 4, the index a’ belongs to the
complex conjugate vector Y*(a’b). This is a consequence of our convention L,,, = {(a|L|a’) for
labeling the matrix elements of an operator L.

Applying this convention to
p = [YXY|
results in:
Paar = (alPpXPla’) = P(a)y*(a’)
A concrete example for this.
Let L be an observable of Alice’s system. L can be represented as a matrix:
Ly ap = (a'b'|L|ab)

L shall be an Alice-observable meaning it does nothing to Bob’s subsystem, so any elements of L that
could have an effect to Bob’s system must be filtered out by setting it to zero. This L gets the special
form:

La’b’,ab = La’a®6blb
The expectation value of (L) = (Y|L|Y) = Xgp.a'p P (@, D) Lgip apP(a, b)

Because of b’ = b:

(L) = @IL) = ) W' (@ DLaab(@b) = ) ' @bW(@,Dloe =

a’,b,a a’,b,a

> v @b@b) Lo

an,a b

The quantity
Z Y*(a,b)y(a’,b) = pgiq
b

is the density matrix of Alice.

We get the expectation value of L (the 2 X 2 version):

(L) = 2 Parala,ar

ara
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i - L L
Consider the state-vector |) = O|uu) + NG lud) + 7% |du) + 0|dd).

The values of Y (a, b) are:

1 1
Y(,u) =0,9u,d) = ﬁ,t,b(d, u) = ﬁ,lp(d,d) =0

Next, we expand the factors in the density matrix pg, , = 2 Y™ (a, b)Y (a’, b). Remember that we
are summing over the second index b, the first index a being unchanged:

1 1 1
Puu =1l) (u;u)w(u;u) +l.b (qu)lp(u'd) = 00+ﬁﬁ=§
Pua = l/)*(d' U.)l/J(u, U.) + l/)*(d! d)lp(u: d) =0
Pdu = w*(u' u)lp(d; u) + w*(u' d)ll’(d: d) =0

1
Pdaa = ll)*(d, u)l,l)(d, u) + lp*(d' d)lll(d, d) = E

These values are elements of a 2 X 2 matrix:

1/2 0
”z( 0 1/2>

The trace of this density matrix is 1 as it should be for density matrices.

Entanglement, density matrix test for entanglement:
Prerequisite

Suppose the state [i) is a product state of Bob’s factor |8) and Alice’s factor |9). Then the composite
wave function also is product of Bob’s factor and Alice’s factor:

Y(a,b) = 9(a)f(b)

Alice’s density matrix:

para = 9*(@)0(a’) Zbe*(b)e(, b)

As the state |) is a product state of Bob’s factor |6) and Alice’s factor |9), both Alice’s and Bob’s
state separately are normalized, so:

Z 0* ()0 b) = 1
b

And Alice’s density matrix becomes pg,, = 9*(a)9(a’).
End prerequisite

We prove a theorem about the eigenvalues of Alice’s density matrix that is only true for product
states but not for entangled states and thus can serve to identify them: for product states the density
matrix of Alice or Bob has exactly one eigenvalue of value one.
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The eigenvalue equation for Alice’s matrix pg,q:

Z Pa'ala = Aag =
Zaﬁ*(a)l‘)(a’)aa _ ﬁ(a’)zaﬁ*(a)aa

Yo 9" (a)a, has the form of an inner product. If the column vector « is orthogonal to 19, then
Y. 9" (a@)a, is zero giving an eigenvector with eigenvalue zero.

In a space state of dimension N we have N — 1 vectors orthogonal to 9, so we have only one
possible direction for an eigenvector with nonzero eigenvalue 9(a):

9*(a)a, = 0 foralla, # 9(a) and 1 for a, = 9(a).
Alice’s system is in a pure state, all of her observations are described as if Bob never existed.

In a maximally entangled system on the other hand Alice’s density matrix is proportional to the unit

. . . 1
matrix with all equal eigenvalues I

1
Pa'a = N‘Sa’a

As the density matrix gives the probability for an outcome this means that every outcome has equal
possibility.

For partial entanglement the weights of p,,7, move from the equal distribution towards a
concentration on a single value 1 on the diagonal of the density matrix.

Although in a maximum entangled state Alice can’t predict the outcome of her experiments, she
knows (after the experiment has been done) exactly about the relation between her and Bob’s
outcomes.

Entanglement, locality and entanglement:
The quantum field theorist’s point of view: locality means that it is impossible to send a signal
(information) faster than the speed of light. Quantum mechanics enforces this rule.

We begin with the definition of Alice’s system and Bob’s system in an expanded meaning. The system
of Alice consists of herself, the apparatus she is using, the experimental surrounding etc. The same
holds for Bob and his system.

To easy distinguish between both systems we write the basis kets of Alice |a), the basis kets of Bob
|b). |a) and |b) describe everything that Alice and Bob can interact with.

The tensor product states |ab) describe the combination of Alice’s and Bob’s world.
The Alice-Bob wave function is:

Y (ab)

Alice’s complete description of her system (apparatus, herself, ...) is contained in her density matrix
p:

Par = ) V" (@bYp(ab)
b
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Note: the index is b, because in the product states both states are independent, in summing up over
b we get all transitions aa’.

Consider this question: Can Bob do anything to instantly change Alice’s density matrix?

All Bob can do are things that follow the laws of quantum mechanics. In particular, Bob’s evolution
must be unitary, it must be described by a unitary matrix:

Ubp:

The matrix U represents whatever happens to Bob’s system. It acts on the wave function to produce
a hew wave function which we will call the “final” wave function:

Yrinat(@h) = D Upprip(abh)
bl
and the complex conjugate of it:
W i @) = ) 9 @BV
bl
With this we calculate Alice’s new density matrix, using the “final” wave function:

Paar = ) ¥ (@byp(ab) -
b

Z ¥ (@'b)UT iy Upyrip(ab”)
bb’

The product of the two unitary matrices Ut,,, Uy, is the unit matrix 8p,,, meaning all indices
collapsing to b:

Par = ) V" (@bYp(ab)
b

This is exactly the same density matrix. In other words, it is exactly the same it was before U (Bob)
acted. Nothing that happens at Bob’s end has any immediate effect on Alice’s density matrix, even if
Bob’s and Alice’s system are maximally entangled. There is no information transfer.

Note: we can write the complex conjugate with other indexing as
lp*final(a’b) = Z lp*(a’b”)UTbnb
b”
to indicate another sequence in the “b’s”.
This would lead to:
Paar = Z lp*(a,b”)UTbub Ubb’lp(ab,)
b,b’,brr

In this case the product UTb,,b U,y would become the unit matrix &,,,,, and this amounts to a sum
where b" = b’. All b, b’ and b’ build the same set of basis vectors, this collapses to the simple sum
over b.
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Entanglement of near singlet state:
The near-singlet state stands for partial entanglement with the state-vector:

J0,6ud) — /0,4|du)

It has some information about the composite system and some about each subsystem —incomplete
in each case.

Entanglement, observables and entanglement:

For a product space holds, that for any state of a single spin, there is some direction for which the
spin is +1. This meets our expectations in a way that the spin must have exactly one direction, even
if we do not know it.

This means that the expectation values of the components must sum up to 1:
(00)* +(0y)* +{0,)* = 1

This classical expectation does not hold for entangled states, especially not for the entangled state
|sing).
The entangled state |sing) is defined:
Ising) = —
sing) = —
ARG

The expectation value (g,) = (sing|o,|sing)

(lud) — |du))

(0,) = (sing|o,|sing) =

<sing o,

1 _
5 (lud) ~ [du))) =

(Sing| %(lud) + |du))> =

1 1
(ﬁ ((ud| - (dul)) (ﬁ(lud) + Idu))> =

%((udlud) + (ud|du) — (du|ud) — (du|du)) =

1
51+0-0-1)=0

The same result we get for (o,,) and (). Our sum of expectation values:
(0) +(0y,)? + (0,)?

is shrinking to zero. In plain words — we can measure whatever direction we want we don’t find the
spin orientation.

If the expectation value of a component of o is zero, this means that the experimental outcome is
equally likely to be +1 or —1, the outcome is completely uncertain. Even though we know the exact
state-vector |sing), we know nothing about the outcome of any measurement of any component of
either spin.
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Entanglement, process of measurement and entanglement:

In the process of measurement, the apparatus (for measuring etc.) combine with the objects to
measure to a bigger system. For simplicity we chose a single spin system and an apparatus that has
three states: |b} for the initial state, | — 1} and | + 1} as possible results of measurement. Our spin
system has the states |u) up and |d) down.

By use of the tensor product we build a space of states that has six basis vectors |u, b), |u, +1),
lu,—1), 1d,b), |d, +1), |d, —1).

We assume the following sequences.

Apparatus starts in the blank state (as always) and the spin in the up-state. The final spin state shall
be the up-state:

|u, b) = |u, +1).

Apparatus starts in the blank state (as always) and the spin in the down-state. The final spin state
shall be the down-state:

|d,b) = |d,—1).
Looking at the apparatus after the measurements allows telling how the spin was oriented initially.
Let the initial spin more general a |u) + a4|d).
The initial state becomes:
ayl|u, b) + a4ld, b)
a product state completely unentangled.
With this the system evolves to the final state:
aylu, b)Y+ ayld, b) = ayu,+1) + a4ld, —1)

This final state is an entangled state and, if @, = —a,; a maximally entangled state. The
entanglement evolves by unitary evolution of the state-vector.

By looking at the apparatus we can read the spin state — up or down.

We can even calculate the probability of the outcomes: a;,a,, for up and a;a, for down.

Entanglement of product state (classical state):
Given two states, |A) = a,|u) + a4|d) and |B) = B, |u) + f4]d).

Each state is normalized: aja, + agag = 1 and 8,8, + Lafqa =1
The product state describing the system is: |product state) = {a,|u) + a;|d)}®{L,|u) + B4|d)}.
Expanding and switching to composite notation gives:
|product state) = a, [, |uu) + a,Bqlud) + agfy|du) + azB41dd)
This state vector of the combined system is automatically normalized too:

Ay Py + ayfa + agfy + agfy =1

The density matrix A as well as the density matrix B have exactly one nonzero eigenvalue 1, the
eigenvector with this eigenvalue is the wave function of system A resp. B.
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The wave function is factorized: Y¥(a)y(b).

The expectation values are: (g,)* + (0;,)* + (0,)* = 1 and (7,,)* + (1,)* + (1) = 1

The correlation between the two systems is zero: {(g,7,) — (0, ){T,) = 0

The main feature of a product state is that each subsystem behaves independently of the other.

Entanglement of singlet state (maximum entangled):
In case of a two-spin system the maximum entangled state, the singlet state can be written as:
1
|sing) = ﬁ(lwﬂ — |du))
or in the extended form:

) = Loy - L
|sing) = O|luu) + N lud) N |du) + 0|dd)

We have only one normalization condition:
I lp;dlpud + lp;;ulpdu + lpgdlpdd =1
in this case reducing to:
lp;dlpud + lpc*iulpdu =1

The density matrix A as well as the density matrix B is a diagonal matrix with equal values that sum
up to one, hence each outcome is equally likely.

The wave function is not factorized: ¥ (a, b).
The expectation values for each single system are zero:
(0,)% = (0y)? = (0,)? = 0and (1,,)* = (1},)* = (1) = 0.
The expectation values for the combined system are 1:
(0xTx)? = {0y Ty)? = (0,7,)* = 1and (g, T,) = (0yTy) = (0,7,) = —1
The correlation between the two systems is -1:
(0272) = (o {12) = =1

The main feature of an entangled state is that the composite system as a whole is fully characterized
but there is no information about the subsystems.

Entanglement, tests for entanglement:
Note:

Entanglement is the quantum mechanical generalization of correlation. The mathematical
indication:

Suppose we have a probability distribution P(a, b). If the variables are independent (in
guantum mechanics: the two systems are completely uncorrelated), then:

P(a,b) = P(a)P(b)

The probability function P(a, b) factorizes.
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If the variables are not independent (in quantum mechanics: the two systems are partially or
totally entangled), then:

P(a,b) # P(a)P(b)
The probability function P(a, b) does not factorize.
End note

Suppose the state [i) is a product state of Bob’s factor |8) and Alice’s factor |9). Then the composite
wave function also is product of Bob’s factor and Alice’s factor:

Y(a,b) = 9(a)f(b)

Alice’s density matrix:
para = 0" (@)0(@) ) 01O )

As the state |y) is a product state of Bob’s factor |#) and Alice’s factor |9), both Alice’s and Bob’s
state separately are normalized, so

Z 0 ()0 b) = 1
b

and Alice’s density matrix becomes p,,, = 9*(a)9(a’).

We prove a theorem about the eigenvalues of Alice’s density matrix that is only true for product
states but not for entangled states and thus can serve to identify them: for product states the density
matrix of Alice or Bob has exactly one eigenvalue of value one.

The eigenvalue equation for Alice’s matrix pg,q:

Z Pa'ala = A0g =
a
> 9 @da)eg = 9(@) ) 8@
a a
Y. 9" (a)a, has the form of an inner product. If the column vector « is orthogonal to 9, then

Y9 (@), is zero giving an eigenvector with eigenvalue zero.

In a space state of dimension N we have N — 1 vectors orthogonal to 9, so we have only one
possible direction for an eigenvector with nonzero eigenvalue 9(a):

9*(a)a, = 0foralla, # 9(a) and 1 for a, = 9(a).
Alice’s system is in a pure state, all of her observations are described as if Bob never existed.

In a maximally entangled system on the other hand Alice’s density matrix is proportional to the unit

. . 1
matrix with all equal eigenvalues IS

1
Pa'a = Naa’a
As the density matrix gives the probability for an outcome this means that every outcome has equal

possibility.

For partial entanglement the weights of p,, move from the equal distribution towards a
concentration on a single value 1 on the diagonal of the density matrix.
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Entanglement for two spins:

Imagine two spins of Alice and Bob attached two to fixed particles in space. Alice and Bob each have
their own apparatuses A and B they can use independently to prepare and measure spin
components. We name the spins ¢ for Alice and t for Bob:

Oy, 0y, 07 and Ty, Ty, T,
In a basis in which the z components of both spins are specified, the basis vectors are:
|luw), lud), |du), |dd)

The first part of each label represents the state of g, the second part the state of 7. |uu) represents
the state in which both spins are up, |ud) the state with Alice’s spin up, Bob’s spin down etc.

Alice has only a single spin, her density matrix is:
Paar = ¥ (a)P(a)
For the special form of [) = a|u) + B|d) we have:
Y =a, P (w) = a",yP(d) = ,yY*(d) =p”
The density matrix:
a'a a*f
Paar = Bra BB
Suppose we know the wave function of the composite system 1(a, b), but we are only interested in
a (complete) knowledge of Alice’s subsystem.
Let L be an observable of Alice’s system. L can be represented as a matrix:
Loy’ ap = (a'b’|L|ab)
Note: for the composite system, ab is a single index labelling one basis vector.
L shall do nothing to Bob’s system, L must have the form:
Loy’ ab = LaraOpip
No transitions in Bob’s system.

The left side is an element of a 4 X 4 matrix because ab and a’b’ represent each 4 distinct values
uu, ud, du, dd.

The right side also must be an element of a 4 X 4 matrix, it is an element of the tensor product of
two 2 X 2 matrices. One matrix is Lg,4, the other matrix is 8,5, the 2 X 2 identity matrix.

The expectation value of L in the composite system:

WILY) = Y (@b )y (@ b)
a,b,a’,br
With the restriction (L should do nothing on Bob’s system) we can use the L above and get:

WIL) = D" P (@ D) grabyrpb(a,h) =

a,b,a’,br
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D@ DLyai(a,b)

a,b,a’
We concentrate on the index b. If we are summing over b, the term L, plays no role and we get:
z Y*(a,b)y(a’,b) = paas
b

This is a 2 X 2 matrix, the density matrix of Alice. It does not depend on any b-index, it is purely a
function of Alice’s variables a and a’.

We plug the density matrix of Alice into the sum above and get:
WL = (1) = > Lutahaar
a,a’

This is the sum over diagonal elements of a matrix, it is the trace Tr of the matrix Lp, so we can
write:

(LYy=TrLp

Result: to calculate Alice’s density matrix p, we may need the full wave function of the composite
system, including the dependencies on Bob’s variables. Once we know p, we can forget where it
came from, and use it to calculate anything about Alice’s observations.

Example

We can use p to calculate the probability P(a) that Alice’s system will be left in the state a if a
measurement is made.

P(a, b) is the probability that the combined system is in state |ab):

P(a,b) = y*(a,b)(a,b)

Summing over b we get the (total) probability for a:
P(a) = ) " (a,bYp(ab)
b

This is just one diagonal entry in the density matrix:

P(a) = paqa

Euler-Lagrange equations:

In Lagrangian mechanics, according to Hamilton's principle of stationary action, the evolution of a
physical system is described by the solutions to the Euler equation for the action of the system. In
this context Euler equations are usually called Lagrange equations. In classical mechanics, it is
equivalent to Newton's laws of motion, but it has the advantage that it takes the same form in any

system of generalized coordinates, and it is better suited to generalizations.
(https://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation)
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Example:

The length S of a path, defined by f(x):

b b
S= f\/dxz +dy? = f‘/l + (f(x)")?dx
a a
The integrand function is L(x,y,y"). For better readability we use y = f(x) and the general integral:

S = f‘/l + (y')%dx

L=1+u"?
oL 0
dy

oL y'

o 1+ 6)
The Lagrangian equation:

!

d y

S A

dx 1+ (y)?
Solution:

!

y _
V1+ ()2 ¢
y = o/TH G

N2 =21+ () =+ c2()?

o ¢
c2(y)? c2(¥)?
r_ 1
cz  (¥)?
c® ="

y =lc|l>y=c-x+d

Result: a straight line. The straight line is the shortest connection between two points.

Expectation values:
From a mathematical point of view, we have the expectation value of an operator L:

(L= ) 2P@)

This is the standard formula for an average value, a weighted sum, weighted with the probability
function P.
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Alternatively, we can define the average experimental. We do an experiment several times and use
the Laplace formula to determine the probabilities. If the number of experiments is large enough the
experimental results converge to the mathematical results.

Suppose that the normalized state of a quantum system is |A). We expand |A) in the orthonormal

basis of eigenvectors of L:
14) = > i)

2

(4] = Zuaa;*

and

We compute the quantity (A|L|A):
(A|LIA) = (A|L| Xi ai|4:)) = (Al Xy a; L] A;) =
(Al 2 aidil ;) = (Al X aidi| 4y) =

D it 12) = ) ajeididdild) =
i

4

*
Z a; aid;

i
In summa:
(ALY = ) ajad,
i

This has the same form as:
1) =) PQ)A
i

We can identify:

(L) = (A|L|A)
with

P(A) = aja;

This gives a rule to compute averages. Just sandwich the observable between the bra and ket
representations of the state vector.

Change over time in expectation values:
Prerequisite: The Schrodinger equation:

dy(t)  iH
a - R'o

end prerequisite:

Expectation values change with time according to the system change with time. Suppose the state at
time t is represented by ket | (t)) and bra (¥ (t)|.
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The expectation value of the observable L at time t is:

W®ILIY @)

We differentiate:

d . .
ZVOLR®) = OLP@) +YOLP®)

Plugging in the bra and ket versions of Schrodinger’s equation:
BOLW©) + WOL®) = (FoLpo) + pol-Feo) =

(o |t]wo) + (bl Ho) -

Lp©|HLlp©) + (po|H]-fwm) =
<

i
E(ll)(t)l[HL — LH][y (1))
Note: there is no change in time if the operators H and L commute.

Conservation of expectation values:
An observable @ is conserved if it does not change with time (unless the system itself is disturbed).

With the Hamiltonian

dQ i

T _E[Q'H]

we getthati—f = 0if Q and H commutes, [Q, H] = QH — HQ = 0.
From [Q, H] = 0 we can see that [Q2, H] = 0:
[Q? H] = Q*H — HQ* = Q*H + QH —HQ — HQ* =
[Q* H] = Q°H — HQ? = Q*H + QH — (HQ + HQ*) =
QH(Q+1)—-HQQ+1) =
(QH-HQ)Q+1) =0

This holds for all powers of Q, so we can conclude: if Q commutes with the Hamiltonian, the
expectation values of all functions of Q are conserved.

Note: the Hamiltonian itself is a conserved quantity, because [H, H] = 0.

Correlation test for entanglement and expectation values:
Assume Alice with observable A and Bob with observable B. The expectation values (average values)
are (A) and (B).

The correlation C (4, B) between them is defined:
C(A,B) = (AB) — (AXB)

Correlations lie in the range —1; +1. If the correlation C(4, B) # 0, then the states are entangled.
The greater the magnitude of C(A4, B), the more entangled are the states. If C(4, B) = 0 then there
is no entanglement, both states are independent (e.g. in the product state).
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Expectation values for density matrix:

Suppose Alice has prepared a spin using an apparatus oriented along some axis. She gives the spin to
Bob but doesn’t tell him along which axis the apparatus was oriented. Perhaps she gives him some
partial information, such as that the axis was either the z axis or the x-axis. What does Bob do? How
can he use this information to make predictions?

If Alice prepared the spin in the state [i)), then the expectation value of any observable L is

WILIY) = TrlpXyY|L

with Tr being the trace of an operator or a square matrix. The trace of an operator is the sum of its
diagonal elements. The trace of a projection operator is 1.

If Alice prepared the spin in the state |6), then the expectation value of any observable L is
(OIL16) = Tr|oNO|L

If Bob knows nothing, he assumes a 50:50 probability giving an expectation value of {L):

L—1T L1T99L—T1 L199L—
(L) = (3TriwIL + 5 TrioNeIL) = r<(5|w><w| +10)(6 ))—

1 1
Tr ((ijxzm + 5|9><9|)L)

G [VY| + % |9)(9|) is the density matrix p, half the projection operator onto [) plus half the

projection operator onto |8).
[P)| and |0)(0] are square matrices of the same rank.

With this density matrix computing the expectation values becomes:

(L) =Tr(pL)

Note: p is an operator and becomes a matrix when a basis is chosen. Suppose we have the basis |a),
then the density matrix with respect to this basis is p,,, = (alp|a’). If the matrix representation of L
with respect to this basis is: L,,, = (a’|L|a), we can write the expectation value of L:

(L) = Z LaraPaar

a,ar

Expectation values of entangled state:

For a product space holds that for any state of a single spin there is some direction for which the spin
is +1. This meets our expectations in a way that the spin must have exactly one direction, even if we
do not know it.

This means that the expectation values of the components must sum up to 1:
(02)2 + (0,0 +(0,)? = 1
This classical expectation does not hold for entangled states, especially not for the entangled state
|sing).
The entangled state |sing) is defined:
1

|sing) = \/E(Iud> — |du))
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The expectation value (o,) = (sing|o,|sing)

(UZ) = (singlozlsing) =

<sing o,

1 _
5 (1ud) ~ ldu))) =

(sing|%(|ud) + |du))> =

1 1
<ﬁ ((ud| - (dul)) (ﬁ(lud) + Idu>)> =

%((udlud) + (ud|du) — (du|ud) — (du|du)) =

1
§(1+0—0—1)=0
The same result we get for (oy) and (a,). Our sum of expectation values:
(0x)* +(0y)* + (0,)* =0

is shrinking to zero. In plain words — we can measure whatever direction we want we don’t find the
spin orientation.

If the expectation value of a component of ¢ is zero, this means that the experimental outcome is
equally likely to be +1 or —1, the outcome is completely uncertain. Even though we know the exact
state-vector |sing), we know nothing at all about the outcome of any measurement of any
component of either spin.

Expectation values of near singlet state:
The near singlet state is a partially entangled state.

The state-vector:
J0,6[ud) — /0,4|du)
or in the extended form:
|nearsing) = O|uu) + \/0,_6|ud) - \/(),_4|du) + 0]|dd)
We have only one normalization condition:
Yuuuu + YuaPua + Yaulau + YaaPaa = 1

in this case reducing to:

YuaPua + YauPau =1
The density matrix for the full composite system: p? = p, Tr(p?) = 1.
The density matrix for Alice’s subsystem A: p? # p, Tr(p?) < 1

The wave function is not factorized: Y (a, b).
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The expectation values:
(07) = 0,2 (o) = (0y) =0

(TZ> =—0,2 (Tx) = <Ty> =0

(Tzaz> =-1
(1,0,) = —24/0,24
The correlation between the two systems: (0,1,) — (g,){1,) = —0,96

The main feature of a partially entangled state is that the composite system as a whole is fully
characterized but there is no complete information about the subsystems.

Particle dynamics and expectation values:
Classic: a particle is moving on the x-axis. The momentum is conserved, the particle moving with
fixed velocity.

Quantum mechanical: an expectation value (of a probability distribution) is “moving” on the x-axis.
The expectation value of position behaves according to the classical equations of motion.

Expectation values of product state:
The product state is a not entangled state, its two constituting states are independent, we have
classical behavior.

The state-vector:
ayPuluun) + ayfalud) + agfy|du) + agfqldd)
Note: the parameter a standing for Alice’s subsystem, the parameter 8 for Bob’s subsystem.
We have two normalization conditions:
a, o, +aja; =1
BuiBu + BaBa =1

The density matrix for Alice’s subsystem A has exactly one nonzero eigenvalue 1. The eigenvector
with this eigenvalue is the wave function of Alice’s subsystem — same for Bob.

The wave function is factorized: ¥(a)6(b).
Note: 1 (a) is the wave function of Alice, 8(b) for Bob.
The expectation values for Alice’s subsystem:
(02)? +(0y)? +(0,)* = 1
The expectation values for Bob’s subsystem:
(T)? +(1y)? +(1,)* = 1

The correlation between the two systems: (,7,) — (g,){T,) = 0
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Expectation values and projection operator:
Let [) be normalized, ||Y)| = 1. The outer product is called a projection operator:

[W)l

We apply the projection operator to an operator L:

(XD IL) = [) (WIL))

(Y|L) is a (complex) number, the result of the operation is proportional to |).

Note: The trace Tr of an operator or any square matrix is the sum of its diagonal elements:
Tr L = Y (i|L]i)

Properties of projection operators:

- Projection operators are Hermitian
- The vector |) is eigenvector of its projection operator |Y){i| with eigenvalue 1:

(XD [¥) = ) (1)) = [¥)

- Any vector orthogonal to |i) is eigenvector with eigenvalue zero. The eigenvalues of [)(|
are all either 0 or 1. There is only one eigenvector with eigenvalue 1, |{) itself.
- The square of a projection operator is the same as the projection operator itself:

(IYXWD? = [WXYIYXP| = [P

- The trace of a projection operatoris 1.
- If we add all the projection operators for a basis system, we obtain the identity operator:

Ml =1

i
- The expectation value for any operator (observable) |L) in state [} is given by:

WILIY) =Tr [P)Xy| L
We check the last property:

Tr YL = ) Gil)wILL) =

D WILID i) = WILIP) = (L)

Expectation values of singlet state:
In case of a two-spin system the maximum entangled state, the singlet state can be written as:

1

ﬁ(lud) — |du))

|sing) =
or in the extended form:

) = Loy - L
|smg)—0|uu)+\/§|ud) ﬁldu)+0|dd)

We have only one normalization condition:

lpl*tulpuu + lp;dlpud + ¢Ziulpdu + lpZidl/)dd =1
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This is reducing to:

Yuaua + YauPau = 1
For the full composite system, the density matrix:

2

pT=p
The trace Tr of the density matrix:
Tr(p?) =1

The density matrix A of Alice as well as the density matrix B of Bob is a diagonal matrix with equal
values that sum up to one, hence each outcome for the single-spin systems is equally likely.

For both systems:

p*#p

Tr(p?) <1

The wave function is not factorized: (a, b).
The expectation values for each single system are zero:
(0x)? = (0y)? = (0,)* = 0 and (1,)* = (1,)* = (1,)* = 0.
The expectation values for the combined system are 1:
(02T2)2 = (0yTy)? = (0,7,)? = 1 and (0,7} = (0y7y) = {0,7,) = =1
The correlation between the two systems is -1:
(0,72) = (o M{12) = —1

The main feature of an entangled state is that the composite system as a whole is fully characterized
but there is no information about the subsystems.

Expectation values in spin over time:

A spin in a magnetic field will not stay constant but change with time. The classical analog would be
the precession of a charged rotor, the energy being proportional to the dot product of the spin and
the magnetic field. The quantum version:

H~G B = 0By + 0By + 0,B,
Note: gy, 0, 0, represent the components of the spin operator.
The magnetic field lies along the z-axis, so the Hamiltonian is proportional to o,.

For convenience, all numerical constants without # go into the constant w:

hw
H = TO-Z

We want to know how the expectation value of the spin changes with time:

(a2 (6)), {ay (1)), (o, (1))
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The change of an operator with time:

dl_ Lo
dt  h°"

Note: this is a shorthand form of:

) .
ZWOILIP®) = = WOIHL — LHIp©)

We get:
(65) =~ ([0, H])
(@) = =3[0y, H])
(6,) = =3[0, H])

f
We replace H by Twazz

(0) = = (00, ,])

() = =([oy.0.])

(67 = = 5[0, 0,])

We check this for the first case (g, ) = — % ([oy, 0,]):

o .
(G = =3 (o H) = = (o050 =

i hw hw

TR O Ty ) =

2
ihw
2h

lw
- 7 ([Ux: 02])

The operators ay, 0y, 0, represent the Pauli matrices:

I R I

(Gxgz - ngx> =

1
0

0
-1

)
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We calculate the results of [a,, 0,], [ay, O'Z] and [o,, 0,]:
lox,0,] = 050, — 0,0, =
0 I/ O 1 03y/0 1y _
(1 0) (0 —1) h (0 —1) (1 0) -

(0-1+1-0 0-0+1-(—1)>_( 1-0+0-1 1-140-0 )_
1-1+0-0 1-0+0-(=1)) 0 0+(-1-1 0-1+(-1)-0)~

G 0)-C 0)=G 9=

20 =2 )2

[O'y, O'Z] = O'yO'Z - O'ZO'y =

G D6 2D-6 2DC 9=
0-14(=)-0 0-0+(=i)-(~1) 1-040-i 1-(—i)+0-0
( i-14+0-0 i-0+0-(—1) >_(0-0+(—1)-i 0-(—i)+(—1)-0>:

(o= =G 9=

= 2i (2 é) = 2ig,

lo,,0,] = 0,0, — 0,0, =0

We take the results and get:

() = == (=2i0y) = —w(ay)
(G) =~ (2ioy) = (o)
() =0

The 3-vector-operator ¢ is precessing like a gyroscope around the direction of the magnetic field
with constant angular velocity w.

Note: the difference between classical precession and “quantum precession” is, that in quantum
mechanics the expectation value is precessing. The expectation value for measuring g, does not
change with time, but the other expectation values g, and g, do.

Experiments, apparatus and two-state system:
Simple

We have a spin that either can be up or down. This is a two-state system (a bit) with two states.

Formally we have a degree of freedom called o that can take two values, +1 and —1. With this we
can replace the state up by ¢ = +1 and the state down by ¢ = —1.
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An experiment involves an apparatus A to record the state of the spin, the result being shown in a
window. The apparatus starts with a blank window and after a measurement shall show an arrow up
if the spin is up so we know ¢ = +1. Analog for spin down.

Subsequent experiments will confirm this state.

In classical physics we would say, the first measurement detects the position of the spin.

In quantum mechanics we would say, the first measurement determines the position of the spin.
Extended

The first measurement with the spin oriented up — the apparatus shows an arrow up or o = +1.

After that we turn the apparatus upside down and measure again. Now the apparatus records g =
—1.

We do this sequence again, but this time turning the apparatus by 90° for the second measurement.
This time the apparatus will give for every measurement +1 or —1 with an average of 0.
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Feynman, Richard:

Richard Phillips Feynman (1918 — 1988) was an American theoretical physicist, known for his work in
the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the
physics of the superfluidity of supercooled liquid helium, as well as his work in particle physics for
which he proposed the parton model. For contributions to the development of quantum
electrodynamics, Feynman received the Nobel Prize in Physics in 1965 jointly with Julian Schwinger
and Shin'ichird Tomonaga. (Courtesy Wikipedia)

Forces:

Prerequisite

The connection between the classical notion of momentum v = %and the momentum operator P:
(P) =mv

The average momentum equals mass times velocity.

The time derivative of the expectation value of any observable L:

L wy=Lqtm
dt" " h
Note: [H, L] is the commutator HL — LH.
End prerequisite

We usually work with a potential energy function for the particle we are studying in classical physics
as well as in quantum mechanics.

The potential energy is denoted by V' (x). In classical mechanics it is related to the force on a particle:

Flx) = ov

x)= 0x
We combine this with Newton’s second law, F = ma:

d?x v

Mz T T ox

In quantum mechanics we write the Hamiltonian and solve the Schrédinger equation. The potential
energy V(x) becomes an operator V.

When the operator V acts on any wave function ¥ (x), it multiplies the wave function by the function
V(x):

VIy) = V() ()
Once forces are included, the momentum of a particle is not conserved:
d av
= m
We add V(x) to the Hamiltonian:
2
H= o +V(x)
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We modify the Schrodinger equations:

2 2
iy = -2V Ly

We check whether (P) = muv still is valid. Because a new term has been added to H, there will be the
new term V(x) in the commutator of X and H, it involves the commutator of X with V' (x).
Multiplying by x and multiplying by a function of x are operations that commute, so:

[X,V]=[X, V()] =0

The connection between velocity and momentum is unaffected by forces, in classical physics as well
as in quantum mechanics.

. N , d . .
We calculate the time derivative of the expectation value of P, E<P> by commuting P with the

2
Hamiltonian H = 2 +V:
2m

l
Py = £ (P =g<[<—+V> ]>=

i
——([P?%,P —(|V,P
—([P2, P+ (IV. P)
Left part of the sum: 2%Lh([Pz, P]) is zero because an operator commutes with any function of itself.

Right part of the sum with V (x) instead of V because we apply it to P (x):

[V(x), Plp(x) =
d d
V) (—iha) D (x) — (—iha) VEOP@) =

V() (—ihd‘fifcx)>—<—' dv(")w( ) - hMV( ))
v (-0 ) + Ty + i v ) =
IO RN WSO 10
n 0y )
Omitting the P (x) we get:
[V(x), P = ik d‘;ix)

For— ([V P]) this gives:

i V(x),P])= dV
(V). Pl = =—V ()
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We add the results:

dP_ dV
P = V@

This is the quantum analog of Newton’s equation for the time rate change of the expectation value
of momentum.

Fourier transforms:
Prerequisite

The inner product of a position eigenvector |x) and a momentum eigenvector |p):

1 ipx
(x|p) = \/ﬁe h

1 _ipx
(P|x)=\/ﬁe h

Please note the minus sign.

End prerequisite

The wave function gives the probability for finding a particle at position x:
P(x) = (x)p(x)

As we will see, no experiment can determine both the position and the momentum of a particle
simultaneously, analog to the impossibility to measure both the x and z component of a spin.

The probability that a momentum measurement will give p is:

P(p) = (PIY)?
(P|y) is called the wave function of ) in the momentum representation. It is denoted by:
() = (Pl)

The state vector can be represented in two ways, the position basis or the momentum basis. Both
wave functions, the position wave function ¥ (x) and the momentum wave function })(p) represent
exactly the same state-vector [i). The transformation between them is the Fourier transformation.

Given a basis of a phase state in basis vectors |i). We can rewrite the identity operator I in terms of

the outer product:
1=l

4

Because momentum and position are both Hermitian, the sets of vectors |x) and |p) each define
basis vectors.

We replace the sum by an integral:

I = [lxXx| dx orI = [|pXp| dp

Suppose we know the wave function of the vector |y) in the position representation: By definition, it
is equal to:

Y(x) = (x[p)
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We build the wave function 1)(p) in the momentum representation.

1. We use the definition of the momentum-representation wave function:

(@) = (plY)

2. We insert the unit operator:

@@=[@mmwm

3. (x|y) is just the wave function ¥ (x).
(plx) is given by:
(plx) = —e"
X)y=——e h
P Vam
4. Result:
ip

- 1 _ipx
) == e Fpeodx
V2w
If we know Y (x) in the position representation we can calculate the corresponding wave function in
the momentum representation.

This works also the other way around. We know the wave function in the momentum representation
and calculate the position representation:

1. We use the definition of the position-representation wave function:

PY(x) = (xly)

2. We insert the unit operator:

M@=jWMWWMp

3. (p|y) is just the wave function P (p).
(x|p) is given by:
(xlpy = ——e'h
X = —0=e [
P V2m
4. Result:
@ =— [ F
X)=—— | e h
Y Nz Y(p)dp

Position and momentum representation are reciprocal Fourier transforms of each other.

Frequency, energy and frequency:
Prerequisite:

The time-dependent Schrodinger equation:

a
h— = —iH
o2 ¥) = —iHp)
The time-independent Schrédinger equation:
H|E;) = E;|E;)

Note: E; are the eigenvalues, |Ej) the eigenvectors. Eigenvalues of Hermitian operators always are
real.

End prerequisite

Let us suppose we have found all energy eigenvalues E; and corresponding eigenvectors |Ej).
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We solve the time-dependent Schrodinger equation.

)= al5)

j

The state-vector:

The state-vector changes with time, the basis vectors |Ej) do not, so the a; have to:

() = ) a(OIE)
J

We feed this result back into the time-dependent Schrodinger equation:

h(,ftz o (D)|E;) = lHZa](tNE
hz d,(D)|E;) = lﬂza,(t)uz
Z d,(D)|E;) = ——HZ o (D)|E;)

J

We use H|Ej> = Ej|Ej) and regroup the result:

> G OIE) + > g©OFIE) =0
J

j

Z (oz](t)wj) + %aj(t)ijj)) — 0

j

The |Ej> build a basis, every coefficient must be zero. We get:
. i
. i
This is a differential equation with the solution:
i
a;(t) = aj(O)e_ﬁEf't
Observables always are real. The “observable part” of a;(t) is something of the kind:

a;(t) = a;(0) cos (— % . t) ~ 1 cos(wt)
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Frequency of harmonic oscillator:

Consider the example of electromagnetic radiation in a
cavity, a region of space bracketed by a pair of perfectly
reflecting mirrors that keep the radiation bouncing endlessly
back and forth.

There is only one important number associated with a harmonic oscillator, its frequency and the
corresponding wavelength:

21c
w=—

A

In classical physics, the frequency is just the frequency.

In quantum mechanics, the frequency determines the quantum energy of the oscillator. The energy
contained in waves of length A has to be:

(neg)r
n —
> W

The term %hw is the zero-point energy which we ignore here. The energy of waves of length 4
becomes:

2mhc

n
A

. . . C e . 2mh .
The energy of an electromagnetic wave is quantized in indivisible units of % These units are called

photons, the quantized unit of energy in a quantum harmonic oscillator.

Functions:

Functions, the Dirac delta function:
Replacing discrete functions by continuous functions require the Kronecker delta function to be
replaced by an appropriate function that works with integrals. Remember the Kronecker delta &;;.

Let F; be a vector in a discrete, finite dimensional space.

zi,,-(&ij)

gives F; because §;; is zero fori # jand 1 fori = j.
In the integration concept the Dirac delta function performs the ¥
same: §(x — x") is something that returns zero for all x # x'
and "oo" for x = x’. With this: 51

f 5(x — xo) f(X)dx = f(xo)

Note: the Dirac delta function can be thought of as

lim ne_(”(x_x()))z. "

n—-oo X
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Example: let X be the position operator in a one-dimensional vector space, e.g. the x-axis. The
position operator should give back the position of a particle:

XYy = xo|Y)
In terms of wave function this becomes:
xP(x) = xoP(x)
We rewrite this:
(x —x0)¢(x) =0

It is the property of the Dirac delta function §(x — x,) to be zero on every x # x; and to be nonzero
at a single point.

The wave function Y (x) = §(x — x,) represents the state in which the particle is located exactly at
the point x, on the x-axis.

Functions, the Gaussian function:

The ground state wave function is the Gaussian function: Y
_wx? ,
Yx) =e 2R W(x) = e

The ground state energy Ey = %w

Note: the maximum height of the ground state function is

x

1. g

Note: the Gaussian function cannot be integrated
elementary.

Note: the Gaussian function is also used in statistics as normal distribution.

Functions, normalizable functions:
The probability density to find a particle at position x:

P (0)Y(x) = P(x)

The total probability to find a particle at any position must be 1:

f P Ow()dx = 1

Obviously, this requires the function go to zero “fast enough” on both sides. Functions that meet this
condition are called normalizable. The Gaussian function is a good candidate for this.

Functions, potential functions:
The potential energy function is denoted by V (x). In classical mechanics it is related to the force on a
particle:

Fx) = av

X = 0x
We combine this with Newton’s second law:

d?x v

a2 T " ox
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In quantum mechanics we use the operator V instead. If the operator IV acts on any wave function
P (x), it multiplies the wave function P (x) by the function V (x):

V) = V()p(x)

If V(x) is a smooth function in respect to the “size” of the wave packets, then the wave packets have
a good chance to cross this region as wave packets. If V(x) has sharp spikes, the wave packets tend
to break up.

Electrons e.g. act like solid objects in the electric field of a capacitor. The potential associated with
the nucleus of an atom has sharp features in it. Electrons hitting this potential spikes tend to scatter.

Functions, probability functions:
1.

Suppose we have an experiment that measures an observable L. The outcome must be one of the
eigenvalues of L with the probability P(4;). P(4;) is the probability function.

The average of an observable L:
DESWHICH
i

This is a weighted sum, weighted with the probability function P.
Note: 0 < P(Al) < 1, ZLP(AL) =1.
2.

Suppose you have a probability distribution P(a, b) for two variables a and b. If the variables are
completely uncorrelated, the probability will factorize:

P(a,b) = Py(a)Pp(b)

Note: the subscripts A and B are a reminder that P4 and Py could be different functions of their
arguments.

Functions, as vectors:

The single spin system is described by a two-dimensional space of states, the observables having only
a finite number of possible observable values. The coordinates of a particle have an infinite number
of possible values, x is a continuously variable. The idea of vectors have to be expanded to include
functions — a Hilbert space.

Consider a set of complex functions Y (x) of a single real variable x: x is real, ¥(x) has complex
values. With appropriate restrictions 1 (x) satisfies the mathematical axioms that define a vector
space:

The sum of any two functions is a function.
The addition of functions is commutative.
The addition of functions is associative.
There exists a zero function for addition.
There exists an inverse function for addition.
Multiplying a function by a complex number gives a new function and is linear.
The distributive property holds:
a. z[p(x)+0(x)] = ze(x) + z0(x)
b. [z+w]p(x) =z (x) + wi(x)

NoukwnNpE
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With this we can identify functions y(x) with ket-vectors |y). The bra-vector (1| corresponds to the
complex conjugate function Y *(x).

We have to replace:

a) Integrals replace sums,

Wlo) = f P P dx

our new inner product.

b) Probability densities replace probabilities. The probability of a continuous variable at exactly
one point is zero, so we can only determine the probability the variable lies in between
boundaries a and b:

b b .
P(a,b) = [ P(x)dx = [, %" (x)p(x)dx.
P(x) becomes a probability density.
For probability densities holds:

J‘_O:OP(x)dx =1

c) Dirac delta functions replace Kronecker deltas.
The Kronecker delta satisfies:

Z 6ijFj = Fi
j

The Dirac delta functions 6 (x — x") does the
same job for integrals:

j §(x —x")F(x")dx' = F(x) L

Note: the Dirac delta function can be approximated by x
e.g.: T ]

PR CPO%

Vr

Functions, vector space of functions:
Functions

Consider a set of continuous functions A(x). You can add any two such functions 4; (x) + A, (x) and
multiply them by complex numbers z - A. You will get a new continuous function.

Vectors

Two-dimensional column vectors provide another example. We construct them by stacking up a pair
of complex numbers, a; and a5:
aq
(az)
a B1

This is the ket-vector |A). You can add any two such vectors (az) + (ﬁ ) and multiply them by
2

a .
complex numbers z - (a ) You will get a new vector.
2

Note: the corresponding bra (4| is (a] a3).
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Functions, zero functions:
This means part 4 of the mathematical axioms defining a vector space:

The sum of any two functions is a function.

The addition of functions is commutative.

The addition of functions is associative.

There exists a zero function for addition.

There exists an inverse function for addition.

Multiplying a function by a complex number gives a new function and is linear.

ok wWN PR

Fundamental theorem of quantum mechanics:

e The eigenvectors of a Hermitian operator are a complete set. Any vector the operator can
generate can be expressed by a sum of its eigenvectors.

e If A; and A, are two eigenvalues of a Hermitian operator with 1; # 4,, then the
corresponding eigenvectors are orthogonal.

e |f two eigenvalues are equal, the corresponding eigenvectors span a subspace. For the
corresponding subspace can be found an orthonormal basis via the Gram-Schmidt
procedure.

Two eigenvalues being equal is called degeneracy.
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Gaussian curve and Gaussian wave packets:

For wave packets holdsthat A x A p = Z

There are minimum uncertainty wave packets where

h
AxApz;
These wave packets have the form of a Gaussian curve, and they
are often called Gaussian wave packets.

Note: the Gaussian function is also the probability density

function of the normal distribution.

Gaussian function:
The ground state wave function is the Gaussian function: v

_wx? L
Y(x) =e 2k i

The ground state energy E, = hTw

Note: the maximum height of the ground state function is 1.

Note: the Gaussian function cannot be integrated elementary.

Note: the Gaussian function is also used in statistics as normal distribution.

General Schrédinger equation:
The generalized or time-dependent Schrédinger equation:

apy |
T —iH|[)

The time dependent Schrodinger equation describes the time-development of the state-vector. The
essential ingredient is the Hamiltonian H, which in both classical and quantum mechanics represents
the total energy of a system.

General uncertainty principle:
Prerequisite

Let X and Y be vectors. The Cauchy-Schwarz inequality:
21X||Y] = (X]Y) + (Y| X)]
End prerequisite

Let |y) be any normalized ket and let A and B be any two observables. Observables are always real.
We define |X) and |Y):

|X) = Alp) and (X| = (y|A
[Y) = iBy) and (Y| = (| — iB
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With these the Cauchy-Schwarz inequality becomes:

1
V(AZNB?) 2 S I(IABIY) — (pIBAIY)I

Written with the commutator:

1
V(AZNB?) 2 S 1(I[AB] 1Y)

In detail:
(A) = (W|AlY) and (B) = (|Bp)
1X| = VXIX) = (WIAAIp) = V(4?)
Y] = (Y[Y) = J(|-iBiByp) = /(B?)
(X|Y) = (Y|AIB|Y) = i(Y|ABLp)
(Y1X) = (W|—iBA[p) = —i(p|BA|p)
(XIY) + (Y |X) = i((p|ABl) — (Y|BA[p))
(XYY + (Y [X)] = [(Y|AB[) — (W|BA[)]

Note: bras are implicitly defined as complex conjugated. If the ket |1} is written as a column vector:

=)

then the corresponding bra is:
| = (a’b")
End detail

For simplicity reasons let A and B have expectation values of zero. In that case, {(4?) is the square of
the uncertainty in 4 := (A A)? and similar B := (A B)?. We get:

J(A2)(B2) >AAAB
1
AAAB > > || [AB] )]

In plain words: the product of the uncertainties cannot be smaller than half the magnitude of the
expectation value of the commutator. If the commutator of A and B is not zero, both observables
cannot simultaneous be certain.

Note: if A and B do not have expectation values of zero, we can shift them and build two new
variables:

A:=A—(4)
B:=B —(B)
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For these new variables hold:

A A% = (4?)
A B* = (B?%)
[4, B] = [AB]

For the case of position operator X and momentum operator P we know that applying the
commutator onto any wave function ¥ (x):

[X, Pl (x) = i (x)
We express this by writing:
[X,P] =inh

The fact that X and P do not commute is the key to understanding that they are not simultaneously
measurable. We insert them into

1
AXAP> EI(IIJI[XP]IIIJ)I

and get:

1
AXAP 2= El(ll)lihlllf)l =
L ih —1 ih —1h
Ell (l/J|l/)>|—§|l |—E

AXAP > (i = 2h
=M =5

Remember |Y) is normalized.

This is the Heisenberg Uncertainty Principle.

Gluons:

A gluon is an elementary particle that acts as the exchange particle (or gauge boson) for the strong
force between quarks. It is analogous to the exchange of photons in the electromagnetic force
between two charged particles. In layman's terms, they "glue" quarks together, forming hadrons
such as protons and neutrons. courtesy Wikipedia

Gram-Schmidt procedure: L S — Va

Given two vectors 171 and VZ in R? that are not orthogonal.

We construct two orthonormal vectors, ¥; and 7,. :

From 171 we get the unit vector 7;:

7 i
U =—= i
V. D 7 |
| V2 VAALA |
We need the projection of 172 onto 171: — : 171

<V2|ﬁ1)ﬁ1
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We construct U, :

We build ¥,:

Vectors D; and ¥, are orthonormal.

Gravitons:

Massless particles can move at the velocity of light c, and they can only move at that velocity. All
particles other than photons and gravitons are massive and can move at any velocity less than c.

In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary
particle that mediates the force of gravity. There is no complete quantum field theory of gravitons
due to an outstanding mathematical problem with renormalization in general relativity. In string
theory, believed to be a consistent theory of quantum gravity, the graviton is a massless state of a
fundamental string. courtesy Wikipedia

Ground state:
Prerequisite

The Hamiltonian:

h—z ) + 1a)zlep(x)

Hlp(x)) = — > oz 13

The Hamiltonian gives the energy of the state:
H[y(x)) = E|p(x))
End prerequisite
In classical physics the lowest possible energy level for a harmonic oscillator is zero.

In guantum mechanics the uncertainty principle says that it is not possible to set both x and p to
zero. Best that can be done is to find a state in which x and p are not too spread out.

The lowest energy level the ground state 1, (x) is not zero.
The ground state wave function:
_W.2
Polx) =e 2k
To calculate the energy of the ground state we apply the Hamiltonian:

.2
Hipo( = — 2T L ez

2
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. n? .
Omitting — — in the left term we get:

We 2h zax 7 e 2" =
w d . 2 W/ _@W.2 XWy _W,2
—%axe 2h _—%(e 2h +x(—?)e 2h )_
w _%xz 1 xza)
¢ n

. . h?
Reinserting — PX

The right term remains:

%wzxze 2n*
Combining both terms:
2
_ X‘w 1 _w
H|po(x)) =—e 2n <1 — > - wix2e 2R =

w2 (ho x*w? xlw?
e 2h _ =
2 2 2
hw w2
— e 2”*
5 e
As H|Yo(x)) = Eg|o(x)) we have the energy E of the ground state:
£ hw
°7 2

Ground state, annihilation of ground state:
Prerequisite

The Hamiltonian can be expressed in terms of the momentum operator P and position operator X:
1 1 ) ] iw
H= E(P2 + w?X?) = E(P + iwX)(P — iwX) +7
because P and X do not commute.
End prerequisite

(P + iwX) is called the raising operator, (P — iwX) the lowering operator, written as a* and a™.

The raising operator a® shifts the energy level of the harmonic oscillator to the next possible higher
level, the lowering operator a™ to the next possible lower level.
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Applying the lowering operator to the ground level with Energy E, = %ﬁ annihilates this ground level.

Symbolically this is expressed as
a |0)=0
with |0) representing the ground level.

Ground state, wave function for the ground state:
Assume we have no explicit ground state wave function yy(x). We know the ground state is
“annihilated” by the lowering operator:

a”|0)=0

We rewrite that in terms of the position and momentum operator and the ground state wave
function:

i , -
\/ﬁ@ —lwX)Po(x) =0

- . i
We divide the equation by the constant factor NETTR

(P —iwX)ho(x) = 0

We replace the momentum operator P and the position operator X by their effect on ¥ (x):

(—ihi - iwx) Yo(x) =0

dx
—ih dt,b;)fx) —iwxPy(x) =0
dpo(x)  wx
dr —7'100(36)

We get a first order differential equation with the solution:

Po(x) = 2

This is our ground state function.
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Hamiltonian:
Prerequisite

The change of the state-vector with time:

Y () = U@®)|y(0))
U is called the time-development operator for the system, U must be unitary.
End prerequisite

The basic idea is that of an incremental change in time, valid both for classical physics and quantum
mechanics. We need two principles.

Principle one is unitarity:
Ut(e)Ue) =1
Principle two is continuity:
U(e) =1—ieH
“Small changes are represented by the identity matrix minus a small change.”
The Hermitian conjugate of U(¢€):
Ut(e) =1+ ieHT
We plug this into UT(e)U(e) = I and get:
(I+ieH")(I —ieH) =1
Il —IieH + ieH'I + e?HTH = I
I —lieH + ieH'I + €?HTH =1
We omit the second order in €:
I—lieH + ieHTI =1
—-H+Ht=0
H=Ht

Out of our two principles we get, that H must be a Hermitian operator. Hermitian operators are
observables having a complete set of orthonormal eigenvectors and eigenvalues.

H is the quantum Hamiltonian. Its eigenvalues are the energy of a quantum system.
We take the change of a state-vector with time
[(©)) = U@®) ] (0))
and apply it to the incremental change t = €:
lw(€) = U(e)|$(0))
l(€)) = (I — ieH)[p(0))
[(€)) = ¥ (0)) — ieH[y(0))
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This we can turn into a differential equation:
[w(€)) = [¥(0)) — ieH[p(0))
[W(€)) — [¥(0)) = —ieH[p(0))
() — [$(0)) _

€

—iH[y(0))

Taking the limit € = 0 and being valid for all other times t too, it becomes the time derivative of the
state-vector:

0
O - i)

This is the generalized Schrédinger equation or the time-dependent Schrédinger equation.

Hamiltonian, canonical momentum and Hamiltonian:
Prerequisite

. . . 1, . 1,
The harmonic oscillator has the kinetic energy mez and the potential energy Ekxz.

By replacing x with xv/m and defining w = \/% we get the Lagrangian L:

1 1
L= Exz —Ea)zxz

The canonical momentum conjugate p to x is defined as:

oL

b= Fr X
End prerequisite

The Hamiltonian for the harmonic oscillator, written with the Lagrangian L and the canonical
momentum conjugate p:

H=px—-1L
The Hamiltonian written as the sum of kinetic energy plus potential energy:

1 1
H = EXZ +Ea)2x2

We rewrite this with the canonical momentum:
1 1
H=—-p? +=-w?x?
2P T3

For changing H into a quantum mechanical operator, we must reinterpret x and p as operators, the
position operator X and the momentum operator P.

X multiplies the wave function by the position variable x:

XY (x)) = xp(x)

P derivates:

PO — —ih ()
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We replace these in the Hamiltonian:

H= 1(—ihi<—ih alp(x))) + %wzxztp(x)

2 d0x dx
Ro*pix) 1 ,

This is the quantum mechanical Hamiltonian.

Hamiltonian, conservation of Hamiltonian:
Prerequisite

The change of the expectation value of an operator L with time:

d L)y = i L,H
(L) = == (L. H])

This is often written as:
dL i
—=——[L,H
dt h [ ]
Note: H is the quantum mechanical Hamiltonian, [L, H] denotes the commutator LH — HL.
End prerequisite
The condition for the expectation value of an operator L not to change is:
[L,H] =0
Every operator commutes with itself:
[H,H] =0
H is conserved, the total energy of a (closed) system does not change with time.

Hamiltonian, entanglement and Hamiltonian:
Prerequisite

The spin operator ¢ ' T = 0, T, + 0,7y, + 0,7,
The state |sing):
1

ﬁ(lud) — |du))

The triple states |T;), |T,) und |T3):

1
IT1) = —= (lud) + |du))

V2
1

|IT;) = ﬁ(luw +|dd))
1

|T5) = ﬁ(luu) = |dd))
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The Hamilton-operator for the 2-spin-system:

=3 0T

The entangled state |sing) is eigenvector of the spin operator & - 7 with eigenvalue 3.

The entangled states |T;), |T,) und |T5) are eigenvectors of the spin operator ¢ - T with each
eigenvalue 1.

End prerequisite

We apply the Hamiltonian to the state |sing):

) wh , . . 3wh
H|sing) = -0 T|sing) = — |sing)

Applying the Hamiltonian to a state vector gives the energy of this state. The energy of |sing) = 3Twh

Analog the energy of each entangled state |T;), |T,) und |T3) is %ﬁ

Hamiltonian for harmonic oscillator:
The classical Hamiltonian:

H= Epz + szxz
The guantum mechanical Hamiltonian:
2 o%yY(x) 1
2,2
S a2 +§w x“P(x)

We care about the energy levels. The time-independent Schrédinger equation:
Hl|yg) = E|g)
Note: the index E indicates that |i5) is eigenvector for a particular eigenvalue E.

We insert the Hamiltonian:

_h_262¢5(x)

1,2
> ox? +§w x“Pg(x) = EYg(x)

To solve this equation, we must:

e Find the values of E that permit a mathematical solution,
e Find eigenvectors and eigenvalues of energy.

This is no simple task, but most solutions can be sorted out because they make physically no sense.
We need a solution ¥z (x) that can be normalized:

f Ye(x)dx =1
A function that works is:

Po(x) = 2

This is the harmonic oscillator ground state function.
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We check this by applying the Hamiltonian to this function:

x%w

hw _o 1 _w
HIo () = 5 <1 - T> b 2wt R =

2 2

_wo(hw x*w?\ x?w? _®.
e 2k + > e 2r° =

oo (hw x*w? x?w?
[ +
2 2 2
w _W 2
— ¢ 2R = Egiho(x)
We get the energy E of the ground state:

E_hw
7 2

To find the other energy levels of the harmonic oscillator, we rewrite the Hamiltonian in terms of
position operator X and momentum operator P:

PP+ w?X?
B 2
We use the property of the commutation relation [X, P] = (XP — PX) = ih and get:
1 . ,
H~§(P + iwX)(P — iwX)

As X and P does not commute, we get the correction term iA and can complete:

1 ) ) hw
H = E(P + iwX)(P — iwX) +7

ho . .
Note: Tw is the zero-energy level of the harmonic oscillator.

(P + iwX) called the raising operator:

i

t= (P + iwX)
V2hw
(P — iwX) the lowering operator or annihilation operator:
=P - wX)
a-=——(P—-iw
V2hw
i L
Note: the factor NI comes out of historical reasons.

The product of raising operator and annihilation operator is called the number operator:
N:=a'ta”
The three operators have important properties.

For reasons of simplicity we rewrite the eigenvalues by numbering them n and rewrite the
eigenvectors:

e.g.l1) — 1)
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With this convention the raising operator a* applied to the ground state function gives the next
energy level:
a*ln) = |n+1)

The lowering operator a™ applied to any state except the ground state gives:
a”|n) =|n—1)
The lowering operator a™ applied to the ground state gives:
a |0)=0
Note: |0) is the ground state wave function e_zm_hx2 with energy %w The annihilation operator
destroys this to zero.

The numbering operator N applied to any state gives the energy or the “number” of the respective
state:

N|n) = n|n)

With the operators a™, a~ and N we find the entire spectrum of harmonic oscillator energy levels:

1
Enzhw(n+§>

Hamiltonian, motion of particles and Hamiltonian:
We take the momentum operator P = —ihaa—x and build a simple Hamiltonian with ¢ being a

constant:
H = cP

The time-dependent Schrodinger equation:

aly)
jh——=H
ih—— = Hl)
We insert the Hamiltonian: e
. allp(‘x' t)) . al‘(’[)(x, t)) \” [ nitial wave packet
lh—at = —CLh—ax Wﬂ'ﬁ'{wMW""’“
I
o, ) _ e a[p(x, 1))
at dx
Note: Y (x, t) is function of two variables x and t. )
Any function of the argument (x — ct) is a solution to this time- ‘]M H |
dependent Schroédinger equation. IJHW\HIMM Jlﬂfwfw-
i
We need a function that is concentrated at a finite area in space: l

f P Ow)dx = 1

Let ¥ (x) be a wave packet like in the schematic on the right.

If we replace the argument (x) by (x — ct) we get with increasing time t a left shift of the argument,
so the function moves to the right with “speed” c.
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Hamiltonian, nonrelativistic free particles and Hamiltonian:
A nonrelativistic free particle has kinetic energy:

1
T = —mv?
2
In terms of momentum p = mv:
2
r=P_
2m
The Hamiltonian is the energy:
_r
2m

We replace the classical momentum by the momentum operator P:

P = —ihi
0x
We get the quantum Hamiltonian:
P2 _p? 52

zﬁz 2m 9x2

We use the time-dependent Schrédinger equation:

L 0lY) L0 e
lfl? = Hlll)) - lha = Hll)

initial wave packet

We insert the quantum Hamiltonian:
oY —h?0%yY
ih—=———=
ot  2m 0x?

This is the traditional Schrodinger equation for a nonrelativistic i

free particle. The solution gives a wave packet with different ... moving ta the right ..

wavelengths, moving with different velocities. m

The effect: dispersion of the wave packet, it tends to spread out
and fall apart.

Hamiltonian, guantum Hamiltonian:
Prerequisite

The change of the state-vector with time:

[Y () = U@®) |y (0))
U is called the time-development operator for the system and U must be unitary.
End prerequisite

The basic idea is that of an incremental change in time, valid both for classical physics and quantum
mechanics.
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We need two principles.
Principle one is unitarity:
Ute)Ue) =1
Principle two is continuity:
U(e) =1—ieH
“Small changes are represented by the identity matrix minus a small change.”
The Hermitian conjugate of U:
Ut(e) =1+ ieHT
We plug this into UT(e)U(€) = I and get:
(I+ieH")(I —ieH) =1
Il —IieH + ieHTI + e?HTH = I
I —lieH + ieH'I + €?HTH =1
We omit the second order in €:
I—lieH + ieHTI =1
—H+H =0

H=Ht

H must be a Hermitian operator. Hermitian operators are observables having a complete set of

orthonormal eigenvectors and eigenvalues.

H is the quantum Hamiltonian. Its eigenvalues are the energy of a quantum system.

We take the change of a state-vector with time
(@) = U@ (0))
and apply it to the incremental change t = €:
lw(€)) = U(e)[p(0))
l(€)) = (I — ieH)[p(0))
[w(€)) = [¥(0)) — ieH[(0))
This we can turn into a differential equation:
[w(€)) = [¥(0)) — ieH[(0))
[W(€)) — [¥(0)) = —ieH[(0))
Y€ — 1¥(0) _

€

—iH[y(0))
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Taking the limit € — 0 it becomes the time derivative of the state-vector:

W) .
o - —iH[(t))

This is the generalized Schrédinger equation or the time-dependent Schrédinger equation.

If we do a dimensional check, we see that there is a mismatch. The left side is of dimension %, the

kg-m? . . kgm?
gsz . We need a factor of dimension —Z

Hamiltonian (energy) is of dimension joules or on the left

side:

a2
Note: i = 2= = 1,054571726 ... x 10~3* "QT’"

21

With this we complete the time-dependent Schrodinger equation to make it dimensionally correct:

)
h? = —iH[ (1))

Hamiltonian of spin in magnetic field:
Prerequisite

The Pauli matrices:

_(0 1 _ (0 =i _(1 0
Ox = (1 0)'0y = (i 0)’02_(0 —1)
Let |y (t)) be a state vector and L an operator. The change of the expectation value of an operator L
with time:

i

d
T WOILP©) = =+ (L H)

Written in shorthand form:
L = i ( L H )
h [ ’ ]

End prerequisite

When a classical spin (a charged rotor) is put into a magnetic field, it has an energy depending on its
orientation. It is proportional to the dot product of the spin and the magnetic field.

The quantum version:
H~G B = 0By + 0By + 0,B,
Note: oy, 0, and g, represents the components of the spin operator.

The magnetic field lies along the z axis. We absorb all numerical constants without % into a single
constant w and get the quantum Hamiltonian:
hw

HZTO'Z
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We search how the expectation value of the spin changes with time, (g, (t)), (o, (t)) and (g,(t)). We
use:

() = =7 (o H)

L Loy, H])

(Gy> = _fl

(O-z) - - ([O-Z' H])

. I i
We plug in the quantum Hamiltonian H = Twaz and get:

<0x) - = w([o-xvo-zb
. lw
(Uy) = _7<[0'y: oz])

. iw
<0-Z> = _7<[O-z' JZ])
We check this explicitly for(ax) =— ([ax, a,]) by using the Pauli-matrices:
[ox, 0,] = 0x0, — 0x0, =
0 Ih/m O 1 0y\(0 1
(o) —)-G DG o)=
0 -1 0
G - 0=G o=
0 =i\ _ .
—Zl(i O)_ 2ioy,
We get:
. iw .
(0) = —-(~2i0y) = ~(ay)
The results:
(0y) = —w(ay)
(0y) = w(oy)

(a,)=0

In classical mechanics, the x and y components of angular momentum are precessing around the z
axis.

In quantum mechanics the expectation values for (a,) and (cry) will be precessing, but each single
measurement will always give +1 or -1. The expectation value for {g,) remains unchanged.
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Hamiltonian, time evolution of a system and Hamiltonian:
In quantum mechanics the Hamiltonian controls the time evolution of a system by the time-
dependent Schrodinger equation:

L 0Y(t)
th— — = H[Yp(®)

Hamiltonian operator, Schrodinger ket and Hamiltonian operator:
Prerequisite

We have a Hamiltonian and we know the initial state |1 (0)) of a system.

End prerequisite

We find the eigenvalues and eigenvectors of H by solving the time-independent Schrédinger
equation:

H|E;) = E;|E;)
Note: |Ej> is eigenvector to H with eigenvalue E;.

We want to rewrite [1(0)) in terms of eigenvectors |E]-):

() = ) @ O)IF)

J

For this we need the initial coefficients a;(0):
a;(0) = (E;|(0))
As the eigenvectors |Ej> build a basis of the state and this basis does not change with time, the
coefficients a; must change with time:
i
aj(t) = a;(0)e R

We get the “Schrodinger ket”:

() = &(0)e TN |E)

J

Hamilton’s equations:

In both classical and quantum mechanics states change in a way that information and distinctions are
never erased.

In classical mechanics, this principle led to Hamilton’s equations and Liouville’s theorem.

In quantum mechanics, this principle led to unitarity and in the end to the general Schrédinger
equation:

AP (®))

ih—— = = HRp(®))

Note: | (t)) is a state vector, H is the Hamiltonian.
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Harmonic oscillator:

Harmonic oscillator, annihilation (lowering) operators:
The Hamiltonian can be expressed in terms of the momentum operator P and position operator X:

1 1
H= E(P2 + w?X?) = E(P + iwX) (P — iwX)

iw .
Note: ~ is necessary because P and X do not commute.

(P + iwX) is called the raising operator, (P — iwX) the lowering operator, written as at and a™. The
raising operator a® shifts the energy level of the harmonic oscillator to the next possible higher level,
the lowering operator a™ to the next possible lower level. Applying the lowering operator to the

ground level with Energy E, = %ﬁ annihilates this ground level. Symbolically this is expressed as
a”|0)=0
with |0) representing the ground level.

Harmonic oscillator, classical description:
For convenience we switch the coordinates from y to x. Then kinetic and potential

1. 1
energy are mez and Ekxz.

For more convenience we aggregate the variable x to
Graphic courtesy
X = vVymx Wikipedia by Svjo

and use a new variable, the frequency of the oscillator:

k

w= |=
m

The Lagrangian is kinetic energy minus potential energy:

1 1
L= Exz —Ea)zxz

In this form, oscillators are distinguished from each other only by their frequency w.

From the Lagrangian we can work out the equations of motion. We have a one-dimensional system
with one Lagrangian:

oL _ d oL
dx  dtox
Left side:
JdL
Frie —w?x
Right side:
d oL _
dtox
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dt 0x \2 2
L) =
T xX) =X
We combine both results:
X =—w?x

This is a differential equation with the general solution:
x = A cos(wt) + B sin(wt)

Harmonic oscillator, creation operators:
The Hamiltonian expressed in terms of operators X, the observable for position and P, the
observable for momentum:

1
H=Z(P? + w*X?)
(This is a classical as well as a quantum mechanical Hamiltonian, so it would be correct to use the
classical lowercase symbols p and x.)

The idea is to use the properties of X and P, especially the commutation relation [X, P] = ih to
construct two (three) new operators, called creation (or raising) operator, annihilation (or lowering)
operator and number operator. The names are program. The raising operator shall produce a new
eigenvector that has the next higher energy level, the lowering operator shall produce a new
eigenvector that has the next lower energy level. The number operator returns the “number” of the
energy level.

The construction process.

Using complex numbers, we can split up the sum according to a? + b? = (a + ib)(a — ib) to
1 . .
H ~§(P + iwX)(P — iwX)

and that is almost correct, because of the quantum mechanically behavior of X and P: they don’t
commute. The problem are the products PX and XP.

We expand the Hamiltonian:
1 _ , 1 . . .
E(P +iwX)(P —iwX) = E(PZ + iwXP — iwPX — i*w?X?) =

1 1
E(PZ + w?X?) + S lw[X, P]

We know the value of the commutator: [X, P] = ik and get:
1 _ _ 1 1
E(P +iwX)(P — iwX) = E(PZ + w?X?) - Ehw
Our correct Hamiltonian:

1 1
H =§(P + iwX)(P — iwX) +§hw
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We now can define the creation operator at and the annihilating operator a™:
a” = (P —iwX)
at = (P +iwX)
Note: the number operator is defined as N := ata™ and “returns” the number of the energy level.

Harmonic oscillator, energy levels:
The quantum Hamiltonian for the harmonic oscillator (time-independent Schrodinger equation):

2 92 1
Hl|Yg) = _7W¢E(x) +E(u2x21p5(x) = EYg(x)

To solve this equation, we must find the allowable values of E that permit a mathematical solution,
filter out the solutions that make physically sense and find the eigenvectors and eigenvalues for the
energy.

Physical solutions of the Schrodinger equation must be normalizable.
The solution for the ground state energy eigenfunction is:
_W.2
Yo(x) =e 2

Applying the Hamiltonian to this eigenfunction delivers the eigenvalue:

2 2 1
H|po(x)) = —Tml/)o(x) + szlepo(x) =
hz 62 w 2

2

multiplying the factor — %;

2 \ h? h
w? wh\ _@
(‘7"2 + 7) e
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Right part:

Merging:

Y (x) is eigenfunction to the Hamiltonian operator with eigenvalue %

We can rewrite the Hamiltonian in terms of the position operator X and the momentum operator P:

_ P2+ w?X?
2

We write the sum as complex product:

1 wh
H = E(P + ia)X)(P — in) +7

wh . 1 . ] . 2+w?x?
Note: — s needed because the product > (P + iwX)(P — iwX) does not exactly give

The two factors (P + iwX) and (P — iwX) are the raising operator a® and lowering operator a™.
The official definitions are:

—i

t= (P+iwX)
V2wh
- : (P — iwX)
=——/P—-iw
V2wh
The lowering operator applied to the ground state wave-function annihilates it:
a~(Po(x)) =0

The lowering operator applied to any other state produces an eigenvector whose eigenvalue is one
unit lower. Analog the raising operator applied to any state produces an eigenvector whose
eigenvalue is on unit higher. With this we get all energy levels of the Harmonic oscillator.

Harmonic oscillator, ground state:
Prerequisite

The Hamiltonian:

K2 924 (x) N lwzlep(x)

Hlp(x)) = T2 T ox2 2
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The Hamiltonian gives the energy of the state:

H|p(x)) = E[p(x))

End prerequisite

In classical physics the lowest possible energy level for a harmonic oscillator is zero because the

Hamiltonian has a x2 term and a p? term.

In guantum mechanics the uncertainty principle says that it is not possible to set both x and p to

zero. Best that can be done is to find a state in which x and p are not too spread out.

The lowest energy level the ground state Y, (x) is not zero.

The ground state wave function:
_w .2
Po(x) =e 2k
To calculate the energy of the ground state we apply the Hamiltonian:

w_ 2
H _ hzaze_ﬁx 1 2 9 _%xz
|¢o(x))——7T+§w x“e

s h? .
Omitting — 5 in the left term we get:

0% _w.2 0, xw\ _@,2
me 2h zg(—?)e 2" =
w d . 2 W/ _W.2 XWy _W,2
—%axe 2h _—%(e 2h +x(—?)e 2h )_
W _® 2 x’w
e 2 [1 ==
(1)

. . h?
Reinserting — P

The right term remains:
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Combining both terms:

w 1 2. 2 _ﬂxz
H|tp0(x))——e 2fl —— |+ -wx‘e 2°" =
fl 2
oy (ho _Xw +x2w2 2
¢ 22 2 ¢ 7

oo (hw x*w? x?w?
R +
2 2 2

hw _w. 2
— e 27"

As H|Yo(x)) = Ey|yo(x)) we have the energy E of the ground state:

Ey=—
07 2
Harmonic oscillator, prevalence in physics:
In contrast to objects like a hydrogen atom the harmonic oscillator is a mathematical framework for
understanding a huge number of phenomena. What is characterizing these systems is that the
potential energy function looks like a parabola:

k
V(x) = Exz

The force on an object is minus the gradient of V/:
F =—kx

Harmonic oscillators are prevalent in physics because almost any smooth function looks like a
parabola close to local extrema, a minimum or maximum of the function.

Many kinds of systems are characterized by an energy function that can be approximated by a
quadratic function of some variable representing a displacement from equilibrium. When disturbed,
these systems will oscillate about the equilibrium point.

Examples:

e If an atom situated in a crystal lattice is displaced slightly from its equilibrium position, it gets
pushed back with an approximately linear restoring force.

e The electric current in a circuit often oscillates with a characteristic frequency. The
mathematics for describing this is identical to the mathematics of masses attached to
springs.

o If the surface of a pond is disturbed, waves appear on the surface. The oscillation of the
water particles can be described as harmonic oscillation.

e The mathematics to describe electromagnetic waves is the same mathematics that describes
oscillation particles.

page 186 of 433



quantum-abc

Harmonic oscillator, quantization and harmonic oscillator:

Ao (x) .- .Ilf-'oz(x)
III.II IIII‘\ |I|l|| 1IIII|
,/ AN A
P (x) ¢-12(X)
j! ,\\
/ \\ I;/\ i J-'I{ \,\
\/
W (x) P22 (x)
/“-\.I_ TN .f\'-. rf\
e / ' \\L - \\ / ...‘\
113 (x) Pa 2 (x)
m ALA
\ / ‘\ f\..‘. )I. '|\ .'II It ™
"'\v.,- Ve

Harmonic oscillator Eigenfunctions. Amplitudes are shown on the left, probabilities on the right. The
higher-energy wave functions oscillate faster and are more spread out.

Consider the example of electromagnetic radiation in a cavity, a region of space bracketed by a pair
of perfectly reflecting mirrors that keep the radiation bouncing endlessly back and forth.

There is only one important number associated with a harmonic oscillator, its frequency and the
corresponding wavelength:

2nc
w=—

A

In classical physics, the frequency is just the frequency.

In guantum mechanics, the frequency determines the quantum energy of the oscillator. The energy
contained in waves of length A has to be:
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The term %hw is the zero-point energy which we ignore here. Then the energy of waves of length 4
becomes:

2mhc
A

n

. . e . 2mh .
The energy of an electromagnetic wave is quantized in indivisible units of HTC These units are called
photons, the quantized unit of energy in a quantum harmonic oscillator.

We can describe this another way. Photons can be thought of as particles, a wave excited to its nth
guantum state can be thought of as a collection of n photons. In this picture, the energy of a single
photon is what is needed to add one more unit:

2mhce

E) ==

Harmonic oscillator, guantum mechanical description:

We try to translate the classical harmonic oscillator into a quantum mechanical one. For this we need
a space of states. A particle moving on a line is represented by a wave function ¥(x). ¥(x) is defined
in such a way that ¥*(x)(x) is the probability density to find a particle at position x:

Pr0)P(x) = P(x)
Note: 1" (x) is the complex conjugated to ¥ (x).

A probability density has the restriction:

J‘_O:OP(x)dx =1

Our function ¥ (x)y(x) must fulfill this condition:

f P OW() dx = 1

Note: this condition is called normalizable.

The (classical) Hamiltonian is kinetic energy plus potential energy, the total energy:
1 1

H =Ef)2 +§w2x2

In quantum mechanics, we need to represent observables as operators. We do not have a velocity
operator, so we have to recast in terms of position operator and momentum operator.

The position operator X multiplies the wave function by the position variable:
X|p(x)) = xp(x)
Accordingly:
X2[P(x)) = x*P(x)
The momentum operator differentiates:

PIO()) = —ih—ip(x)
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Accordingly:

0 92

0
PAYCO) = —ih—— (=i =) ) = =R S ()

We insert this in the Hamiltonian:

1o, 1 22 h? o 1 22
H =3P +E(u x° - —7W¢(x)+§w x“P(x)

We get the quantum mechanical Hamiltonian:

h? 9? 1,
H = _Tﬁlp(x) +§0) X l/J(X)
Harmonic oscillator, Schrodinger equation and harmonic oscillator:
The time-dependent Schrédinger equation:
oY 1

IE—EHIIJ

We insert the quantum mechanical Hamiltonian:

oY hoty 1,
L5 = 2ok TR xY

Note: the equation is complex valued.

If we know 1, both real and imaginary parts at some point in time, we can predict what it will be next
in future. Under certain circumstances, 1 will form a wave packet that moves around like a harmonic

oscillator.

Harmonic oscillator, wave functions and harmonic oscillator:
Prerequisite

The annihilation or lowering operator:

i
a =—— (P —iwX
Vth( )

The raising operator:

at = ﬁ(P + iwX)

The position operator X multiplies the wave function by the position variable:
X[ (x)) = xyp(x)
The momentum operator P differentiates:
Plyp(x)) = —iﬁilli(x)
0x
End prerequisite

We begin with the ground state of the harmonic oscillator:

Po(x) = 2
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The raising operator acting on the ground state:
_W .2
(P+iwX)e 2i
2wh

Note: for better readability we omit the constant factor \/;_

We replace the operators:

ad _ﬂxz
i(—h—+wx)e 2r” =
Ox

L, WX @ 2 . _W .2
lh?e 2" 4+ jwxe 27 =

. W2 . _W,2
lwxe 2" +jwxe 2" =
. _W,02
2iwxe 2r° =
2iwxho(x) = P1(x)

Applying the raising operator to the ground state we get the next excited state.

The presence of the factor x in the first excited state causes the wave function of the first excited
state to have a zero (a node) at x = 0.

We repeat this process. Applying the raising operator to the first excited state will give the second

. . . i
excited state. Again, we omit the constant factor NeTT and get:

i (—h% + wx) Y,(x) =
i (—h% + a)x) xPo(x) =

i (o) + ) =

—ih <1/Jo(X) + x:—xl/)o(x)) + iwx?o(x) =

, wx? ,
—ih (lpo(x) - Tlpo(x)) +iwx? o (x) =

<—ih + ihzxz + iwxz) Po(x) =
(—ih + iwx? + iwx*)Py(x) =
(—ih + 2iwx®)Po(x)
Again, omitting the constant factor i we get the result
(P + iwX) (x) = 1o (x)
with:

W2 (x) = (i + 20x)he(x)
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In summa we have the first 3 energy states of the harmonic oscillator:
_w,2
Po(x) = e 2r"
P1(x) = 2iwxpy(x)
Y2(x) = (=h + 20x?)o (x)

Note: there may be some constants missing.

Harmonic oscillator, energy level ladder/tower:

We can view at the rising sequence of energy levels as a ladder, beginning with

_@ .2
the lowest energy level as eigenvalue of eigenfunction y,(x) = e 22* and then
stepping higher. The difference between two steps is always Aw.

Heisenberg, Werner:

Heisenberg liked algebra, matrices and, had he known what to call then, linear
operators. Erwin Schrédinger, in contrast, thought in terms of wave functions
and wave equations, the Schrédinger equation being one famous example.

K, Twh
L Swh 2
F TSwh
E, wh z

The two ways of thinking are not contradictory because functions form a vector space and

derivatives are operators. This connection is not intuitive and hard to bridge.

Curve right to the origin

{x)

\\d=(x<x>)

N Ax

: : : : ()l
Heisenberg Uncertainty Principle:
Prerequisite:
A general statistical theorem allows that we always can modify
an operator A in a way that its expectation value is zero. In this
case A A is the uncertainty in A. This simplifies calculation.
End prerequisite
The Heisenberg Uncertainty Principle in its original form deals Crigin shifted right

with position and momentum of a particle and can be expanded
into a general principle that applies to any two observables not
commuting: the product of the uncertainty of two operators

h
cannot be less than >

{x)

[t (x)1?

Let A and B be two observables, then:

1
AAAB> 3 [(|[AB]| )]

The product of the uncertainties cannot be smaller than half the magnitude of the expectation value

of the commutator.

If the commutator of A and B is not zero, both observables cannot simultaneous be certain.

For the case of position operator X and momentum operator P we know that applying the

commutator onto any wave function ¥ (x) results in:

[X, PIyp(x) = ifp(x)
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We express this by writing:
[X,P] =inh

The fact that X and P do not commute is the key to understanding that they are not simultaneously
measurable. We insert them into:

1
AX APz |(IXPI)]
We get:

1
AXAP 2= El(lplihllﬁ)l =
1 ih —1 ih —1fl
§|l (l/J|l/)>|—§|l |—E

AXAP==-h

N[ =

Remember |Y) is normalized.

This is the Heisenberg Uncertainty Principle.

Hermite, Charles:

Charles Hermite (1822 — 1901) was a French mathematician who did research concerning number
theory, quadratic forms, invariant theory, orthogonal polynomials, elliptic functions, and algebra.
Hermite polynomials, Hermite interpolation, Hermite normal form, Hermitian operators, and cubic
Hermite splines are named in his honor. (courtesy Wikipedia)

Hermite polynomials:
Prerequisite:

The energy states of the harmonic oscillator, beginning with the ground state:
_W.2
Yo(x) =e 2k
P1(x) = 2iwxpy(x)
Y2 (x) = (h + 20x? )Py (x)

End prerequisite

_w,z2
Each eigenfunction of the energy states is a polynomial in x multiplied by e 22" or 1, (x). These
polynomials are called the Hermite polynomials.

Note: the exponential functions ensures that the functions converge fast enough to zero to fulfill
normalization condition.

Note: this leads to a small but finite chance of finding a particle outside any borders the potential
energy function defines.
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Hermitian

density matrices as Hermitian matrices:
Density matrices are Hermitian:

%
paal - pala

Note: Hermitian matrices can be diagonalized by use of a special basis.

Momentum and position as Hermitian matrices:
The momentum operator P and position operator X are Hermitian matrices.

Projection operators as Hermitian matrices:
Let |y) be a normalized ket with its corresponding bra (y].

The outer product:
N
is called a projection operator.

Projection operators are Hermitian (a Hermitian matrix).

Hermitian conjugation:
You take a matrix M, transpose it M = MT and complex conjugate the result MT — (MT)*.

(MT)* is called the Hermitian conjugate to M, written as M.

Note: a matrix M that satisfies MTM = [ is called unitary.

Hermitian matrix:
An example of a 2 X 2 Hermitian matrix with r; and r;, real numbers and z a complex number:

Tz
(Z* rz)

Any 2 X 2 Hermitian matrix can be written as the sum of four matrices:

a(y o)*o(; P)+e(@ H)+ap )
Note: a, b, ¢, d are real numbers.

) . . . _(0 1 _ (0 =i _(1 0
Note: the matrices are called the Pauli matrices g, = (1 0), gy = (i 0 ) and g, = ( )

Note: Hermitian matrices can be diagonalized by use of a special basis.

Note: The diagonal of a Hermitian matrix only has real values.

Hermitian observable:

A Hermitian observable is an observable represented by a Hermitian matrix. Momentum P and
Position X are Hermitian observables and can be represented by Hermitian matrices.

Note: by help of the “trick of resolving the identity” we can transform a wave function Y (x) in
position representation into the corresponding wave function in momentum representation llj(p).
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Hermitian operators:
1.

Operators corresponding to physical observables must be Hermitian as well as linear.
2.

Hermitian operators have a complete set of orthonormal eigenvectors and eigenvalues building a
basis of the vector space.

3.
The commutator of Hermitian operators must not be Hermitian.
4.

Any 2 X 2 Hermitian matrix can be written as the sum of the three Pauli-matrices and the identity
matrix.

5.

The differentiation operator D = :—x by itself is not Hermitian. By multiplying with the imaginary unit

—i it becomes Hermitian:

—iD=—i—
i b

Hermitian operator, action on state-vector:
By sandwiching a Hermitian operator A with a state-vector |r):
(rlAlr)
we get the expectation value of the state-vector — the probabilities for the outcome of each

measurement A.

Hermitian operators in composite space of states:
Prerequisite

In a single-spin system of Alice we have e.g. the state vectors |u) and |d) and a Hermitian operator
0,. The action of g, onto a state vector is written as e.g. g,|d) = —|d). The same holds for Bob’s
system.

We combine the two systems by the tensor product. The composite state-vectors are written e.g.:
|du) = |d)®|u)
End prerequisite

Assume we have a two-spin system of each Alice and Bob with the Hermitian operator g, for the
system of Alice and 7, for Bob. We get the composite system by the tensor product. To properly
apply the operator o, of Alice in the composite system we have to build the tensor product too.

For Alice:g, > 0, ® 1
ForBob: 7, - I ® 1,

Note: [ is the 2 X 2 identity matrix.
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With this we write the action of Alice’s operator onto the combined system as:
(o, @ D)) = (0,|d)®INu)) = (—|d)®|u))
We abbreviate this and write:
o,|du) = —|du)
Hermitian operators, eigenvector of Hermitian operator:
1.

If a state is eigenvector of a Hermitian operator A4, then it will not be eigenvector of other operators
that do not commute with A.

2.

Eigenvectors of a Hermitian operator form a complete orthonormal basis of the state, so every
vector can be expressed in this basis.

3.

Let A be any Hermitian operator with basis vectors |i). We can rewrite the identity operator I:

1= il

i

Note: this is called “resolving the identity”.

Hermitian operator, linear operator as Hermitian operator:
Prerequisite

An operator A is called linear:

a) A(f(x)) = h(x)
b) A(f(x) +g(x) = A(f(x)) + A(g(x))
o) A(z-f(x)) =z A(f(x))

Note: z may be a complex number.

The formula for the inner product:

wle) = [ v @o
For normalized functions f holds: f(—o) = f(4+o) =0

Integration by parts for the special case of normalized functions:

fudvz[uv]i%o—f vdu:—f vdu

—0
Note: this is caused by the fact that the functions are normalized — they are zero in infinity.
End prerequisite

Principle 1 of quantum mechanics: the observable or measurable quantities of quantum mechanics
are represented by linear, Hermitian operators.
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For a linear, Hermitian operator A holds:

(W1Al6) = (B|Alyp)”

We take a look at two examples, the position operator X that multiplies any function by x, and the
differentiation operator D that differentiates any function:

Xp(x) = xp(x)
dl/) (X)

D(x) =

Both operators are linear.

We check whether X is Hermitian:

wix16) = | v @0
oy = ([ o wm) = [0 =

f 0 ()P (x) = f P (0x0(x) = (PIX16)
X is Hermitian.

We check whether D is Hermitian:

WID|6) = fw*( )—d fw ()6 (x)
w(x)

(OIDI)" = ( f 6*(x) x) f 6 (x)dp* (x)

Integration by parts of [ 0 (x)dy* (x):

[ oy e = - [ o)
We calculate:
(w|Dl6) —(OID|yp)* =
fw*(x)de(x) n fw,b*(x)de(x) =2 f P (DdI() % 0
Result: D is not Hermitian, instead D satisfies:

Dt =—-D

An operator with this property is called anti-Hermitian. Multiplying an anti-Hermitian operator by —i
gives a Hermitian operator, so —iD is Hermitian:

le (x)
dx

—iDY(x) = —

This is called the momentum operator.
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Hermitian operator, orthonormal bases and Hermitian operator:

Fundamental Theorem:

e Eigenvectors of a Hermitian operator are a complete set. Any vector the operator can
generate can be expanded as a sum of its eigenvectors.

e Eigenvectors with unequal eigenvalues are orthogonal.

e Qut of eigenvectors with equal eigenvalues can be chosen two orthogonal eigenvectors via
the Gram-Schmidt procedure.

We prove the second item, two eigenvectors |4,) and |1,) with unequal eigenvalues A; and 4,.

According to the definition of eigenvectors and eigenvalues:

L|1A1) = A4|21)
The operator L is Hermitian:

(A1]L = 21{4]
The second eigenvector:

L|Az) = 23| 13)

We multiply with the eigenvectors |A,) and (14| :
(A1|L]122) = A1(A1]13)
(A1|L|22) = A1(A1]13)
We get:
A1{A1122) — A1(21122) = O
(A1 = 24){A1]42) =0
(A1 — A1) # 0 implies that (1;|1,) must be 0. Both vectors must be orthogonal.
We prove the third item, two eigenvectors [1;) and |1,) with equal eigenvalues A = 4, = 1,.
According to the definition of eigenvectors and eigenvalues:
LiA1) = Al4y)
L|22) = 2|22)
We chose a linear combination of both:
|4) = ald1) + Bl A1)
We apply the operator L on both sides:
L1A) = aL|A1) + BL|Ay) = ad|A1) + BA|A,) =
Aa|Ar) + BlA1)) = A|4)
Any linear combination of both eigenvectors is eigenvector to eigenvalue A again.

Out of two linear independent vectors we can always form an orthogonal pair by the Gram-Schmidt
procedure.
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Hermitian operator, overview:
1.

Hermitian operators L are their own complex conjugated and transposed:

L=1t
In terms of matrix elements:

i = Lij
2.
Eigenvectors of Hermitian operators have real eigenvalues.
Suppose | 1) is eigenvector to the Hermitian operator L with eigenvalue A:

L|A) = A|A)
The bra version:
AILT = AL = (A|2*
We sandwich with corresponding bra (1] and ket |A):
(41L]|2) = (4]A]2)
(A|LT|2) = (AILIA) = (A]2*]2)

We get:

A=A

The eigenvalue must be a real number.

Hermitian operator, particles and Hermitian operator:

The important information about a particle on the x axis is position and momentum. We need a
Hermitian position operator X and a Hermitian momentum operator P. Both operators do not
commute, so we cannot measure both without uncertainty.

Hermitian operator, trace of a Hermitian operator:
Prerequisite

Let |Y) be a normalized state vector. The outer product |Y)(y| is called a projection operator.

The sum of all projection operators for a basis system |i) is the identity operator I:
Ml =1
i
The trace Tr of a matrix (an operator) L is the sum of its diagonal elements and can be written as:

Trl = Z(ilLli)

Note: |i) and (i| preferably the canonical basis but can be any basis.

End prerequisite
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The expectation value of a Hermitian operator (an observable) L in state |i):

(WILIp) = Tr [)IL

Proof: let |i) be basis of the Hermitian operator L.

Tr RYIL = D XwILI) =
D WILIN ) = ILIY) = @ILIY)

Hilbert, David:

In a broader view vectors can be seen as a set of mathematical objects satisfying certain postulates.
In this view functions form a vector space, often called a Hilbert space.

David Hilbert; 1862 — 1943) was a German mathematician and one of the most influential and
universal mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a
broad range of fundamental ideas in many areas, including invariant theory, the calculus of
variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral
theory of operators and its application to integral equations, mathematical physics, and foundations
of mathematics (particularly proof theory). (courtesy Wikipedia)

Hilbert spaces:

In quantum mechanics the term Hilbert space refers to the space of states with finite or infinite
number of dimensions.

Note: spaces with infinite number of dimensions are hard to compute with finite computers.

Hooke’s law:

An idealized spring satisfies Hooke’s law. The force on the displaced mass is proportional to the
distance it has been displaced:

F =—kx
The characteristic potential energy function:
k
V(x) ==x2
(0 =3

The characteristic potential energy function looks like a parabola. As almost any smooth function
looks like a parabola close to a local minimum Hooke’s law and with it the harmonic oscillator are
applicable to a lot of physical problems.

P |
N

S

Graphic courtesy
Wikipedia by Svjo
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ldentity, resolving the identity:

Given a basis of a phase state in orthonormal basis vectors |i). We can rewrite the identity operator I
in terms of the outer product:
1=l

2

Because momentum and position are both Hermitian, the sets of vectors |x) and |p) each define a
set of orthonormal basis vectors.

We replace the sum by an integral in position x:

I = f|x)(x| dx

Or in momentum p:

I = jlp><p| dp

Resolving the identity in “position mode” and “momentum mode” allows us to choose the
appropriate representation.

We can switch between 1(x) = (x|i) in position mode and {(p) = (p|y) in momentum mode by

help of reciprocal Fourier transformations.

Identity operator, from projection operators:
The outer product of a normalized ket |1) with its corresponding bra (1| is a projection operator:

WX
The trace Tr of a projection operator is 1.

The sum of all projection operators of a set of orthonormal basis vectors |i){i| gives the identity

operator I:
Mliil =1
i

Note: there are n basis vectors in a n-dimensional space, so we get the n entries in the diagonal
matrix each with value 1.

Inner products:
The inner product for bras and kets (B|A) is defined analogous to the dot product for spatial vectors.

The result of the inner product is a (complex) number.
The inner product is linear:

(CI{|A) +|B) } = (C|A) +(C|B)
Interchanging bra and ket corresponds to complex conjugation:

(BlA) = (A|B)"
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Note: Switching from ket |A) to bra (A| implies complex conjugation:

aq
a
Ay=| "2 |-l = (ai @} ..a;)

an

This is a kind of implicit complex conjugation. If you have kets |A) and |B)

251 B1
4y = “ Jand By = [ P2
an Bn
then (B|A):
a,
B Bs B 2
an

Integrals, replacing sums, schematically:

In general:
Z —>fdx
i

We redefine the inner product from the discrete case

n
(AIB) = ) aif;
i=1
to the continuous case:
f a*(x)B(x)dx

Note: a*(x) and B(x) are wave functions and must be normalized for the integral to have a finite
value.

Integration by parts:

The formula for integration by parts:

b b b
deG=f d(FG)—f GdF
a a a

In the special case of quantum mechanics, we use normalized function and integrate from —co to co:

dec;:f d(FG)—f GdF
—00 — 00 —o0oa

f FdG = [FG]*,, — f GdF

—00

A normalized function must go to zero, so [FG]%,, = 0.
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We get:

deGz—deF

Switching the derivative from one factor of the integrand to the other require a minus sign.
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Ket vectors:
A complex vector has a dual version that is essentially the complex conjugate vector space.

For every ket vector |A), there is a bra vector (A|:

a1

a;

|4) = - (4] = (a1 az ...ap)

an
This leads to a little complication when multiplying a ket |A) with a complex number z.
To the ket
z|A)
the corresponding bra is
(A|z*

Ket vectors, axioms of ket vectors:
Let |A), |B) and |C) be ket vectors, z a complex number, then:

1. Closure: the sum of two vectors is a vector:
|A) + |B) = |C)

2. Vector addition is commutative:
|A) + |B) = |B) + |A)

3. Vector addition is associative:
{14A)+|B)}+|C)=1A) +{|B) +|C)}

4, Existence of the O:

|A) + 0 = |A)
5. Existence of the inverse:
|[A) + (—14) =0

6. Multiplication by a scalar produces a new vector:
|zA) = z|A) = |B)

7. Distributive property:
z{|A) + |B)} = z|A) + z|B)
{z + w}|A) = z|A) + w|A)

Axioms 6 and 7 taken together are often called linearity.

Ket vectors, composite systems and ket vectors: state labels of Bob
. . . . 1 2 3 4 5 6
We take the composite system of Alice (coin) and Bob (die). State labels | Head | M1 H2 |H3 hHa ns | 1e
Obviously, the combined system has 12 dimensions because of Alice Tail |T1[T2|T3/T4| 75| 76
we have 12 basis vectors T1, H1, ... -.-..
e |o

We could represent e.g. the H4 state in explicit notation:

|H)®[4)
Usually we use the composite notation:

|H4)
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Note: despite the two identifiers "H" and "4" the ket |H4) represents a single state of the combined
system. The identifiers show something like the origin and help with understanding what happens to
the single subsystems in a combined system.

A superposition of two state vectors could be:
aysz|H3) + Bra|T4)

Ket vectors, inner product of ket vectors:
The inner product for bras and kets (B|A) is defined analogous to the dot product for spatial vectors.

The result of the inner product is a (complex) number.
The inner product is linear:
(CI{14) +1B) } =(C|A) + (C|B)
Interchanging bra and ket corresponds to complex conjugation:
(B|4) = (A|B)*
Note: Switching from ket |A) to bra (A| implies complex conjugation:

a

a
1Ay = 2 |- (Al = (a] a5 ...a)
an

This is a kind of implicit complex conjugation. If you have kets |A) and |B)

aq B1
14y = | “ |and |B) = [ P2
a 3
This gives (B|A):
aq
B 65 B
an
For a normalized (vector) ket |A):
(Al4) =1
For orthogonal (vectors) kets |A), |B):
(Bl|A) =0

Ket, recipe for a Schrodinger ket:
1. Derive, look up, guess, borrow or steal the Hamiltonian operator H for the system.
2. Prepare an initial state [ (0)).
3. Find the eigenvalues and eigenvectors of H by solving the time-independent Schrodinger
equation:
H|E;) = E;|E;)
You will get:

i
a;(t) = a;(0)e R
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Note 1: "E;" is eigenvalue to the eigenvector |Ej).

Note 2: H|Ej> = Elej) leads to a differential equation that determines a;(t) = aj(O)e_ﬁEft.
Calculate the initial coefficients a;(0) = (Ejll/)(O)).

5. Rewrite [ (0)) in terms of eigenvectors |Ej) and initial coefficients a;(0):

() = ) (0) |E)

j
6. Replace each a;(0) with a;(t) to capture its time-dependence. As the basis vectors |Ej) do

not change, this leads to:

() = Y a;(0)e T |E)

J

Kronecker delta:
In mathematics, the Kronecker delta is a function of two variables for (non-negative) integers:
5. = {0 ifi+j
U ifi=j
It is used in summing up:

Z aibjSij = Z aibi

i,j i
This is important e.g. for orthonormal basis vectors:
(Ail2;) = 6

Kronecker delta, replaced by Dirac delta function:
Replacing discrete functions by continuous functions require the Kronecker delta function to be
replaced by an appropriate function that works with integrals. Remember the Kronecker delta:

Let F; be a vector in a discrete, finite dimensional space.

Zi'j(&ij)

gives F; because §;; is nonzero only for i = j. ¥

In the integration concept the Dirac delta function performs the
same: §(x — x") is something that returns zero for all x # x" and
"00" for x = x'. With this:

o)

j 5(x — xo) f(X)dx = f(xo)

Note: the Dirac delta function can be thought of as

lim ne_(”(x_x()))z.
n—-oo -1

=

Example: let X be the position operator in a one-dimensional vector space, e.g. the x-axis. The
position operator should give back the position of a particle:

X)) = xol¥)
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In terms of wave function this becomes:

xp(x) = xoh(x)
We rewrite this:

(x —x)Y(x) =0

This is exactly the property of the Dirac delta function §(x — x;) to be zero on every x # x, and to
be nonzero at a single point.

The wave function ¥ (x) = §(x — x,) represents the state in which the particle is located exactly at
the point x, on the x-axis.

Kronecker delta, tensor product:
The Kronecker product is the matrix version of the tensor product.

Lo (Q11 Qg _ (b11 balz)
Let A and B be two 2 X 2 matrices: A4 := (a21 a21)’ B = (b21 bys
The Kronecker product (tensor product):
(11 Q12 by, b12> _
A®B = (a21 a22) ®(b21 by,)
a (bn b12> a (bn b12)
1\by; by 12\by1 by, _
by, blz) (bll blz)
2 (b21 by,) “2\byy by,
ay1b11 ai1b1z  agzbyy  agpbgy
a11by1  Qi1ba;  Ay2byy aAq2by;
Az1b11  Qz1b1;  Agzbyy  agzbyy
Az1by1  Qz1b32  Az3bp1  agaby;

We apply this to state vectors. The tensor product of the up and down state vectors:

0=

= (0)

We combine:

) = @l = () &,

=N
N——
I
=
/N
(=
N——
I
O O O

The same way the other combinations:

lud) = , |du) = and |dd) =

S O r O
O R OO
=]
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We combine operators g, := (1 0 ), Ty = (O 1):

0 -1 1 0
0 1 0 1 01 O 0
0. ®1 _(1 O)®(O 1)_ 1(1 0) 0(1 0) 1 0 O 0
=0 -1 10_0(01) 1(01) 00 0 -1
1 0 1 0 0O 0 -1 O
We apply 0,1, to |ud):

0 1 0 0 0 1

1 0 O 0 1 0

0O 0 -1 O 0 0

For Kronecker product holds a kind of distributive rule. Let 4, B be two 2 X 2 matrices and u, v two
2 X 1 column vectors:

(‘111 ‘112) B:
Qazy Qgp)’ b,y by,

w= (i) = (03)
u (U ) Uy

U0,
u®uv= UV
2V1
Uz
UZ Uy Uy

a11b11  ay1biz  aizbyn agzby;

(bll balz)

, Ul

AQB:= a11by1  Qi1by;  ay2bay aAq2by;
Az1b11  Qz1b1z2  Agzbyy  agzbyy
Az1ba1  Qz1by;  Agaby1 aAgzzba;

To prove:
(A®B)(u®v) = (Au ® Bv)
Left side (A ® B)(u ® v):

a11b11 Ai1biz Aizbiy izbyn U1
Ay1b21 a11bay  ai2by1 Agzbyp || W2
az1b11  Qz1b1z  azzbiy aAzabyn U1
Az1b21  A21ba;  Qz2h31  azzby; Uzv2

a11b11U V1 + A11b12U Uy + Aq2b11 UV F Ag b UL Y,
a11b21U V1 + A11D22U V5 + A12D21U V1 + QgD UL Y,
a1b11U V1 + A1b12U V5 + Agpb11U VL + A by UL Y,
Ay1b21U V1 + Ax1bUq Uy + Agp b1 UV + Agabapun v,

Right side (Au ® Bv):

ai, a12) (u1) _ (a11u1 + a12u2)
az1 A2/ \Up az1Uq + AUy

_ (bq1 b12) U1\ _ (b11v1 + b12172)
Bv = (b21 by, (UZ) ~ \ba1v; + by

ajqug + a12u2) (b11771 + b12772) _
Az1U1 T AUy by1v1 + baav;

Au=(

(Au ® Bv) = (
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bi,v1 + b12”2>
by1v1 + byav;

biv1 + b12”2)
by1v1 + baav;

(a;1uy + agouy) (

(az1uq + azauy) (

ay1Uy (b11V1 + by2v3) + aq2uz (by1vy + byavy)
ay1Uy (b21V1 + byov3) + aiouy (ba1 vy + byyvy)
az1Uy (b11V1 + b1oV;) + gy (b11v1 + bypvy)
az1Uy (b21V1 + baav2) + azauy (byy vy + bypvy)

a11U1b11V1 + a1U b1V, + AgUs by Uy + AUz by Y,
a11U1ba1V1 + AU by + agpUs by Vg + agpUsbao vy
Az1U1b11V1 + Qz1U b1oV; + Agoup by vy + Agous by
Az1U1bz1 V1 + Az1U1 D22V, + AUz b1 V1 + xoUsban v,

Both sides are equal.

page 208 of 433



quantum-abc

Lagrange equation:
The Lagrangian is kinetic energy minus potential energy:

L=Egpn—V(x)

For the potential of a harmonic oscillator:

1 1
L == -2__k 2
me > X
We substitute:
x = xvym
k
w= [—
m

Note: w will become the frequency of the harmonic oscillator.

The Lagrangian becomes:

1 1
L = = %2 — Z2x2
2x wa

For a one-dimensional system (the harmonic oscillator) we have only one Lagrange equation:
oL d oL
dx  dtox

We do partial differentiation:

o
ox

This is called the canonical momentum conjugate to x. We complete:

oL _daL _d

ox "o @t ¥

This is the right-hand side of the Lagrangian. We calculate the left side:

oL 0 (1 1
2

% Ox E}'cz ——w2x2> = —w?x
We write down the complete Lagrange equation:
—w?x =%
This differential equation is equivalent to F = ma with the solution:

x = A cos(wt) + B sin(wt)
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Lagrangian, harmonic oscillator and Lagrangian:

N . 1, 1
Kinetic and potential energy are mez and Ekxz.

For convenience we aggregate the variable x to

x = Vmx

and use a new variable, the frequency of the oscillator:

With this the Lagrangian (kinetic energy minus potential energy):

1 1
L= Exz —Ea)zxz

In this form, oscillators are distinguished from each other only by their frequency w.

From the Lagrangian we can work out the equations of motion. We have a one-dimensional system
with one Lagrangian:

JdL _ d oL
dx  dtox
Left side:
oL
e —w?x
Right side:
d oL _
dtox
d d /1 1
2 __,2,2 —
dt 0% (zx 2@ )
d
E(X) =X
We combine both results:
¥ =—-w?x

This is a differential equation with the general solution:

x = A cos(wt) + B sin(wt)

Lagrangian, path integrals and Lagrangian:
Prerequisite

For any integral over the position variable x we can insert the identity:

I = flx)(xl dx

End prerequisite
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Classical 1

p-303
According to the least action principle, classical trajectories are that of

minimum action. Action is a technical term and stands for the integral of
the Lagrangian between the end points of the trajectory.

For simple systems, the Lagrangian is kinetic energy minus potential
energy. For a particle moving in one dimension, the action is: -

t;

A= f L(x, %)dt

ty

We insert the Lagrangian:
ty
1 1
A= | =mx? —=kx?dt
fzmx > X
t1

We search the path with the least action A by help of calculus procedures.
Quantum mechanical

The idea of well-defined trajectory between the two points makes no sense in quantum mechanics
because of the uncertainty principle.

The global version of quantum mechanics asks: Given a particle starts at (x,,t;), what is the
probability amplitude it will show up at (x5, t,)?

We call the amplitude C; , == C(xy,t1; X5, t5).
The initial state of the particle is:
[Y(t1)) = |x1)
Over the time interval between t; and t, the state evolves to:
[(t,)) = e HE27t)|x, )
Note: we use units for which A = 1.

We replace (t, — t;) by t. The probability amplitude to detect the particle at |x,) is the inner
product:

(x2|Y(tr)) = (xz |e_th|x1>

The process of quantization starts with splitting the time interval t into two smaller intervals of size %

The operator e "t can be written as the product of two operators:
: it _igt
e—l[-[t — e—lHZe le

We integrate this via the help of the identity operator:

o el

The heart of this process is: the amplitude to go from x; to x, over the time interval t is an integral
over an intermediate position x and is the product of two amplitudes.

—int

.t
e 2 ]

e x1> dx
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We repeat this until we have time intervals of size € (remember this process in calculus ...). In the
end, the amplitude is an integral over all possible paths between the end points. Feynman discovered
that the amplitude for each path has a simple relation to an expression of classical mechanics, the

action for that path.
The exact expression for the action A of each path is:
A
i

i
e

Feynman’s formulation can be summarized by the equation:

A
C1,2 = f elﬁ

paths

In quantum field theory this is the principal tool for formulating the laws of elementary particle

physics.

Least action principle, classical physics:

According to the least action principle, classical trajectories are that of
minimum action. Action is a technical term and stands for the integral of
the Lagrangian between the end points of the trajectory.

For simple systems, the Lagrangian is kinetic energy minus potential
energy. For a particle moving in one dimension, the action is:
t;
A= f L(x, )dt

ty

We insert the Lagrangian:

We search the path with the least action A by help of calculus procedures.

Linearity:
1.

Let |A), |B) and |C) be ket vectors, z a complex number, then:

1. Closure: the sum of two vectors is a vector:
|4) + |B) = |C)
2. Vector addition is commutative:
|A) + |B) = |B) + |A)
3. Vector addition is associative:
{14+ |B)}+|C)=[A)+{I|B)+|C)}
4, Existence of the O:

|4) +0 = |A)
5. Existence of the inverse:
|[4) + (—[4) =0

&

X1

Xz
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6. Multiplication by a scalar produces a new vector:

|zA) = z|A) = |B)
7. Distributive property:

z{|A) + |B)} = z|A) + z|B)
{z + w}|A4) = z|A) + w|A)

Axioms 6 and 7 taken together are often called linearity.

Note: for “ordinary” spatial vectors the multiplication with a complex number is not defined.

2.

An operator M acting on a ket |A) produces a new ket |B):

For M to be a linear operator:

M|A) = |B)

e M|A) = |B) must hold for every ket |A)
o Mz|A) = z|B) for every complex number z
e M{|A) + |B)} = M|A) + M|B)

Linear motion (how to scatter wave packets):

Prerequisite

The quantum analog of Newton’s equation for the time rate of change of momentum:

d o _ AV
\Pr=—0

Note: P momentum operator, V operator for potential Energy, { ) the expectation value.

End prerequisite

The expectation value of the position operator X does not (always) follow the classical trajectory. It

would if

but this is not always true.

av
dx

B dV{x)
 dx

Imagine a wave packet Y (x) with bimodal shape:

A

6+

5+

b Y
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The expectation value of Y (x) is zero because () is centered around the origin:
(x)=0
If we apply a force (Z—Z) of kind F = x? to this wave packet there is a difference between (F(x)) and
F({x)):
F({x)) =0
(F(x))#0

Quantum equation of motion looks classical if wave packets are coherent, well localized and the
potential function V() is smooth with respect to the size of the wave packets.

If this is not the case the wave packet will scatter, and the classical trajectory is lost.

Linear (Hermitian) operators:
A linear operator X acts on a function and gives a new function:

X(f(-)) =g(-)

X is said to be linear if:
X(f+9)=X(f)+X(9)

Xz -f)=zX(f)
Note: z is a complex number.
We often work with the position operator X and the differentiation operator D.
The position operator X:

Xfx)=x-f(x)

The differentiation operator D:

D) = o b
Both operators are linear.
An operator X is said to be Hermitian if it is identical with its transposed complex conjugated:
X=Xt
An operator D is said to be anti-Hermitian, if:
D =-pt
By multiplying an anti-Hermitian operator with —i it becomes Hermitian.
The position operator X is Hermitian.

The differentiation operator D is anti-Hermitian. For later application we multiply D with —if to
make it Hermitian.
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Linear operators, eigenvalues and eigenvectors of linear operators:
A linear operator acting on a vector normally changes the direction of the vector.

Vectors that keep their direction are called eigenvectors. If length is not preserved, the eigenvector is
multiplied by its eigenvalue, a (complex) number. If even the length of the vector is preserved, we
call them eigenvector to eigenvalue 1.

. —

Linear operators, the Gram-Schmidt procedure: Vof 7 Va

Given two vectors I71 and 172 in R? that are not orthogonal.
We construct two orthonormal vectors, ¥; and 7.

From ¥; we get the unit vector 7;:

-

~

v AR
D = —— P (V|01)9, !
|| Do

We need the projection of ¥, onto v, :
- ~ ~
(V2|01)01
We construct ¥, :
- _ = > 1A A
Uy1 = Uy — (V| D1)D;
We build 9,:

-

5. = Va1
2 T >

29
Vectors ¥; and ¥, are orthonormal.

Linear operators, Hermitian conjugation:

You take the matrix representing a linear operator M, transpose it M — M7 and complex conjugate
the result MT —» (MT)*.

(MT)* is called the Hermitian conjugate to M, written as M.
Note: an operator (a matrix) M that satisfies MTM = I is called unitary.

Linear operators, Hermitian operators:
For Hermitian operators (and matrices) holds:

e Their eigenvalues all are real.

e Their eigenvectors form a complete set. Any vector the operator can generate can be
expanded as a sum of its eigenvectors.

e If two eigenvectors have different eigenvalues, they are orthogonal.

e Two eigenvectors with equal eigenvalues can be orthogonalized (e.g. via the Gram-Schmidt
procedure).

Linear operators, Machines and Matrices:

John Wheeler liked to call operators: machines with an input port and an output port. In the input
port you insert a vector |A) and get back a vector | B) at the output port.

John Archibald Wheeler (July 9, 1911 — April 13, 2008) was an American theoretical physicist. He was
largely responsible for reviving interest in general relativity in the United States after World War 1.
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Wheeler also worked with Niels Bohr in explaining the basic principles behind nuclear fission.
Together with Gregory Breit, Wheeler developed the concept of the Breit—Wheeler process. He is
best known for using the term "black hole" for objects with gravitational collapse already predicted

during the early 20th century, for inventing the terms "quantum foam", "neutron moderator",
"wormhole" and "it from bit", and for hypothesizing the "one-electron universe". (courtesy wikipedia)

Linear operators, observables and linear operators:
The principles of quantum mechanics involve the idea of an observable. They presuppose the
existence of an underlying complex vector space whose vectors represent system states.

e Principle 1:
the observable or measurable quantities of quantum mechanics are represented by linear,
Hermitian operators L.
e Principle 2:
the possible results of a measurement are the eigenvalues 4; of the operator representing
the observable. The eigenvalues A; corresponds with eigenvectors |4;).
reformulated: if the system is in the eigenstate |1;), the result of a measurement is
guaranteed to be 4;.
e Principle 3:
unambiguously distinguishable states are represented by orthogonal vectors.
e Principle 4:
if |[A) is the state-vector of a system, and the observable L is measured, the probability to
observe value |4;) is:
P(2) = (Al2;){2;]4)
or equivalently:
P(2) = [(A|A)I?
e Principle 5:
The evolution of state-vectors with time is unitary.

Linear operators, outer product as linear operators:
Given the ket |i) and the bra (¢p| we can form the outer product:

W)l

The outer product is not a number, it is a linear operator (a matrix).

a

We show this in matrix representation. Let |Y) := <b> and{(¢p| = (d e f):
c

a ad ae af
<b> (def)=|bd be bf
c cd ce cf
Note: this looks similar to the tensor product.
The outer product [){¢| acting on ket |A):
[WNlA) = [P)z = z|p)
As (¢p|A) is a (complex) number z, the result is proportional to |).

The same goes for outer products acting on bra (B|:

(Blyp)e| = z(¢|
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Linear operators, properties of linear operators:

e Linear operators give a unique output for every vector in the space:
M|4) = |B)

e Alinear operator acting on a multiple of an input vector gives the same multiple of the

output vector:

Mz|A) = z|B)

Note: z is a (complex) number.

e Alinear operator M acting on a sum of vectors gives the sum of M acting on each vector:
M{|A) + |B)} = M|A) + M|B)

Linear operators, time-development operator:
Time-development of a quantum state |) is written with a Hermitian time-development operator
U(t):

[W(@)) = U®)|(0))
and
W®)| = POUT©)
Suppose |[Y(t)) and |p(t)) are two distinguishable states. Therefore, they must be orthogonal:
W®Ip@) =0

Orthogonality is preserved for all times:

W) = WO|UTOU®)|$(0))

Consider an orthonormal basis of vectors |i) with [1(0)) and |¢(0)) being members of this basis.
Orthonormality is expressed:

(ilj) = 6;;
Note: §;; is the Kronecker symbol.

We rewrite orthogonality:
W®lp®) = ({{UTOU®L]) = 8

From this we could conclude that Ut (t)U(t) must be a diagonal matrix with all entries on the
diagonal being 1 — the identity matrix. An operator U that satisfies this condition is called unitary.

In other words: time evolution in quantum mechanics is unitary.

Liouville’s theorem:

In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key
theorem in classical statistical and Hamiltonian mechanics. It asserts that the phase-space
distribution function is constant along the trajectories of the system—that is that the density of
system points in the vicinity of a given system point traveling through phase-space is constant with
time. This time-independent density is in statistical mechanics known as the classical a priori
probability. (courtesy Wikipedia)
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Locality:

Locality in the quantum field theorist’s understanding means: it is impossible to send a signal faster
than speed of light. In other words: an entangled system changes in one instant, even if it is spread
out in space, but it is impossible to detect this change by measuring the subsystem you have in reach
(and the information of the rest goes its way slowly by speed of light ...)

Lowering operators (annihilation operators):
The Hamiltonian can be expressed in terms of the momentum operator P and position operator X:

1 1 , ,
H= E(PZ + w?X?) = E(P + iwX)(P — iwX)

iw .
Note: ~ is necessary because P and X do not commute.

(P + iwX) is called the raising operator, (P — iwX) the lowering operator, written as a* and a™.

The raising operator a® shifts the energy level of the harmonic oscillator to the next possible higher
level, the lowering operator a™ to the next possible lower level.

Applying the lowering operator to the ground level with Energy E, = %h annihilates this ground level.
Symbolically this is expressed as
a”|0)=0

with |0) representing the ground level state.
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Machines, matrices and machines:

John Wheeler called operators: machines with an input port and an output port. In the input port you
insert a vector |A) and get back a vector |B) at the output port.

We translate this in matrices acting on state vectors. A matrix acting on a vector |A) delivers a new

vector |B).

Magnetic field, spin in magnetic field:
Prerequisite

The Pauli matrices:

(0 1 (0 —i (1 0
Ox = (1 0)’0y— (i 0)’02_(0 —1)
Let |y (t)) be a state vector and L an operator. The change of the expectation value of an operator L
with time:

d [
T WOILP©) = =+ (L H)

Written in shorthand form:
L= i ([L,H])
h L H]

End prerequisite

When a classical spin (a charged rotor) is put into a magnetic field, it has an energy that depends on
its orientation. It is proportional to the dot product of the spin and the magnetic field.

The quantum version of this:
H~G B = 0By + 0By + 0,B,
Note: oy, 0, and g, represents the components of the spin operator.

The magnetic field lies along the z axis. We absorb all numerical constants without % into a single
constant w and get the quantum Hamiltonian:

hw
H = TO'Z

We search how the expectation value of the spin changes with time, (g, (t)), (o, (t)) and (g,(t)). We
use:

() = =7 (o H)

(6) =~ (loy, H)

(6,) = =7 ([0, H)
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. I R
We plug in the quantum Hamiltonian H = Twaz and get:

<0x> = _%qaxvo-z])
. iw
<0y) = _7<[Gy' oz])

(6 = ~ 5[0z,
We check this explicitly for (0,) = — ([, 5,1} by using the Pauli-matrices:
lox, 0,] = 0x0, — 0x0, =
G 0 D=6 DG o=
G -G o)=G )=
2] ) = -2y
We get:

(G) = — 5 (~2i0y) = ~a(o)
The results:
(0x) = —w(oy)
(@) = o)
() =0

In classical mechanics, the x and y components of angular momentum are precessing around the z
axis.

In quantum mechanics the expectation values for {g,) and (o,,) will be precessing, but each single
measurement will always give +1 or -1. The expectation value for {g,) remains unchanged.

Mathematical concepts:

Complete sets of commutating variables:

In bigger quantum mechanical systems, we may have multiple observables that are compatible, their
values can be known simultaneously. In these situations, we need multiple measurements to fully
characterize the state of the system.

The logical chain is as follows:
One observable — one operator — one system of basis vectors.
Multiple observables — several operators — several systems of basis vectors.

Multiple compatible observables (observables that can be measured parallel) — several commuting
operators — several systems of basis vectors — the commutator of commuting operators destroying
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the basis vectors — the commutator of commuting operators destroying every vector combined out
of the basis system. This collection is called a complete set of commuting observables.

Mathematical concepts, complex numbers:
A complex number consists of a real part and an imaginary part. We can write it as z = a + ib with
a, b € R. The imaginary unit i has the propertyi-i = —1ori? = —1.

We can represent complex numbers by a plane with the horizontal real axis and the vertical
imaginary axis. This is called the cartesian mode.
Im

z=a+bi=re'"
2

' ... graphic courtesy of

Wikipedia ...
» _W_J

C

A second way of representation describes a complex number by the angle it has with the real axis
and its length resp. the absolute value. This is called the gaussian mode. In this mode we write a
complex number as r - %®.

We can switch from one representation to the other:

Givenz = a + ib: |z] or r = Va? + b? 7} =arccos(%) ifb>0
resp. ¢ = —arccos (g) if b <O0.

Given z = re'?: a =r1-cos(p) b =r-sin(p)

or z =71+ (cos(p) + i-sin(p))

Every complex number z has a complex conjugate number, marked as Z or z*. The complex conjugate
switches the imaginary part to the opposite sign. z = a + ib changes to Z = a — ib and vice versa.

With this we get new formulas:

|z = Vzz
zZ+Z
re(z) ora =
2
-
im(z)orb=T

Additions and subtraction of complex numbers are best performed with the cartesian
representation.

(a+ib) + (c+id) = ac + ibd
Multiplication and division are best performed with the gaussian representation.

rel? - rel = rr,el@+o)

page 221 of 433



Machines, matrices and machines - Multiplication, vector multiplication

A number of the form z = e'? has the absolute value 1: |e‘¢| =Vel@e~ @ =0 =1 =1.1Itis
called a phase factor. No measurable quantity, no observable is sensitive to an overall phase-factor,
so we can ignore it when specifying states.

Note: complex numbers often are used for “a trick” in calculations. With complex numbers you can
transform a sum into a product: (x + iy)(x — iy) = x? + y2.

Mathematical concepts, continuous function:

We begin by picking an observable L, with eigenvalues A and eigenvectors |1). Let |i) be a state-
vector. Since the eigenvectors of a Hermitian operator form a complete orthonormal basis, the
vector [1) can be expanded as Y7~ ; ¥(4;)|4;). The quantities Y (4;) are called the wave function in
the L-basis of the system, so their actual form depends of the observable chosen.

Note: other observable — other wave functions, even it is the same state.
The eigenvectors are orthogonal to each other: (4;|4;) = &;;.

We can identify the wave functions with the inner product, the projections of the state-vector [i)
onto the eigenvectors |1): Y (1) = (A|Y).

You can think of the wave function in two ways. First of all, it is a set of components of the state-
vector in a particular basis, the components forming a column vector:

(1/1(/11))
P(4n)
You also can think of the wave function as a complex valued function of the discrete variable A: /(4).

A single spin system has a two-dimensional space of state. The coordinates of a particle, moving on
the x-axis can be found on any real value of x, the observable has an infinite number of possible
values: x € R. The former discrete wave function Y (x;) becomes a function of a continuous variable

().

Mathematical concepts, continuous functions as vectors:

Let us consider the set of complex functions ¢ (x) of a single variable x: x = ¢ (x) with ¢(x) € C.
With appropriate restrictions, functions like ¢ (x) satisfy the mathematical axioms that define a
vector space (algebraic structure) as there are:

Closure: @(x) + 6(x) = 9(x)
Commutative property: @(x) + 6(x) = 6(x) + ¢(x)
Associative property: (¢(x) + 0(x)) + 9(x) = p(x) + (6(x) + I(x))
Zero: p(x) + 0 = ¢(x)
Inverse: @(x) + (—p(x)) =0
Multiplying property: zp(x) = 7(x)
Distributive properties:
a. z[e(x)+60x)] =zp(x) + 2z0(x)
b. [z+w]p(x)=2z¢(x) + wo(x)

NowuhswNPE

All of this works with functions too so we can identify the functions ¢ (x) with the ket-vectors |¢@) in
an abstract vector space. The corresponding bra vectors are ¢*(x).
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Continuous functions require:

a) Integrals replace sums
b) Probability densities replace probabilities
c) Dirac delta functions replace Kronecker deltas

a) Integrals replace sums:

the inner product {¢|9):

was: ¥, ; ©; 0;0;;

is: [ @*(x)0(x)dx

b) Probability densities replace probabilities:

was:

|A) state-vector, observable L, the probability to observe value 4;: P(1;) = (A|4;){4;|A)
is:

probability density: P(a, b): f: P(x)dx = f: @*(x)p(x)dx

analog to the discrete case we define a normalization condition:

f P ()p()dx =1
c) Dirac delta functions replace Kronecker deltas:

Consider a vector F; in a discrete, finite dimensional space. Zi,j(&-ij) gives Fj because §;; is nonzero
only fori =j.

The Dirac delta function performs this: §(x — x") returns zero for all x # x’ and "o0" for x = x”:
| 86e—xnpandx = £o
Note: the Dirac delta function can be thought of as lim ne~(mx?,

n—oo

Mathematical concepts, continuous functions, integration by parts:
The rule for integration by parts:

b b
deG:FG|2—f GdF
a a

We work with normalized functions that span the entire x-axis and go to zero at infinity, so the
expression FG|3 becomes zero. With this we get an expression that is often used in physics:

[ ric =~ [ car

page 223 of 433



Machines, matrices and machines - Multiplication, vector multiplication

Mathematical concepts, continuous functions, linear operators:
An operator L acting on wave functions is linear:

Additive: L((p(x) + H(x)) = Lo(x) + LO(x)
Homogeny: L(zqo(x)) = zLp(x)
Two examples:
a) The “multiply by x” operator with the symbol X: X¢p(x) = x@(x) withx € R

de(x)

b) The “differentiate” operator with the symbol D: Dp(x) = T

Both are linear operators.

Mathematical concepts, outer products:
Given the ket [1) and the bra {(¢| we can form the outer product:

[ )l

The outer product is not a number, it is a linear operator (a matrix).

a
We show this in matrix representation. Let |y) := (b> and{(¢p| = (d e f):
c
a ad ae af
<b> (def)=|bd be bf
c cd ce cf

Note: this looks similar to the tensor product.
The outer product |i){¢| acting on ket |A):
[WNlA) = |[P)z = z|p)

As (¢p|A) is a (complex) number z, the result is proportional to |).
The same goes for outer products acting on bra (B|:

(BlyXo| = z(|
Let |Y) be a normalized ket with its corresponding bra (y|.
The outer product:

N

is called a projection operator.
Projection operators have the following properties:

e Projection operators are Hermitian (Hermitian matrix).
e The vector |) is eigenvector of its projection operator with eigenvalue 1:
(DYDY = [¥)
e Any vector orthogonal to |i) is eigenvector with eigenvalue zero. Thus, the eigenvalues of
[Y)()| are 0 with the exception of the eigenvector [i) itself that has eigenvalue 1.
e The square of a projection operator is the same as the projection operator itself:

)| % = [Y)y]
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e The trace Tr of a projection operator is 1 and has only one entry of value 1.
o |f we add all the projection operators for a basis system, we obtain the identity operator:

Z|i><i| =1

e The expectation value of any observable L in state [) is given by:

(WILIp) = Tr [Y)y| L

Mathematical concepts, tensor products:
asq a12) B = (bn ba12>

Let A and B be two 2 X 2 matrices: A := (a21 . =1} b
21 21

The matrix version of the tensor product, sometimes called the Kronecker product:

aj1 a12) (b11 b1z)=
d21 Q22 ba1 b2

a (b11 b12> a (b11 b12>

1\by; by 12\by; by,
byq b12) (bn b12)

a a

21 (b21 by, 22\by; by

ay1by1r  aq1b12 ag2b11 aqzby;

a11by1  ai1by;  a12by  agzby;

az1by1  az1b1z;  azzby agzby;
az1by1  az1ba;  aAzzbyy  azzby;

A®B=(

We combine state vectors. The tensor product of the up and down state vectors:

=3

=)

We combine:

11 1(1) (1)
ha) = [l = () ® () = ) (2) -9
0 0
We combine operators. g, = (é _01), Ty = (2 (1))
ot 60 5-(1G D GOV 8 S
ooVt 0(1 0) _1(1 0) 8 8 —01 _01
We apply 0,1, to |ud):
01 0 0\/0 1
@@l o 0 0 O N L])=0])=tuw
00 -1 0/\0 0
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For tensor product holds a kind of distributive rule. Let A, B be two 2 X 2 matrices and u, v two

2 X 1 column vectors:
<b11 ba12)
by by

(a11 a12) B:
Qzy  Qz2)’

w= () v = (1)
Iv_
U;
o)\ _ v,
_ th () U0y
uQuv = UV
2V
w(y))
(&) Uy Uy

a11b11  ay1b1z  aszbin agzby;

[ a11b21  a11byz  ag2by1 agzby;
A®B:=| b b b b

21011 Q21012 Q2011 Q22012

Az1b21  Q21bap  Gg2b21  Azzbyy

To prove: (A® B)(u ® v) = (Au ® Bv)
Left side (A ® B)(u ® v):

a11b11 Ai1biz Aizbiy aizbyn U
Ay11b21 a11baz  @i2by1 Agzbyp || WV
az1b11  Gz1b12  Qzzbiy aAgbyp || Ui
Az1b21  A21baz  Az2by1  azzby; Uzv2

ay1b11U V1 + a11b12u vy + Ag2b11 UV F Aga b UL Y,
A11b21U1V1 + Q11D2u Uy + A12D31 U Yy + A1y un
Az1b11U1V1 + Az1b12U Uy + Agab11UR Yy + Agabipun Yy
Az1b21U1 V1 + Az1b22U 1V, + Agba1 U V1 + AgaDa5u v,

Right side (Au ® Bv):

ai1 A2\ (U1 11U + AUy
Au = =
A1 A2/ \Up Az1U1 T AUy

byq b12) %1 (bllvl +b12v2)
Bv = =
v (b21 by (172) by1v1 + byp vy

_ (Q11Uq T AUy by1vy + b12v2> =
(Au ® Bv) - (a21u1 + a22u2) ® (b21171 + b22v2 B
biivi + b12172)
by1v1 + byov,
bi1vq + b12v2)
by1v1 + by,

(aj1uy + agpuy) (
(az1uq + azauy) (

ay1Uy (b11V1 + by2v2) + ag2uz(by1Vy + byavy)
ay1Uy (D21V1 + byov3) + a1y (ba1 vy + byavy)
az1Uy (b11V1 + b1aV;) + azouy (b11v1 + bypv)
az1Uy (b21V1 + baav3) + azauy (bzy vy + by V)

A11Uyby1V1 + a1U b1 V; + AU by Vg F AgUs by Y,
a11U1Da1V1 + QU by + agoUs by vy + agpUsbar vy
Az1U1b11V1 + Qp1U D1 V; + Apous by Vg + g b vy
Az1U1bz1Vy + AU D22V, + AgUs by V1 + gousbas v,

Both sides are equal.
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Mathematical concepts, vector spaces:

The space of states of a quantum system is a Hilbert vector space with either a finite or an infinite
number of dimensions. It is composed of elements |A) called ket-vectors or just kets and their
counterparts (A|, the complex conjugated and transposed version of |A). (4] is called bra.

Note: the term vector and ket are used synonym.
The axioms for kets:
Let |A), |B) and |C) be vectors and z, w complex numbers, then:

1. Closure: the sum of two vectors is a vector:
|4) + |B) = |C)

2. Vector addition is commutative:
|A) + |B) = |B) + |A)

3. Vector addition is associative:
{l4) + |B)} + |C) = |A) + {|B) + |C)}

4, Existence of the O:

|A) + 0 = |A)
5. Existence of the inverse:
|4) + (—[4) =0

6. Multiplication by a scalar produces a new vector:
|zA) = z|A) = |B)

7. Distributive property:
z{|A) + |B)} = z|A) + z|B)
{z + w}|A) = z|A) + w|A)

Axioms 6 and 7 taken together are often called linearity.

Ket |A) can be written as column vector:

The corresponding bra (A|:

(a1 a3 az)
If z is a complex number, then:

z|A) & (A|z”

The dot product version, the inner product of bra and ket:

(B|A) =z
Note: z is a complex number
The inner product is linear:

(Cl {l14) + |B)} = (C|A) +(C|B)
Interchanging ket and bra corresponds to complex conjugation:
(BlA) = (A|B)"

Note: (A|A) is always a real number.
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A ket |A) is normalized:
(AlA) =1
Note: a spatial vector A of length 1 is called unit vector.
Two kets |A) and |B) are orthogonal:
(B|A) =0
Consider an orthonormal basis of kets labeled |i). The ket |A) can be written as:

14) =Zai|i>

4

Analog to the spatial case we can express every ket as a sum of basis kets. The «a; are called the
components of the ket.

Note: in quantum mechanics basis vectors generally are orthonormal:
(i) = 6y

To calculate the components, we take the inner product of both sides of |A) = Y}; @;|i) with a basis

bra (j|:
14y = > Gileili) = D au(jli) = o
With this we can rewrite:
14) = > ailiy > D il 1) = ) lixil4)

Note: |i)(i| is called the outer product, the sum over all i gives the identity matrix:
Mliil =1
i

Matrices:

Machines and matrices:
John Wheeler called operators: machines with an input port and an output port. In the input port you
insert a vector |A) and get back a vector |B) at the output port.

We translate this in matrices acting on state vectors. A matrix acting on a vector |A) delivers a new
vector |B).

Pauli matrices:
The Pauli matrices (operators):

_(0 1 _ (0 —i _(1 0
Ox = (1 0)'0y = (i 0)'02_(0 —1)
Any 2 X 2 Hermitian matrix L can be written as a sum of the Pauli matrices and the identity matrix I:
L =aoy + boy, + co, + dl

Note: a, b, ¢, d are real numbers.
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Building matrices from tensor product:
Prerequisite

To calculate the numerical values m;; of a matrix M we use basis vectors {(j|, |k):
mye = (jIM|k)
The basis vectors of a single spin system in the up-down state in symbolic representation:
|uu), |[du), lud), |dd) resp. (uu|, (du|, {ud|, (dd|
The (Pauli) operator g, acts on the basis:
o,|luu) = |uu), o,|lud) = |ud), o,|du) = —|du), o,ldd) = —|dd)
End prerequisite

Building a 4 X 4 matrix out of two 2 X 2 matrices via the tensor product:

(e ) p(e I ae af be bf
¢ 0o - p e

g h g h)\_ [ag ah bg bh
c (e f) d (e f) cd cf de df
We build the tensor product g, @ I:

g h cg ch dg dh

1 0
0 -1

(
1o 1) 06 1))_ é

1 0 1 0\/ -1
0(0 1) 1(0 1) 0 0 0 -1
The operator g, (a short form of g, ® I) in the combined system can be represented by a 4 X 4
matrix.

O'Z®I=(

We check this with the example g, |du) = —|du).

|du) in vector representation:

0
0
1
0
o, resp.a, @ I:
1 0 O 0
01 0 0
0 0 -1 0
0 0 0 -1
o,|du):
1 0 O 0 0 0
01 0 0 0 0
ldw =\ o —1 o J\1)7 1) 7law
0 0 0 -1 0 0
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Matrix elements:
Let M be a 3 X 3 matrix:

mi1 Myz My3
M =M1 My, My3
mz1 M3z M33
The quantities m4, etc. are called the matrix elements.
Note: if M is an operator, it can be represented in more than one basis.
We can reproduce the matrix elements out of an operator by:
(kIM|j) = my;

Note: the m, ; are complex numbers, their values changing with the basis |}), (k| chosen.

Matrix multiplication:
In principle

Let M, N be two 3 X 3 matrices. The product M - N:

mi; My Mag N1 Nqp Ng3
M-N=|My1 My Myz |-|N21 Nz MNy3 | =

mzy M3z M3z nz1 N3z N33

My N1 + MypNpq + Mp3zNzy  MpNyp + MppNpp + Mp3N3y  MpqN3z + MypNpz + Mp3Nas

<m11n11 +T MypNy1 + My3N3y MMz + MypNyy + My3N3y MMz + MypNy3 + m13n33)
M3 Nqq + M3aNpq + M3a3N3y  MzgqNqp T M3pNpy + M3a3N3y Mg Nz + M3Ny3 + Ma3Nas

Multiplying a matrix M by a column vector a:

mi; My Maz\ /4
M-a=[my1 My my3|lay]=
mz1 M3z Mgz3z/ \A3

mqqQaq + Mypa; + myzas
My Qg + Myyay + My3as3
mz1Qq + M3Q, + M33a3

Multiplying a matrix M by a row vector a:

miy; My My3
a M= (a;a, azg)| Ma1 Mz Mp3 | =
Mmgzp M3 Mgz3

(aymq1 + azmy; +azmz; ayMyy + ayMyy + azms;  ayMyz + a;Myz + azmsz)

Matrix notation, transposing in matrix notation:
For complex vector spaces

Switching from a M|a) to its corresponding (a|M requests complex conjugation of the elements of
the ket |a) and transposing and complex conjugation of the matrix M. The complex conjugate of a
transposed matrix is called its Hermitian conjugate.

My My My3\ /g
M-|a)y=({Mz1 Mz Mpyz || az | =

Mmgzq Mz Mg3z/ \Ad3
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my1Qq + Myay +My3az
Mm3z10q + M33a; + M33a3

(m11a1 +mypa; + m13a3>
Multiplying a matrix M by a bra {a|:
mi; Mz M3y
(al*MT = (aj a3 a3){ mi; m3 m3, |=
miz Mzz Maz
(aimiy +azmy, +azmiz  aymy; +azms, +azmzz  aymsg + azms, + azmss)
This might be puzzling in the beginning, so please remember:
M|A) = |B) - (A|[MT = (B
Maximally entangled state:

Prerequisite

We have a single spin system in the up-down basis:

)

alu) + B|d)
The wave function:

Y =«a Y =a

Y =p Y (d) =p"
The density matrix:

a‘a a'f
paa=(goq gog)

The density matrix describes the probability to change the system from one possible state into
another. The probability for a state to change from |u) to |u) is a*« etc.
End prerequisite
Suppose we have a two-spin system, maximally entangled.

When Alice calculates the density matrix of her subsystem for the maximally entangled state, she
finds:

Para =

oS N
N|—= O

This means that Alice knows nothing about her system. The states |u) and |d) have a 50% chance.
She cannot determine the state her subsystem is in. This is in contrast to a composite system in the
product state. In this product state all of Alice’s observations are described as if Bob and his system
never existed. In this case the density matrix of Alice would have exactly one entry that is one, the
rest equals zero — she can determine the state her system is in.

Note: the singlet state is maximally entangled:
1

|sing) = \/E(Iud> + |du))
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Maxwell’s equations:
Quantum electrodynamic can be deduced from Maxwell’s equations.

In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of
electrodynamics. In essence, it describes how light and matter interact and is the first theory where
full agreement between quantum mechanics and special relativity is achieved. QED mathematically
describes all phenomena involving electrically charged particles interacting by means of exchange of
photons and represents the quantum counterpart of classical electromagnetism giving a complete
account of matter and light interaction. (courtesy Wikipedia)

Mean value:
In guantum mechanics mean value or average value is called expectation value.

In statistics the mean value x is denoted by x.
In quantum mechanics the mean value of the observable L is denoted by (L).

From a mathematical point of view, an average is defined by the equation
)= PG
i

This is a weighted sum, weighted with the probability function P.

From an experimental point of view, we can identify P(4;) as the fraction of observations whose
result was A;. The greater the number of experiments, the better mathematical and experimental
notions of probability and average will agree.

Let |A) be the normalized state of a quantum system.

We expand |A4) in the orthonormal basis of eigenvectors of an observable L

14) = e I4)

i

4l= ) (la;

and its counterpart:

We compute the quantity (A|L|A):
(AIL|A) = (AIL| X ;| 4;) =
(Al X aiL |4) =
(Al Ziaidi 14)) =
Qiilag | X aidi 14:)) =

Y adula) =

.
Z a; aid;

i
i
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Comparing this with the definition of an average (L) = Y}; 1;P(4;) we can identify:
PA) = aja;

We get the result:
(L) = (A|L|A)

To get the mean value or average of an observable (L) we have to sandwich it between the bra and
ket representation of the state-vector.

Measurables, states that depend on more than one measurable:

If there are multiple measurables, we need multiple measurements to fully characterize the state of
a system. We start with a two-spin system and two operators (measurements) L and M.

If we measure both spins in a two-spin system, the systems winds up in a state that is simultaneously
eigenvector of L and eigenvector of M.

Let 4;, |4;) and g, |1a) be eigenvalues and eigenvectors of L and M, the eigenvectors building a
basis. Leaving out the subscripts we write:

LIA4, p) = A4, 1)
M4, 1) = ul4, 1)
We apply both operators:
ML|A, p) = MA|A, p) = pi|4, 1)
LM\, p) = Lp|A, p) = Au|d, p) = pA|A, u)
We get:
ML|2, py — LM|A, p) = [ML — LM]|4, ) = [M, L]|4, ) = 0

Result: if there is a complete basis of simultaneous eigenvectors of two observables, the two
observables must commute and: if two observables commute, then there is a complete basis of
simultaneous eigenvectors of the two observables.

In other words, the condition for two observables to be simultaneously measurable is that they

commute.

Measurement:
Suppose we orient a spin in space and try to measure its value along the x axis and the y axis.

The spin observables are:

o= o)
o= )
GZ:((l) _01)
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We try whether they commute:

[oxay — oy0x] =
G JG -G DG o=
(o -G D=6 2=

21(y °)) =20,

The important result: [axay - oyox] * 0.

The same holds for any other combination of different directions. This tells us that no two spin
components can simultaneously be measured.

Measurement, apparatus and measurement:

We use a single spin system and an apparatus A to measure the spin orientation. We take the basis
states of the spin to be |u) and |d). The state of the apparatus (as complex it might be inside) is
described by the basis states |b) for a blank state, | + 1) for “detected up” and | — 1) for “detected
down”.

From this we build a composite (tensor product) space of states with six basis vectors:
|u' b), |u) +1)' |u) _1)' |d' b), |dr +1>; |d; _1>

We assume the apparatus starts in the blank state and the spin starts in the up state. After the
apparatus interacts with the spin, the final state is:

|lu, +1)

We write this as:

|u, b) = |u, +1)
Similarly, starting with the spin in the down state (opposite to the direction of the apparatus) we get:

|d,b) = |d,—1)
Assuming that the initial spin is oriented more general:

aylu) + agld)
We include the apparatus as part of the system and get the initial state:

aylu, b) + a4ld, b)
This is a completely unentangled state. We determine the final state after measurement:
a,|u,b) + ayld, b) = ayu, +1) + a4ld, —1)

The final state is an entangled state. If a;, = —ay, it is the maximally entangled singlet state.

We can look at the apparatus and tell what the spin state is. If the apparatus reads +1, the spin is up,
and if it reads -1, the spin is down. The probability that the apparatus shows +1 is a;;a;,.

There might arise questions about wave functions and collapsing wave functions. Do not try to ask
guestions about the underlying reality. Quantum mechanics is a consistent calculus of probabilities
for certain kinds of experiments. We use it and it works.
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Measurement, collapse of the wave function and measurement:

Experimental physics measures observables. An experiment to measure L will have an unpredictable
outcome, but after the measurement the system is left in an eigenstate of L corresponding to the
outcome of the measurement.

This phenomenon is called the collapse of the wave function.

Suppose the state vector before the measurement:

Z a;jl4;)

J

2 . .
, the apparatus measures a value 4; and leaves the system in a single

Randomly, with probability |a]-
eigenstate of L, namely |/1j). The entire superposition of states collapses to a single term.

The system evolves one way between measurements and another way during a measurement.

Measurement, multiple measurements:
If there are multiple measurables, we need multiple measurements to fully characterize the state of
a system. We start with a two-spin system and two operators (measurements) L and M.

If we measure both spins in a two-spin system, the systems winds up in a state that is simultaneously
eigenvector of L and eigenvector of M.

Let A;, |4;) and ug, |1,) be eigenvalues and eigenvectors of L and M, the eigenvectors building a
basis. Leaving out the subscripts we write:

L|A, ) = A4, u)
M4, p) = ul4, 1)
We apply both operators:
ML|A, p) = MA|Z, ) = pi|4, 1)
LM|A, u) = Lp|d, p) = Auld, p) = ui|4, pw)
We get:
ML|A, u) — LM|A, ) = [ML — LM]|A, u) = [M, L]|A,u) = 0

Result: if there is a complete basis of simultaneous eigenvectors of two observables, the two
observables must commute and: if two observables commute, then there is a complete basis of
simultaneous eigenvectors of the two observables.

In other words, the condition for two observables to be simultaneously measurable is that they
commute.

I\/Ieasurement, operators and measurement:
e Operators are the things we use to calculate eigenvalues and eigenvectors.
e QOperators act on state-vectors, not on actual physical systems
e On operator acting on a state-vector produces a new state vector

There is a difference between “measuring an observable” and “operating with the corresponding
operator on the state”.
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Suppose we are interested in measuring an observable L. The state of the system before we do the
measurement is |A). It is not correct to say that the measurement of L always changes the state to
l|A) with [ being a number.

We show this with an example.
We prepare the state |r) which is not eigenvector of g,. We can express the state |r) in terms of |u)

and |d):

1 1
Ir) = —=lu) +—=|d)

V22
Acting on this state vector with g,:
1 1 1
olr) = ﬁazhl) + ﬁazlc» =7 lu) — NG |d)

The measurement result would be either +1, leaving the system in state |u), or —1, leaving the
system in state |d) — one of them.

The state after acting with the operator is a superposition of both states |u) and |d).

Measurement, states and measurement:

In the classical world, the state of a system can be determined by an experiment. A measurement
shows the state of a system. In the quantum world, states and measurements are two different
things. A measurement determines the state of a system.

Minimum-uncertainty wave packets:

- . . h
Minimum-uncertainty wave packets are wave packets where AxAp is equal to > In these cases, AxAp

is as small as quantum mechanics allows. They have the form of a Gaussian curve, and they are often
called Gaussian wave packets. Over the time, they spread out and flatten.

The ground state of a harmonic oscillator is an example for a Gaussian wave packet.

Minus first law:

The minus first law says that information is never lost. If two identical isolated systems start out in
different states, they stay in different states, they were in different states in the past and they will be
in different states in the future. Distinctions are conserved.

In classical mechanics, this principle led to Hamilton’s equations and Liouville’s theorem.

In quantum mechanics it led to the principle of unitarity and the Schrédinger equation.

Minus first law, quantum version of the minus first law:
Let |Y(t)) be the quantum state of a closed system at any time t. The system evolves by help of
U(t), acting on the state [i(t)) at time zero,

[W(©) = U©)[p(0))

resp.

WOl = @OIUt©

Note: UT is the Hermitian conjugated to U.
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U is called the time-development operator for the system.
Two states [(t)) and |¢(t)) are distinguishable if they are orthogonal for all values of t:

W®1p®)) =0
We replace (¥ (t)]| and |¢(t)):

(Y OUt®U®|p0)) =0
To preserve orthogonality for all times:
ut@u) =1
An operator that satisfies this condition is called unitary. The evolution of state-vectors with time is
unitary.
Mixed state:
Prerequisite
A projection operator is the outer product of any normalized ket |i) with its corresponding bra (|:
N
Note: |Y){i| can be represented as a matrix by choosing a basis.
With this we can write the expectation value of an observable L
(L) = (WILIY) = Tr [YX}| L
or:
(L) =Tr pL

Note: Tr is the trace of a matrix.
|W) (| is called density matrix p.

A density matrix p can be the (normalized) sum of several projection operators.

(L) = Z LaaiPa,ar

a,al

With this we can rewrite:

End prerequisite

A mixed state is represented by a density matrix made of several projection operators. It is a matrix
that has entries only on the diagonal, summing up to 1.

In contrast: a pure state is represented by a density matrix that has only one entry on its diagonal
and this entry is 1.

Mixed states, composite system and mixed states:
We have a combined system and complete knowledge of its state:

Y(a,b)

Alice is not interested in the combined system but wants to find out as much as she can about her
subsystem A. She selects an observable L that belongs to A and does nothing to B when it acts.
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The general rule for calculating the expectation value of L:

M= > W @)Lyt ap (ab)
ab,a’b’
The observable L does nothing on system B:

L) = Y P @Dl Pp(ab) = Y Ly @b)p(ab)

ab,a’ ab,a’

(L) = z LaarPa,ar

a,al

This is similar to:

We can identify 1" (a’b)y(ab) = p, 4, and, by summing up over all b:
Paa = ) ' (@h)p(ab)
b

The kind of the density matrix p, 4, depends on how the combined system is build out of the two
subsystems.

In case of a product state, p will have the form of a (single) projection operator. Alice’s subsystem
can be described like a stand-alone system, a pure state.

In case of an entangled state, p will be the sum of several projection operators. Despite the fact that
Alice knows all about the combined state, she must describe her subsystem like a mixed state.

Mixed states, density matrices and mixed states:
There is a simple check whether a density matrix belongs to a pure state or a mixed state.

Pure state:

p?=pandTr(p?) =1
Mixed state:

p?#pandTr(p?) <1
Momentum:

Momentum, canonical momentum:
Classical part

Canonical Momentum: For a one-dimensional system (the harmonic oscillator) we have only one
Lagrange equation:

oL d oL
dx dtox
With partial differentiation we get:
oL .
oax "

This is called the canonical momentum conjugate to x.
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The Hamiltonian for the Harmonic oscillator:

1 1
H = EXZ +E(1)2X2

We rewrite the Hamiltonian in terms of canonical momentum

oL |
Pox ="
and get:
1 1
H =5p2 +Ecu2x2

Quantum mechanical part

We reinterpret p and x as momentum operator P and position operator X. P differentiates:

d
P —ih—
() = —ih == ()
X multiplies the wave function by x:
XY (x)) = x(x)
With this we get the quantum mechanical Hamiltonian from the classical one:

h? 02 1
HIpG) - — =20 4 iy

Note: we use partial derivatives because in general 1 also depends on the variable time indicating
that we describe the system at a fixed time.

Momentum, connection between quantum and classical physics:
Let f, g be two phase state functions of space and time, depending of canonical coordinates (q; p;).
The Poisson bracket {f, g} in canonical coordinates (also known as Darboux coordinates):

=y (32 - L%

i

The Poisson brackets of the canonical coordinates:

{avq;} =0
{pupj}=0
{aupi} =6

We compare this with the quantum mechanical Hamiltonian, expressed in terms of momentum
operator P and Position operator X. For this case the following holds:

dp(x) L, dyp(x)
dx >=—lhx dx

dp(x)
dx

XPY(x) = X (—ih

PXyY(x) = P(xl/)(x)) = —ih(x) — ihx
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The commutator
[X, P](x) = XP(x) — PXp(x) = ihp(x)
or
[X,P] =ih

The quantum mechanical commutator [X, P] = ih and the Poisson brackets {qi,pj} = §;; show the
connection between quantum mechanics and classical mechanics.

Note: from [X, P] = ih we can derive the uncertainty relation AXAP > Z

Momentum, eigenfunctions and momentum (harmonic oscillator):
The eigenfunctions of increasing energy levels oscillates more rapidly than the one below it. This
corresponds to anincrease in momentum.

Momentum, eigenvectors of momentum:
The momentum operator P:

d
P - —ih—yY(x
) = —ih—p(@)
An eigenvector of the momentum operator P with eigenvalue p:

Ply) = ply)

We write this in wave functions:

d
~ih—(x) = p(x)

The solution:

Pp(x) = e T

Note: the subscript p is just a reminder that 1, (x) is the eigenvector of P with the specific
eigenvalue p. It is a function of x, but labeled by an eigenvalue of P.

With the appropriate normalizing we get:
1 ipx
— e R
V2m
This represents the momentum eigenfunction in the position basis. It is a function of x, not an
explicit function of p.

lpp(x) =

Momentum, forces and momentum:
Prerequisite

P is the momentum operator. In quantum mechanics holds that the average momentum equals the
mass times the velocity:

(P) =mv
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The time derivative of the expectation value of any observable L is given by:

d (P) = i([H P])
A T
Note: H is the Hamiltonian.

The potential energy operator IV acting on a wave function multiplies the wave function by the
function V (x):

VIy) = V(x)yp(x)
For the potential energy operator IV holds the commutator relation:

dv (x)

Pl =ik
[V,P] = ih—2

We check this:
[V,P](x) =

V(x) (—ih j—x) P(x) — (—ih j—x) (V) =

—ih| V(x)

dl/J( ) <dv(x)¢( " MV( )> _

; dV(X)

P(x)

End prerequisite

As in classical mechanics the momentum of a particle is no longer conserved if forces act on the
particle

d
T=F
or:
dp  aV
dt 0x
We add V(x) to the Hamiltonian:
p2
H= o +V(x)
We get the Schrodinger equation:
0%y

EY = _2_6 >+ V(Y
In general, multiplying by x and multiplying by a function of x are operations that commute:

[X,V(x)]=0
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We check the influence of the Potential P onto the quantum version of Newton’s law:

dp_

E_F

We calculate the time derivative of the expectation value of P:

d i i

—(P) = ——([P%,P - P

—(P) = 5—([P%,P]) + (IV, P])
The commutator of an operator with any power of itself is zero.

For the commutator [V, P] we get:

av
w,p] = in W
dx
Result:
d dV(x)
—(P) = —
dt< ) dx

This is the quantum analog of Newton’s equation for the time rate change of momentum.

Momentum, Heisenberg Uncertainty Principle and momentum:
Prerequisite

The Cauchy-Schwarz inequality:

21X[IY] = KX1Y) + (Y |X)|
The commutator of momentum operator P and position operator X:

[X,P] =inh

End prerequisite
Let [p) be any ket, A and B any two observables with expectation value zero.
We define | X) and |Y):

|X) = Alp) and (X| = (P|A

[Y) = iBly) and (Y| = (|(—iB)
We place |X) and |Y) into the Cauchy-Schwarz inequality:
2\/(A2XB?) = (Y |AiB|Y) — (Y[iBA|Y) =
[(WIAB|Y) — (|BAIY)| = [(WI[AB]|Y)]

If A and B have expectation value zero, then (42) is the square of the uncertainty in 4, (AA)?.
(B?) the square of the uncertainty in B, (AB)?.

Note: by shifting A and B in an appropriate manner we can always fulfill that the shifted A and B
have expectation value zero.

We rewrite:

2./(A2)(B2) = AAAB
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We get:

1
AAAB > EIWI[AB]IIIJ)I

The product of uncertainties cannot be smaller than half the magnitude of the expectation value of
the commutator.

We apply this to the position operator X and the momentum operator P:

1
(A%, AP] = = [ [XP1I)| =

h

L. ~
S IWIR) = W) =5

We get:

[AX, AP] >

NS

This is the Heisenberg Uncertainty Principle.

Momentum, proposition for momentum:
A proposition is a statement that can be true or false. Propositions can be combined by classical logic.
Elementary combinations are “and”, “or” to give new propositions.

There is a difference between propositions in classical physics and quantum mechanics.

In classical physics holds: “A particle has position and momentum”, meaning that position and
momentum can be determined both exactly simultaneously, at least the order doesn’t matter.

In quantum mechanics holds: “A particle has position or momentum”, meaning that either the
position or the momentum can be determined exactly — but not both simultaneously due to the
Heisenberg Uncertainty Relation.

Momentum, velocity and momentum:
Prerequisite

In classical physics p is the momentum, x the position of a particle.

In quantum mechanics we use the momentum operator P and the position operator X and work
with the averages (expectation values) (P) and (X).

For a free particle the Hamiltonian is the kinetic energy:

The standard commutation relation:

End prerequisite

In classical physics momentum is mass times velocity or:

p
v=—
m
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In quantum mechanics we use the position operator (X) and work with the average position

d

We express this in terms of wave functions:

v —gfw (O (x, O)dx

(Y| X ) varies with time according to the time-dependent Schrédinger equation.

The time-dependence of any observable L (the expectation value):

2wy =Letm
dt*’ h
Note: [H, L] is the commutator of the observable L with the Hamiltonian.

The Hamiltonian is the (kinetic) energy of the particle:

PZ
" 2m
We apply this to the velocity v:

i

—dX H, X —i PZX =
U—E() h<[ ) ])—E([ﬁ, ])—

;'qu,x]) = L(P[P,X] + [P, X]P) =
2mh

2mh
: P(—in ih)P —<P)
M( (—ih) + (—ih) )_F
We get
_(P)
p=-"
m
or:
(P) =mv

Momentum, wavelength and momentum:
Light of a given wavelength is composed of photons with momentum:
_ 2mh

p

A
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Momentum basis:

Prerequisite

The inner product of a position eigenvector |x) and a momentum eigenvector |p):

1 ipx
(x|p) = —%e h

1 _ipx
(plx) =E€ h

Please not the minus sign.
End prerequisite
The wave function gives the probability for finding a particle at position x:

P(x) = ¥ () (x)

As we will see, no experiment can determine both the position and the momentum of a particle
simultaneously, analog to the impossibility to measure both the x and z component of a spin.

A momentum measurement will give p with probability P(p):

P(p) = (PIy)I?
(P|) is called the wave function of i) in the momentum representation. It is denoted by:
P(p) = (Pl)

The state vector can be represented in two ways, the position basis or the momentum basis. Both
wave functions, the position wave function ¥ (x) and the momentum wave function 1) (p) represent
exactly the same state-vector |i). The transformation between them is the Fourier transformation.

Given a basis of a phase state in basis vectors |i). We can rewrite the identity operator I in terms of

the outer product:
1=l

i

Because momentum and position are both Hermitian, the sets of vectors |x) and |p) each define
basis vectors.

We replace the sum by an integral:

I = f|x)(x| dx

or

= f )] dp

Suppose we know the wave function of the vector [i) in the position representation. By definition, it
is equal to:

Y(x) = (x[p)
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We build the wave function 1)(p) in the momentum representation.

1. We use the definition of the momentum-representation wave function:

(@) = (plY)

2. We insert the unit operator:

¢@=fwmmwm

(x|y) is the wave function Y (x).
3. (plx)is given by:

(pl) = —=e ™ T
pPlx —me
4. Result:
i) = — [ ey
Y(p Nz e PY(x)dx

By knowing 1(x) in the position representation we calculate the corresponding wave function in the
momentum representation.

This works the other way around. We know the wave function in the momentum representation
Y (p) and calculate the position representation:

1. We use the definition of the position-representation wave function:

PY(x) = (xly)

2. We insert the unit operator:

ww=]umeMp

(p|y) is the wave function 1 (p).
3. (x|p)is given by:
1 ipx

(x|p) = \/T_neT

4, Result:
_Lf WTX~ d
lp(x)_\/z_n e n Y(p)dp

Position and momentum representation are reciprocal Fourier transforms of each other.

Momentum operator:
We have the differentiation operator D:

_d
~dx

Note: the differentiation operator in this form is not Hermitian.

We define the momentum operator P:

P = —ihD = 'hd
= —inD = —ih——

Note: the momentum operator P is Hermitian.
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Momentum representation of wave function:

Prerequisite

The inner product of a position eigenvector |x) and a momentum eigenvector |p):

(xlp) = (plx)’
1 ipx
(xlp) = =e'h
1 _ipx
(plx) = ——e 7

By help of the identity operator we can expand inner products:

1=me

Note: |i) must be a complete set of basis vectors.

This works with integrals too:

I= f|x)(x| dx

I = jlp><p| dp

Note: the eigenvectors of position operator X and momentum operator P define an appropriate

basis.

End prerequisite

Suppose we know the wave function of the abstract vector |y) in position representation:

Y(x) = (x[p)

To know the wave function ¥(x) in momentum representation we do the following steps.

1. We use the definition of the momentum-representation wave function:

P(p) = (PlY) = (ply)

Note: P is the momentum operator, p is eigenvalue of |).

We insert the unit operator:

) = [ (pla)aly) dx
(x|y) is just the wave function Y (x).

(p|x) is given by:

(pl) = —=e
PR =t
Result:
5p) = — [ e Fpd
Y(p \/2_71 e PY(x)dx

By knowing 1(x) in the position representation we calculate the corresponding wave function in the

momentum representation.
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This works also the other way around. We know the wave function in the momentum representation
Y (p) and calculate the position representation:

1. We use the definition of the position-representation wave function:

PY(x) = (x[p)

Note: X is the position operator, x is eigenvalue of [i).

2. We insert the unit operator:

¥ = [ Glp)ply) dp
(p|) is just the wave function P (p).
3. (x|p) is given by:
1 ipx

(xlp) =——=e 7
P V2T
4. Result:
i

— 1 %" d
IP(X)—\/T—HIQ Y(p)dp

Position and momentum representation are reciprocal Fourier transforms of each other.

Multiplication:

Multiplication of column vector:
Multiplication of a column vector means “stretching” it by a (complex) number:

aq Z oy
Z(az) = (z : az)
Multiplication of complex numbers:
In cartesian representation:
(a +ib)(c +id) = ac + aid + cib + i*bd =
(ac — bd) +i(ad + cb)

Note: i is the imaginary unit.
In gaussian representation:

rel? -rel =1, - r,el@+e)
Note: multiplying a complex number with its complex conjugate always gives a positive real result.

(a + ib)(a — ib) = a® + b?

rel? - re i = y2ol(0=9) = 4200 = 42

Note: this is the square of the absolute value of the number.
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Multiplication, matrix multiplication:
In principle

Let M, N be two 3 X 3 matrices. The product M - N:
mi; My Mig N1 Nqp Ng3
M:-N=|Mz1 Myy Mpz |-|N21 MNz2 MNz3|=
m3; Mgz Mgz3 N31 N3z N33

My Nqq + MypNpq + My3zNzy  MpqNqp + MypNpy + My3N3y My Nz + MypNpz + My3Nas

(mnnn T MyaNy1 + My3N3y MMz T MypNpy + My3N3y MMz + MypNp3 + m13n33>
M31N1q + M3pNp1 + M33N31 M3 Nyp + M3pNyy + M3a3N3y;  M31Ng3 + M3aNp3 + MazNgs

Multiplying a matrix M by a column vector a:
myp Mz Myz\ /01
M-a=[my1 My Mp3||az|=
M3y M3z M3z3/ \a3

my1ay +Mypa; + myzas
Mp10y + My2A; +My3a3
Mm310y + M3pa; + M33a;3
Multiplying a matrix M by a row vector a:
mi; Mz My3
a M= (a;a, azg)| Ma1 Mzz Mp3 | =
mz1 M3z M33
(aimy1 +azmpy +agmgy ayMyp + ayMy; +azmsz;  a;myz + a;Mmpz + azmsz)
Multiplication, vector multiplication:
We can multiply a vector by a (complex) number:

“(0)-:2)

We can build the inner product of two vectors:

d
(abc)-(e)
f

The result of the inner product is a (complex) number.

ad + be + cf

We can build the outer product of two vectors:
a ad ae af
<b> (def)=|bd be bf
c cd ce cf
The result of the outer product is a matrix.

Note: this is the tensor product.

Note: we can build inner and outer products of vectors of the same rank, the same dimension.
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Near-singlet state:

We have a combined system of two spins, Alice and Bob. The near singlet state is a partially
entangled state.

The state-vector:
J0,6lud) — \/0,4|du)
or in the extended form:
|near sing) = Oluu) + mmd) - mmu) + 0]dd)
We have only one normalization condition:
Yuubuu + YiaWua + Yaubau + Yaabaa =1
in this case reducing to:
YuaWua + YauPau =1
The density matrix for the full composite system: p? = p, Tr(p?) = 1.
The density matrix for Alice’s subsystem A: p? = p, Tr(p?) < 1
We check the density matrix for Alice’s subsystem:
The density matrix of Alice: Para = 2p ¥ (a,b)y(a’, b)
expanded a, a’ (with ¥* = ¥ due to all coefficients being real):
Puu = P (W, WP w,w) + Y (u, dyp(u,d) = 0.6
Pua =P (W, WP(d,w) + " (w, DYP(d,d) = 0
pau = " (d, WP, w) +*(d,d)yp(u,d) = 0
paa = P"(d,W)P(d,w) + " (d, d)(d,d) = 0.4

gives Alice density matrix:
_ (06 0
p=( 0 0.4)
The wave function is not factorized (partial entanglement): ¥(a, b).
The expectation values:
(07) = 0,2(0y) = (0y> =0

(1) = —0,2(ty) = (Ty> =0

(Tzaz> =-1
(1,0,) = —24/0,24
The correlation between the two systems: (0,1,) — (g, ){1,) = —0,96

The main feature of a partially entangled state is that the composite system as a whole is fully
characterized but there is no complete information about the subsystems.
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Negation:
In formal logic a proposition is a statement that can be true or false. Any proposition can be negated,
the truth-value (true or false) then is inverted.

Example: we have a die showing the number 4.

Proposition A: the die shows “4”.

The proposition is true.

The negated proposition A: it is not true that the die shows “4”.
The negated proposition is false.

Note: in formal logic the negation often is written as —A.

Neutrino, moving at speed of light:

Prerequisite

The time-dependent Schrodinger equation:

Lol
lhw = Hlll))

The momentum operator:
P=—-ih—
Wave functions need to be normalized:
[ wewmar =1

End prerequisite
We start with a simple Hamiltonian, a fixed constant times the momentum operator P:
H = cP

We insert this Hamiltonian into the time-dependent Schrédinger equation:

., 0lY) ., 0
lhT = —Clhall/»
In terms of wave-functions:
op(x,t oP(x,t
TGO NN 1G>
ot 0x

Note: Y (x, t) is a function of both x and t.

We cancel the term ih:

aP(x,t) . P (x, t)
at dx

Any function of (x — ct) is a solution.

page 251 of 433



Near-singlet state - Number operator

We check this with an example:
PY(x,t) = (x — ct)?
Left side:

d(x — ct)*?

P =2(x —ct)(—c) = —=2c(x —ct)

Right side:

d(x — ct)?
c————=—-2c(x—ct)
0x

Both sides are equal. This may be enough for our quick check.
Any normalized function of this form solves the Schrédinger equation.

We look at the time evolution of ¥(x — ct). How does a wave function
Y (x — ct) evolve with time?
-

We start at time t = 0.

Our wave-function is a wave-packet localized on the x —axis.

As t increases the wave-packet is shifting to the right with uniform fe
wwmoving to the right ..
velocity c. I

1
s
Newton’s law classical:
The potential energy function is denoted by V(x). In classical mechanics it is related to the forced on
a particle by the equation:

|
vM
This description is pretty close to the correct description of a neutrino "UWUU
that moves immeasurably slower than the speed of light.

av
F(X) = —a

We combine this with Newton’s second law, F = p:

ov

P=—a

Newton’s law quantum mechanical:
Prerequisite

In quantum mechanics the time derivative of an operator L (L being any observable, H being the
guantum Hamiltonian) is

d_ i

T
with [L, H] being the commutator of L and H: (LH — HL).
End prerequisite

In quantum mechanics we write the Hamiltonian. The potential energy V (x) is replaced by the
operator I that gets added to the Hamiltonian.
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We use expectation values (P) instead of P, (V) instead of V and get the Hamiltonian:

_{P?)
H=——4(V)

We take Newton’s law again:
F=p
We build the time derivative of the expectation value (P):

d(P) i

il (U )| -
<(P)<< 2) (V>> <<—2>+(V)>(P)>

PUP?) | e
h( T+ (PXV) ~

- <v><P>>
= (PYV) = (V(P)) =

= [(P). V)] =0

L)
In summa:

d(P) d(V)

dt | dx
We have to show (*):

[Py, = —in S

We check this:

[P,V]Y(x) =

(~in j—x) (V@Pe)) - V() (—ihj—x) P =

d d d
—m<( AT )) v w(x)>

i dV(x)

P(x)
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We have shown that
ap)  d(V)
dt dx

This is the quantum analog of Newton’s equation for the time rate change of momentum.

Nonlocality:

Of all the counterintuitive ideas quantum mechanics forces upon us, entanglement may be the
hardest one to accept. There is no classical analog for this. The best way to come to terms with these
issues is to internalize the mathematics.

Maybe we should follow Galileo Galilei who stated like this: do not ask questions why something is
moving, better find out how it is moving. If you know the “how” you can predict the future. And he
stated too: the book of nature is written in the language of mathematics.

Nonrelativistic free particles:
For a nonrelativistic free particle, the Hamiltonian is the kinetic energy (no potential):

p2

=2m

The left side of a time-dependent Schrodinger equation always is:

., 0P
lha—

We replace the classical momentum by the quantum operator P. The operator P is defined as:
P ih g
= —ih—
dx
The quantum mechanical Hamiltonian:
P?  —ih 9?
" 2m 2m 0x?

We combine this to the time-dependent Schrédinger equation: 1

a _ih 62 initial wave packet
RS -l

! ot  2m 0x?

This is the traditional Schrodinger equation for an ordinary nonrelativistic
free particle. Waves of different wavelength (and momenta) move with
different velocities. Because of this the wave function does not maintain
its shape. It tends to spread out and fall apart.

Wi

- moving to the right

——— i ——

Normalizable functions:
The integral over the probability density of a wave function must be 1:

f Y Ow()dx = 1

This requires the wave functions to come from ground and to go to ground.
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An example are the gaussian functions: v
1 _
flx)=—=e™
Vi
The integral:
[ee]
2 x
f e_x dx =1 5 4 1 2 3 4 5 &
—o0 0,1

Normalization:

Normalization of near-singlet state:
The near-singlet state is a state of partial entanglement and has the state-vector

1/0,6|ud) —/0,4|du).
The state-vector leads to the following wave-function:
Yuy = Oluw) Yuq = V0.6/ud) Yay = —V0.4|du) Y = 0|dd)

As the values are all real, the complex conjugated are identical: ¥, = " etc.

2
Obviously, the wave function is normalized: 02 +v/0.6 + (—/0.4)? + 02 =1

Y(a, b) takes the form Y(a,b) =Pyuq + Yau = V0.6|ud) —v0.4|du)
and results in: YVuu =0, Yyug = v0.6, Ygu = —V04, Yuq =0

Normalization of product state:
The product state is a state of independent subsystems and has a generalized state-vector
ayPuluu) + ayPalud) + agfyldu) + agfqldd).

The normalization conditions are a;,a, + ajag = 1 and BB, + BaBa = 1.

Normalization of singlet state:

The singlet state is a state of maximum entanglement and has the state-vector % (Jlud) — |du)).
The state-vector leads to the following wave-function:

1 1
Yy = 0uu) Yua = ﬁlud} Yau = _ﬁldu) Y = 0|dd)

As the values are all real, the complex conjugated are identical: ¥,,,, = " etc.

; PR 02 P12 2
Obviously, the wave function is normalized: 0 +ﬁ +( ﬁ) +0°=1
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Normalized vector:

A vector I/ is normalized if its inner product with itself is 1:
Vivy=1

Note: normalized vectors are sometimes called unit vectors.

not-rule:

In formal logic a proposition is a statement that can be true or false. Any proposition A can be
negated by applying the logical not:

not A4, A, —A
The truth-value (true or false) then is inverted.
Example: we have a die showing the number 4.
Proposition A: the die shows “4”.
The proposition is true.
The negated proposition A: it is not true that the die shows “4”.

The negated proposition is false.

Number operator:
The Hamiltonian expressed in terms of position operator X and momentum operator P:
1
H=Z(P? + w*X?)
(This is a classical as well as a quantum mechanical Hamiltonian, so it would be correct to use the
classical lowercase symbols p and x.)

The idea is to use the properties of X and P, especially the commutation relation [X, P] = ih to
construct two (three) new operators, called creation (or raising) operator, annihilation (or lowering)
operator and number operator.

The names are program. The raising operator shall produce a new eigenvector that has the next
higher energy level, the lowering operator shall produce a new eigenvector that has the next lower
energy level. The number operator returns the “number” of the energy level.

The construction process.

Using complex numbers, according to a® + b? = (a + ib)(a — ib) we can split up the sum:
1
H~§(P + iwX)(P — iwX)

That is almost correct, because of the quantum mechanically behavior of X and P: they don’t
commute. The problems are the products PX and XP.

We expand:

1 . . 1 . . .
E(P +iwX)(P —iwX) = E(PZ + iwXP — iwPX — i’w?X?) =

page 256 of 433



quantum-abc

1 1
5 (P? + w?X?) + Eiw[X, P]
We know the value of the commutator: [X, P] = if and get:
1 _ _ 1 1
E(P + iwX)(P — iwX) = E(P2 + w?X?) — Ehw
Our correct Hamiltonian:
1 ) ] 1
H =§(P + iwX)(P — iwX) +§hw

We define:
The lowering (or annihilating) operator:
a” = (P —iwX)
The raising operator:
at = (P +iwX)
The number operator is the product of both:
N:=a%a"

Stated in terms of the number operator, the Hamiltonian becomes:
1
H = ha)(N + Z)

We call the states of the harmonic oscillator |n) instead of |Y,), Y1), ...

As the (excited) states |n) are eigenvectors of the number operator N, applying the number operator

to the wave function of the n‘"* excited state gives back the eigenvalue n:

N|n) = n|n)

We check the number operator N acting on the ground state and the first excited state — it should

give back the numbers 0 and 1 (this will become a little bit lengthy ...)
The ground state:
PYo(x) = e_%xz
The number operator N:
(P +iwX)(P —iwX) =
PP — iwPX + iwXP + w?XX =
PP + iw(XP — PX) + w?XX =
PP + iw[X,P] + w?XX =

Note: the commutator [X, P] = iA.

PP — hw + w?XX
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We need the details:

92 02

XX =x?
We apply the number operator to the wave function of the ground state:

282 2.2\, —2x2
—h T—hw+w x“e 2h

We do this in parts:

. N 92 w2
First the derivation —h? Pyl 2

We add the rest:
_W .2
(hw — w?x? — hw + w?x?)e 28" =0

The number operator N applied to the ground state gives (correctly) 0. We try the same for the first
excited state.

The first excited state:
_W 2
Y1 (x) = 2iwxe 2%
The number operator N:

PP — hw + w?XX
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We apply the number operator to the wave function of the first excited state:

62 _ﬂxz
<—h2 Freie how + w2x2> 2iwxe 2A* =

2 _ﬂxz _ﬂxz —ﬂxz

—Ziwhzﬁ(xe 2h )—Zihwzxe 21 4 2iw3x3eT2rY =
x

We do this in parts:

. . . 92 _w®,2
First the derivation —2iwh? Iz (xe 2n™ ):

Ox 0x

Deriving first time:

Deriving second time:

20X _W o wx? wx W 2
_9; 2 - 55X _ _ —5FX _
21wh< - e 2h +<1 h)( h)e 2R >_

_w,2
(4iw’xh + 2iw?xh — 2iw3x3)e 2" =
_W,2
(6iw?xh — 2iw3x3)e 2R
We add the rest:
_W,2
(6iw?xh — 2iw3x3 — 2iw?hx + 2iw3x3)e 27" =
_W,2
4iw’xhe 27" =;

We have been cheating a little bit — and will correct that. The raising operator and the lowering
operator need a factor, the correct values are:

i

T = Sor (P —iwX)
at = _—i(P + iwX)
V2wh
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This gives the correct number operator:
1 , .
N=—7>(P—-iwX)(P+iwX)
2wh
We take the result above and divide it by 2wh:

4iw?xh _W 2 ) _W 2
o) e 2n" = 2iwxe 2h
w

_@ .2
The number operator N applied to the first excited state 2iwxe 2 gives correctly one time the
first excited state.

For the calculation of the effect of the number operator to the ground state this was invisible due to
0

20h
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Observables:

Observables, complete set of commuting observables:

Two observables that commute have a complete basis of simultaneous eigenvectors. This can be
expanded. One may need to specify a larger number of observables to completely label a basis of a
state. Regardless of the number of observables needed, they must all commute among themselves.
This is called a complete set of commuting observables.

The commutator of two observables is the zero operator.

Observables, composite observables:

We have a two-spin system, Alice and Bob, ¢ and 7. We are referring to the observable:

0T = 0yTy +0yT, + 0,7,

Neither Alice nor Bob can measure more than one component of the dot product of the operators.

Quantum mechanics insists that some kind of apparatus can be built to measure this observable.

A concrete example: Some atoms have spins that are described in the same way as electron spins.
When two of these atoms are close to each other — for example, two neighboring atoms in a crystal
lattice — the Hamiltonian will depend on the spins. In some situations, the neighboring spins’
Hamiltonian is proportional to @ - 7. If this happens to be the case, then measuring ¢ * T is equivalent
to measuring the energy of the atomic pair. This is a single measurement of the composite operator
and does not entail measuring the individual components of either spin.

Observables, composite system:
In a product state of Alice and Bob, every prediction about Bob’s half of the system is exactly the
same as it would have been in the corresponding single-spin theory. The same goes for Alice.

For the example of a spin system this means that the expectation values of the components satisfy:
(0,)% +(0y)* +(0,)* =1

Measuring an isolated observable of a product state gives (at least for one direction) a certain result.
Not all expectation values can be zero.

In an entangled state it could happen that:
(02)? =(0y)* =(0,)* =0

In other words, measuring an isolated observable of an entangled state gives a completely uncertain
result though the state-vector of the entangled state is as complete a description of a system as it is
possible to make.

This is the true weirdness of entanglement, which so disturbed Einstein.

Observables, definition:
States in quantum mechanics are mathematically described as vectors in a vector space.

Physical observables — things that you can measure — are described by linear operators.

For example, we can make direct measurements of the coordinates of a particle; the energy,
momentum, or angular momentum of a system; the electronic field at a point in space.

Observables are associated with a vector space, but they are not state vectors.
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Observables, linear operators and observables:
The principles of quantum mechanics all involve the idea of an observable, and they presuppose the
existence of an underlying complex vector space whose vectors represent system states.

An observable could also be called a measurable. It is something you can measure with a suitable
apparatus. Please remember the principles of quantum mechanics:

e Principle 1: The observable or measurable quantities of quantum mechanics are represented
by linear (Hermitian) operators L.

e Principle 2: The possible results of a measurement are the eigenvalues of the operator that
represents the observable. We will call these eigenvalues A;. The state for which the result of
a measurement is unambiguously 4; is the corresponding eigenvector |4;).

e Principle 3: Unambiguously distinguishable states are represented by orthogonal vectors.

e Principle 4: If |A) is the state-vector of a system, and the observable L is measured, the
probability to observe the value 4; is:

P(A) = KAIADNN? = (Al X A:1A)

Observables, multiple observables:

The physics of a single spin is extremely simple making it so attractive as an illustrative example. One
property of a single spin is that its state can be fully specified by the eigenvalue of a single operator,
say a,. If the value of g, is known, then no other observable — such as g,, — can also be specified.

In more complicated systems, we may have multiple observables that are compatible, their values
can be known simultaneously. Here are two examples:

e A particle moving in the three-dimensional space. All three spatial coordinates of a particle
can be specified simultaneously.

e A system composed of two physically independent spins — a system of two qubits. We can
measure one component of each spin simultaneous.

In these situations, we need multiple measurements to fully characterize the state of the system. For
example, in our two-spin system, we measure each spin separately and associate these
measurements with two different operators L and M.

Observations, collapse of the wave functions and observations:

The state-vector of a system evolves in a deterministic way according to the time-dependent
Schrédinger equation. Measuring the observable L destroys the state-vector and leaves it in an
eigenstate of L.

This is called the collapse of the wave function.

Suppose the state-vector before the measurement is:

Z a;j|4;)

J

2
, the apparatus measures a value 4; and leaves the system in the

Randomly, with probability |a]-
single eigenstate |/1j). The superposition of states collapses to a single term.
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Operator method:

Operator method, harmonic oscillator and operator method:
The Hamiltonian expressed in terms of momentum operator P and position operator X:

_ P+ w?X?

H
2

We can transform this into:
1 wh

We define a complete set of commutating operators:

i
a =——(P —iwX
Vth( )
—i
at =——P +iwX
Vth( )
N =ata"

The set is closing under commutation:

[a,at] =1
[a”,N]=a~
[at,N] = —a™

The operator a™ is called raising operator. Instead of using the explicit energy states |,), |1) ... we
simply write [n). Given the eigenvector |n), we get:

at|n) = |n+1)
The operator a™ is called lowering or annihilating operator. Given the eigenvector |n), we get:

a”|n) = |n—1)
The operator a™ applied to the ground state |0) annihilates it:

a”|0)=0
The operator N is called the number operator. Given the eigenvector |n), we get:
N|n) = n|n)

With these operators we find the entire spectrum of harmonic oscillator energy levels:

135 )

En = wh(E,E,E,...
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Operator method, wave functions and operator method:

The ground state wave function:

Po() = 2

The lowering (or annihilating) operator:

a” = \/ﬁ (P —iwX)
The raising operator:
at = —— (P +iwX)
V2wh

This gives the number operator:
1 . .
N=——F(P —iwX)(P + iwX)
2wh

The operators in detail:

X=x-
Acting with the lowering operator on the ground state wave function annihilates it:
a Po(x) =0

. . i

We check this, omitting the factor NoTI
_W,2

a Po(x) = (P —iwX)e 2°" =

_W 2 _w .2
—lha—e 2R — jwxe 27 =
X

_W 2 _Ww,2
iwxe 2" —jwxe 2~ =0

The lowering operator acting on the ground state wave function annihilates it.

Acting with the raising operator on the ground state wave function gives the first excited state:

a*Po(x) = P, (x)

. . - —i
We check this, again omitting the factor Tor

_Ww,2
(P +iwX)e 2r° =
0 _w.» _W 2
—ih—e 2F° + iwxe 2h° =
ox
_W 2 _W,2
iwxe 20" +iwxe 2n° =

_W,2
2iwxe 2k
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We get:

w
P,(x) = Zia)xe_ﬁx2 = 2iwxyy(x)

The important difference between 1y (x) and 1, (x) is the presence of the factor x in ¥, (x). This
causes the wave function of the first excited state to have a zero, or node, at x=0. This is a pattern
that continues going up the ladder: each successive excited state has an additional node.

Acting with the raising operator on the first excited state wave function gives the second excited
state (and soon ...):

a*P;(x) = P,(x)
. . . —i ,
We check this, again omitting the factors NeTT and 2iw:
W2
(P +iwX)xe 2°° =
2 ( _;_hxz)+' 2e 72" =
i Fp xe iwx“e =;
The differentiation:
0 w_ 2
—ih—(xe 2R ) =
ih F (xe 2 )

2
_W,.2 wx" _W,2
_lh (e th __h e Zflx >=

_W,2
(—ih +iwx?)e 2r*
Adding the rest:
_W 2 _w .2
(—ih +iwx?)e 2" + iwx?e 27" =
_w . 2
i(—h+ 2wx?)e 27" =1, (x)

The important difference between 1, (x) and ¥, (x) is the e NG
raising power in x. a

Result:
e Each eigenfunction is a polynomial in x, multiplied [#e e
by e_%xz . i-“/\‘\l_ : _/’.!.\‘.I"\,-‘ﬁ"‘\_
e Because the exponential goes faster to zero than any \
of these polynomials grow, each eigenfunction [ watr Tt

approaches zero asymptotically. o '
e Because the degree of each polynomial is one LA . WANTAN
greater than the degree of the previous one, each

eigenfunction has one more zero than the previous et i
one.
P L
e The polynomials are called the Hermite polynomials. R :

e The ground-state eigenfunction is symmetric in x.
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Operator:

Operator, spin-operator, 3-vector operator:
The spin operator ¢ is neither a state-vector (a bra or a ket) nor a 3-vector. It has resemblance to a 3-
vector because it is associated with a direction in space.

The spin operator o is frequently used as though it were a simple 3-vector and is called a 3-vector
operator.

There is a spin operator for each direction in which an apparatus measuring spin can be oriented.

The operator o consist of the three components oy, 0,, and g, with the associated state-vectors:
|left) and |right) for o,

lin) and |out) for g,

|up) and |down) for g,

The components of the spin operator ¢ (or written as @) are represented by the Pauli matrices:

5=(7 o)

%= )
Note: i is the imaginary unit.

9z = (é _01)

Behaving like a 3-vector, the component of ¢ along any direction 7 is the dot-product of ¢ and 7:

Qu

Op =01 = oxny + oyny, + o1,

Written in terms of the Pauli matrices this gives:

an=nx(2 (1))+ny(? _Oi)+nz((1) _01)

We can combine this to a single matrix:

o < n,  (na- iny)>

(nx + iny) (o

If we find the eigenvectors and eigenvalues of g,,, we will know the possible outcomes of a
measurement along the direction of 7 with the corresponding probabilities. We have a complete
picture of spin measurement in the three-dimensional space.

Operator, annihilation operator:
The lowering (or annihilating) operator is made out of the momentum operator P and the position
operator X:

i
=——(P —iwX)
V2wh
Applying the lowering operator to an excited state of the harmonic oscillator will give the next lower
energy level. Applying the lowering operator to the ground state of the harmonic oscillator will give
zero (annihilates that state).

page 266 of 433



quantum-abc

Associated with the lowering operator is the raising operator that does exactly the opposite:

—i
=——(/P+iwX
Vth( )

a+_

Together they form the number operator:
1 . .
N=ata =— (P +iwX)(P — iwX)
2wh

The number operator, applied to an excited state, gives back a multiple of this state — the number of
this state.

Operator, anti-Hermitian operator:
An operator (a matrix) L with LT = L is called a Hermitian operator (a Hermitian matrix).

Note: LT stands for the transposed and complex conjugated form of L.

An operator (a matrix) L with Lt = —L is called an anti-Hermitian operator (an anti-Hermitian
matrix).

By multiplying an anti-Hermitian operator with either i or —i make it Hermitian.

Note: operators that represent observables are Hermitian.

Operator, commutator and operator:
The commutator of two operators L and M:

[L,M] = LM — ML

Note: as matrix multiplication is not commutative in general, the commutator of two operators
generally will not be zero.

An operator always commute with itself:
[L,L]=LL—-LL=0

If two operators do not commute, then there must be uncertainty in one or the other or both. The
corresponding observables cannot be measured simultaneously exact.

For the position operator X and the momentum operator P holds:
[X,P] =ih
The operatorsa™, at and N:

[
a- =——(CP —iwX
Vth( )

—i
at = \/ﬁ(P + l(l)X)

1
N =ata™ = ﬂ(}) + iwX)(P — iwX)
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The operators a~, at and N form a closed set, a kind of commutator algebra:

[a™,at] =1
[a=,N]=a~
[at,N] = —a®

Operator, composite operator:
A composite operator can be made out of two operators by the tensor product. In this case the state
is called a product state and can be handled as two independent states.

A composite operator can be made out of two operators by the dot-product. For a two-spin system:
0T = 0yTy +0yT, + 0,7,
Note: g is not a vector but a 3-vector operator that behaves like a vector.

The value for the observable & - T cannot be found by individual measurements because it is not
possible to simultaneously measure the three components —they do not commute. Only one
component can be simultaneously measured.

A situation like this occurs when two atoms in a crystal lattice are close to each other. The
Hamiltonian will depend on the spins of these atoms. In some situations, the Hamiltonian of the
neighboring spins is proportional to ¢ - 7. In this case, measuring ¢ * T is equivalent to measuring the
energy of the atomic pair. It is a single measuring of the composite operator and does not entail
measuring the individual components of either spin.

Operator, creation operator:
The creation (or raising) operator is made out of the momentum operator P and the position
operator X:

at = 2_—wlh(P + iwX)

Applying the raising operator to a state of the harmonic oscillator will give the next higher energy
level.

Associated with the raising operator is the lowering (annihilating) operator that does exactly the
opposite:

L .

Applying the lowering operator to the ground state of the harmonic oscillator will give zero
(annihilates that state).

Together they form the number operator:
1
N=a'a " =— (P +iwX)(P — iwX)
2wh

The number operator, applied to an excited state, gives back a multiple of this state — the number of
this state.
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Operator, Hamiltonian operator:
The Hamiltonian operator represents the total energy of a system. In quantum mechanics, the
Hamiltonian controls the time evolution of a system:

)

ih—=H
=0 = Hlp)

This is the time-dependent Schrédinger equation.
To find |y (t)) we follow the recipe for a Schrodinger ket:

1. Derive, look up, guess, borrow or steal the Hamiltonian operator H for the system.
2. Prepare an initial state | (0)).
3. Find the eigenvalues and eigenvectors of H by solving the time-independent Schrodinger
equation:
H|E;) = E;|E;)
You will get:
i
a;(t) = a;(0)e A"
Note 1: E; is eigenvalue to the eigenvector |Ej).
i
Note 2: H|Ej) = Elej) leads to a differential equation that determines a;(t) = aj(O)e_gEft.
Calculate the initial coefficients a;(0) = (E;|y(0)).
5. Rewrite [(0)) in terms of eigenvectors |Ej) and initial coefficients a;(0):

() = ) a(0) |E;)

j
6. Replace each a;(0) with a;(t) to capture its time-dependence. As the basis vectors |Ej) do

not change, this leads to:
i .
() = ) (@ W |;)

J

We can now predict the probabilities for each possible outcome of an experiment as a function of
time, and we are not restricted to energy measurements. Suppose an observable, an operator L has
eigenvalues 4; and eigenvectors |/1j>. The probability for an outcome A is:

Pa(t) = KAl ()

Operator, Hermitian operator:
Operators that represent observables are Hermitian:

e Since the result of an experiment must be a real number, the eigenvalues of the
corresponding operator must be real.

e Eigenvectors that represent unambiguously distinguishable results have different
eigenvalues and are orthogonal.

Operator, Identity operator:
The outer product of a normalized ket |1) with its corresponding bra (1| is called a projection
operator:

[ )XYl

Note: this is a kind of tensor product.
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If we add all the projection operators for a basis system, we obtain the identity operator:

meﬂ

The expectation value of any observable L in state [y) is given by:

(L) = (WIL[Y) = Tr [P )|L

Note: T is the trace of the projection operator.

Operator, linear operator:
A linear operator X acts on a function and gives a new function:

X(f())=g(-)
X is said to be linear if:
X(f+9) =X(f) +X(9)
Xz f)=zX()
Note: z is a complex number.
Operator, measurement and operator:

Operator, misconception regarding operator:

Operator, state vector and operator:
The correspondence between operators and measurements is fundamental in quantum mechanics.

e Operators are the things we use to calculate eigenvalues and eigenvectors.

e QOperators are “paper and pencil objects” acting on state-vectors, not on actual physical
systems.

e Operators acting on a state-vector produce a new state-vector.

Physically:

There are two separate things: measuring an observable (in a laboratory with many devices) or
operating with the corresponding operator on the state (with paper and pencil or computers).

Conceptually:

If the state of the system before the measurement is |A4), it is not (always) correct to say that the
measurement of the observable L changes the state to [|A).

We show this with a spin example.
The spin operator g, acting on the state |u) or the state |d):
oz lu) = |u)
oz |d) = —|d)
The operator g, changes the state |u) to |u) and the state |d) to —|d).

We try the state |r):

)= — ) + = 1d)
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The spin operator g, acting on the state |r):

1 1
O-Z|T> = _O-zlu) + _Gz|d> =

NERARN
11
N1

This time, the operator o, does not leave the state |r) intact but alters the state itself.

Any measurement result would be either +1 or —1, leaving the system in the state |u) or |d) but not

. 1 1
in the superposition NG |u) — NG |d).

Operator, momentum operator:
The differentiation operator D:

D= d
T dx
To make the differentiation operator Hermitian:
—iD = —i—
dx
The momentum operator P:
P ih d
= —jh—
dx

The momentum operator P, in abstract vector notation:

Ply) = pl)

Note: P is an operator, p is an eigenvalue, | is eigenvector to P with eigenvalue p.

The momentum operator P, acting on a wave function:

dip(x)
P = —i
P = —ih—
In the case of an eigenequation we can write:
. dp(x)
PY(x) = —ih—"> = pip(x)

Note: P is an operator, p is an eigenvalue, ¥ (x) is eigenfunction to P with eigenvalue p.

The eigenequation has the solution:

Yp() = Ac T

Note: the subscript p is a reminder that 1, (x) is the eigenfunction (eigenvector) of P with the
specific eigenvalue p. It is a function of x, labeled by an eigenvalue of P.

The constant A is not determined by the eigenvector equation but will be fixed by normalizing the
wave function to unit probability.
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Operator, number operator:
The Hamiltonian for the harmonic oscillator, expressed in terms of momentum operator P and
position operator X:

_ P+ w?X?

H
2

We can transform this:

1 ] ) wh
H = E(P +iwX)(P —iwX) + -

From this we can define three new operators, the lowering operator a”, the raising operator a® and
the number operator N:

i
T =——(P —iwX)
V2wh
N (P + iwX)
V2wh
+i . . .
Note: the factor Taor coming out of historically reasons.
N=aa"

The number operator, applied to an excited state, gives back a multiple of this state — the number of
this state.

Operator, projection operator:
The outer product of a normalized ket |1) with its corresponding bra (1| is called a projection
operator:

W)l

Note: this is a kind of tensor product.
Properties of projection operators:

e Projection operators are Hermitian

The vector |Y) is eigenvector of its projection operator with eigenvalue 1:
[WXW1 1) = )
e Any vector orthogonal to |i) is eigenvector with eigenvalue zero. Thus, the eigenvalues of
[P are either zero or one, and there is only one eigenvector with eigenvalue 1, |¢) itself.
e The square of a projection operator is the same as the projection operator itself:
2
[WXD1™ = [Pyl
e The trace of an operator or any square matrix is defined as the sum of its diagonal elements.
We define the trace Tr of an operator L by using an appropriate basis |i):

Tr = Z(ilLli)

This gives the sum of the diagonal elements of L.
if we add all projection operators for a basis system, we obtain the identity operator I:

Yl =1

4
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The expectation value of any observable L in state [i) is given by:
(L) = (ILIY) = Tr [YpNY|L

Operator, spin operator:
The spin operators represent the components of a spin, oy, 0, and d;.

The component g,

We begin with g, that has definite, unambiguous values for the states up and down, |u) and |d):

=(})

0=()

Note: these are the state vectors, not the orientation of spin in space.
Measurements will give g, = £1.
We have three principles:

e Principle 1:
Each component of o is represented by a linear operator.
e Principle 2:
The eigenvectors of g, are |u) and |d). The corresponding eigenvalues are +1 and —1. We
express this with the equations:
ozlu) = |u)
ozd) = —|d)
e Principle 3:
States |u) and |d) are orthogonal to each other:
(uld) =0

From principle 2 we calculate the matrix representation of g,:

_ (0211 (0212

"Z‘((az)21 (oz)zz)
COTCH

((gz)i (zz)li)(3)=($)
@)1 ()

(o )@ =-()

This gives the values for o,:

We repeat this for the other two components of spin, gy, and gy,.
The component g,

The state vectors right, |r) and lef't, |l) expressed in terms of state vectors |u) and |d):
1
V2

1
Ir) == ) +

7 |d)
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1 1 1
|r)=ﬁ((1))+ﬁ((1))=ﬁ(i)

b= —lw) - 1d)

0= 5050 -5
V2N 2\l V2 \-1
Note: any spin state can be represented as a combination of the basis vectors |u) and |d).

We check whether those two vectors are orthogonal:

(r|l>=i2(1 1)-%(_11) 1(1 1)-(_11) =%(1-1+1-(—1)) =0

N ARNFASE U
Note: the bra (r| to the ket |r) is the complex conjugated, but as |r) is real it follows (r*| = (r|.
The matrix representation of g,:

_(0 1
Ox = (1 0)
We check the eigenvector property:
0 1y _1o1+1-1y_1n

() = (7 ) ﬁ(l) - \/2(1 110017 ﬁ(l)

|r) is eigenvector to the operator g, with eigenvalue 1.
(0 1y 1,1y 1 (0-1+1-(—1)>_ 1,1
(=3 o) \/Z(—l) T2\ 1400 (-1)) T ﬁ(—l)

|l) is eigenvector to the operator o, with eigenvalue -1.

The component gy,

The state vectors in, |i) and out, |o) expressed in terms of state vectors |u) and |d):
. Ty, tmoy_1n
)=o)+ () =50)

Ty L0y 101
0y =—(0) -5 (1) =5 ()
Note: do not confuse the imaginary unit i with the state vector |i).
Note: any spin state can be represented as a combination of the basis vectors |u) and |d).

Both vectors are orthogonal to each other:
1
V2

1 , 1 2y
5(1-1+(—1)-(—1))—§(1+12)—0

(il0) = —=(1 (-D)) -Tli(fi) —acem-(2) -

Note: the bra (i| to the ket |i) is the complex conjugated.
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The matrix representation of gy,:

We check the eigenvector property:

ol =(F ) 715 ()= %(io- -11+_0i-2i) B Tli ()

|i) is eigenvector to the operator gy, with eigenvalue 1.

(0 =iy, 1,1y _ 1 0-1+i2 \_ 1,1
(310 = 75) ﬁ(—i)_ﬁ(i-1+0-(—i))_ ﬁ(—i)
|o) is eigenvector to the operator gy, with eigenvalue -1.

Conclusion

The matrix representations of the spin operators ay, 0, and g;:

w=( o) =0 3 e=( 2)

Note: these are the Pauli matrices.
Note: the identity matrix is also a Pauli matrix.

The representation of the state vectors in the up — down system:

=), 0=
=t =)

1 1
0=2(). =)

Operator, time development operator:

Operator, unitary operator:
The change of the state-vector with time:

[(£)) = Uy (0))
or
WO = @OIUT®
Note: flipping from ket to bra needs Hermitian conjugation of the operator U.
U is called the time-development operator for the system.
U (t) must fulfill the minus first law: the conservation of distinctions.

Two states are distinguishable if they are orthogonal. Being orthogonal, two different basis vectors
(of an orthonormal basis) represent two distinguishable states.

Let ¥(0) and ¢ (0) be two distinguishable states:

W()[e(0)) =0
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The conservation of distinctions implies that they will be orthogonal for all time:

W@®le@®) =0
We replace ¥(t) and ¢(¢t):

WOUTO[U®P0) = (Y (O)|UT(OU®](0)) =0
This only works if either UT(£)U(t) = 0 or UT(£)U(t) = 1. We prefer the second case.
Let |i) build an orthonormal basis for the state in question:
(ilj) = 6;;
Note: &;; is the Kronecker symbol.
We can express (¢(0)|UT(t)U(t)|¢(O)) in terms of basis vectors |i):
(t{lut@Uu©|j) = &

or

ut@u) =1
An operator U that satisfies UT(t)U(t) = I is called unitary.

Operator, zero operator:
If an operator annihilates every member of a basis, it must also annihilate every vector in the vector
space.

If two operators L and M are commuting:
LM —-ML=0
then the commutator:
[L,M] = LM — ML
annihilates every vector in the vector space.
We call [L, M] a zero operator.

Note: a zero operator is necessary if you want to handle operators with superstructures like field
theory. There you need a zero element to properly define the (additive) inverse of an element. This
zero element of the additive group must also be zero element of the multiplicative group and
different to the 1-element (the identity matrix).

If two operators A and B are commuting, the commutator serves as this zero element.

Original Schrodinger equation:
9
iho [W(©) = Hlp(©)

Note: H is the Hamiltonian.
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The most famous example is the nonrelativistic Schrodinger equation for the wave function in
position representation | (7, t)) of a single particle subject to a potential V (#,t) (e.g. electric Field):

. d . B h? 5 . .
lhah{’(r: t) = [—ﬁv +V(, t)]l,b(r, t)

Note: V2 is the Laplacian, representing the partial derivatives to every component of 7.

Original Schrodinger equation, nonrelativistic free particle:

Prerequisite

The momentum operator P:

P = 'ha
= 0x
62
P2 = —-h%?—
0x2

End prerequisite

For a nonrelativistic free particle, the kinetic energy is Emvz.

We write the Hamiltonian in terms of momentum operator P:
PZ
T 2m

We take the original Schrédinger equation:

0 _
ih= (D) = Hib(©))

We get:
oY)  h*a*Y(t)
Tt T T 2m o2

This is the traditional Schrodinger equation for a nonrelativistic
free particle. It describes a wave packet (a particle) that tends to
spread out and fall apart.

or rule:

In formal logic a proposition is a statement that can be true = 1
or false = 0. Any two propositions A and B can be combined
by applying the logical or:

Aor B, AVB

Note: in natural speech we often confuse the logical or with the
logical XOR. The logical or is the inclusive version.

The combined proposition A or B is false if both A and B are
false.

"

Wix)

W]\ﬁ initial wave packet

yrx)

... moving to the right ...

MWWMWMWMMWWMW
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We can show this with a truth-table:

=~
Q
3
o~

=N =N
moR oW
_ RO

Orthogonal basis vectors:

Normally for a vector space we chose a set of orthonormal basis vectors. They are mutually
orthogonal to each other.

A vector space of dimension n has n orthonormal basis vectors.

Out of any set of vectors forming a basis for a vector space we can construct such an orthonormal
set.

For a set of orthonormal basis vectors holds:
(ilj) = 6;;
Note: §;; is the Kronecker delta.

For the case of a single spin system we found three pairs of mutually orthogonal (not orthonormal)
basis vectors:

up and down or |u) and |d)
right and left or |r) and |l)
in and out or |i) and |o)
note: the i in |i) does not stand for the imaginary unit.

Note: the directions are chosen with respect to the possible orientation of spin in space.

Orthogonal states:

Two states are (completely) distinguishable if they are orthogonal. Being orthogonal, two different
basis vectors represent two distinguishable states. In other words, there is a precise experiment that
can tell them apart, and therefore they are orthogonal:

W®)p()) =0
Note: the minus first law requires the conservation of distinctions for all times.
For a single spin system, the basis vectors |u) and |d) are mutually orthogonal:
(uld) =0
(dluy =10

The physical meaning of this is that, if the spin is prepared up, then the probability to detect it down
is zero, and vice versa.

Two orthogonal states are physically distinct and mutually exclusive. This idea applies to all quantum
systems.

Do not mistake the orthogonality of state-vectors for orthogonal directions in space.
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Orthogonal state-vectors:

Physical distinct states are represented by orthogonal state-vectors. The inner product of two
orthogonal state-vectors then is zero. If the inner product of two state-vectors is not zero, then the
states are not distinguishable with certainty.

The inner product is sometimes called overlap.

Orthogonal vectors:
Two vectors A and B are said to be orthogonal if their inner product is zero:

(Bl4) =10
This is the analog for the dot product of two spatial vectors being zero.

Basis vectors regularly are chosen to be orthogonal and normalized to one or shorter, to be
orthonormal.

If 1 and A, are unequal eigenvalues of a Hermitian operator, then the corresponding eigenvectors
are orthogonal.

Unambiguously distinguishable states are represented by orthogonal vectors.

Orthonormal bases:

The maximum number of mutually orthonormal vectors is the dimension of the space. This holds for
complex vector spaces too.

Out of orthonormal basis vectors every vector of the space can be constructed.
Note: in quantum mechanics we normally use orthonormal bases.
A vector has different representations in different (orthonormal) bases.

Let us consider a space of N dimensions and an orthonormal basis of ket-vectors |i), the label i
running from 1 to N.

Any vector A can be written as a sum of basis vectors:

1) =zai|i>

4

Note: a; are complex numbers called components of the vector.

QOuter products:
The inner product of a bra (¢| and a ket |) is a complex number z:

(pl) =z
The outer product of a bra (¢| and a ket |) is a linear operator L:
[WNpl =L

Note: this is a kind of tensor product.

The outer product of a normalized ket |1) with its corresponding bra (1| is called a Hermitian
projection operator:
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W)l

Overlap:

Sometimes the inner product of two states is called overlap. Overlap zero means that the
corresponding states are physically distinct.

Assume a system has been prepared in state |4). Measuring the observable L will give one of the
eigenvalues A; of the operator L with probability P(4;).

The probability can be expressed in terms of the overlap of |A) and |4;):
P(1) = KAlAp)?
or equivalently:
P(2) = (Al2;){2;14)

Note: A; is the eigenvalue of the eigenvector|4;).
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Parameters, counting parameters:
To define a direction in three-dimensional space it takes two angles — two parameters.

The general spin state is defined by two complex numbers «,, and a: four real parameters:
t[u) + aqld)
The general spin state has to be normalized, a,,2 + @42 = 1: minus one parameter.
The general spin does not depend on the overall phase factor: minus one parameter.
This leaves two real parameters to specify the state of a spin.
Note: a phase-factor is a complex number with length 1. For a phase-factor holds:
zz* =1
z=¢e¥Porz=cosg+ising

Partial derivatives, time and partial derivatives:
We have the position operator X and the momentum operator P:

X)) = xp(x)

d
PlY) - —ih—Y(x
W) = ~ih ()
The position operator P multiplies the wave function with x, the momentum operator differentiates.
With this we write the quantum mechanical Hamiltonian:

h? 92 1
e U

Hly) = —
We use partial derivatives because in general 1)(x) also depends on another variable, time.

Time is not an operator and does not have the same status as x, but the state-vector changes with
time, and we therefore treat time as a parameter. The partial derivative indicates that we are
describing the system “at a fixed time”.

Particle dynamics:

Particle dynamics, example:
Prerequisite

The time-dependent Schrodinger equation:

aly)
, AV oy
ih— = HW)
The momentum operator:
P = —ih g
- 0x
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Wave functions need to be normalized:

f_ PP dx = 1

End prerequisite
We start with a simple Hamiltonian, a fixed constant times the momentum operator P:
H=cP

We insert this Hamiltonian into the time-dependent Schrodinger equation:

, OlY) 0
lhw = —Clha |ll}>
In terms of wave-functions:
0 t 0 ,t
SOPED oY)
ot 0x
Note: Y (x, t) is a function of both x and t.
We cancel the term ih:
aYP(x,t) _ Y (x,t)
ot ox

Any function of (x — ct) is a solution.
We check this with an example:

P(x,t) = (x — ct)?
Left side:

d(x — ct)?
——= 2(x —ct)(—c) = —2c(x —ct)

Right side:

d(x — ct)?
¢ dx

= —2c(x —ct)

Both sides are equal. This may be enough for our quick check.

Any normalized function of this form solves the Schrédinger equation.
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We look at the time evolution of i (x — ct). How does a wave v
function Y (x — ct) evolve with time?

initial wave packet

We start attime t = 0.

Our wave-function is a wave-packet localized on the x —axis.

As t increases the wave-packet is shifting to the right with

uniform velocity c. —
b(x

This description is pretty close to the correct description of a = MOving to the right...
neutrino that moves immeasurably slower than the speed of
light. Our Hamiltonian would be a very good description of a
neutrino.

With the wave function moving to the right with velocity c also
the probability distribution does. That is the essential quantum
mechanics of this system. The particle can only exist in a state where it moves at this velocity, it
never can slow down or speed up.

We compare this with the classical description. With H = cp, the classical Hamiltonian:

a——a'canda———
ap ox P
We get:
OH . OH .
g—x—canda——p—o

The momentum is conserved, and the position moves with constant velocity c.

In other words, the expectation value of position behaves according to the classical equations of
motion.

Particle dynamics, forces:
Prerequisite

In quantum mechanics the time derivative of an operator L (L being any observable, H being the
guantum Hamiltonian) is

dL _ i (L, H]

dt h”
with [L, H] being the commutator of L and H: (LH — HL).
We apply this to velocity:

4 i _»
VST T 2mh<[X'P2]) T m

or

(P) =mv

. - . . p?
Note: X is the position operator, P the momentum operator, the Hamiltonian (forceless) H = P

The classical potential energy V(x) becomes the quantum mechanical operator V.
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The potential energy operator VV acting on any wave function multiplies it by a function of x:

Vi) = V) (x)
The commutator of the momentum operator P with the potential energy operator I/:
dv
P, V] =—-ih—
[P, V] ! dx
We check this:
[P,V](x) =

(i) (V) ~ Vo) (~in) wew =

d d
_m (voow() "’()w )) Ve w(x)

dV(x)

—ih P(x)

End prerequisite
In classical mechanics the potential energy function is denoted by V (x). It is related to the force on a
particle:

av
F(X) = —a

In quantum mechanics we write the Hamiltonian. The potential energy V(x) is replaced by the
operator I/ that gets added to the Hamiltonian.

If forces are included, the momentum of a particle is not conserved. In Newton’s laws of motions:
dp av
dt  0x

The rules of quantization require us to add the operator V to the Hamiltonian:

PZ
H=—+V
2m

We check whether (P) = mv = m(X) still holds because we have a new term added to the
Hamiltonian:

For the additional commutator of X and IV holds:

[X,V]=0
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because IV multiplies by the wave function i by a function of x. Multiplying by x and by a function of
X are operations that commute.

The additional term V has no effect on the velocity v.
What about the quantum version of Newton’s law?
We take Newton’s law again:
F=p
We build the time derivative of the expectation value (P) with our new Hamiltonian:

d(P) i
ar _EKP)’H] =

2
Ao
2 2
<(P) (u + (V)> <% + (V)> (P)>

P)P? P2
<( ;( ) P — ( )()

S I

- (V>(P)>

S |

= (PYV) = (V(P)) =

_ _
1P, ()] =

d{v a{v
LD )
Result:
d(P) d(V)
F T dx

This is the quantum analog of Newton’s equation for the time rate change of momentum for a
particle under the influence of a potential V. The expectation value (P) changes according to the
classical case.

Particle dynamics, linear motion and classical limit:

The heart of the difference between quantum mechanics and classical physics can be expressed in
the sentence: The average of a function {f(x)) (the expectation value of a function) is not the same
as the function of the expectation value f(x).

In all cases where (f (x))~f(x) is valid, the quantum mechanical description can be replaced by a
classical description. You can do classical physics and have no problems with uncertainty principle
etc.
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The picture shows a case in which (f (x))~f(x) is not valid.
f{x) = f(0) but (f(x)) # f(0) for most functions f.

V(x)

x

The second point of interest is the form of the potential.

If the potential in question is spiky it tends to cause the wave
function to scatter and disintegrate — no classical behavior.

What physical situations lead to potentials that tend to break the wave function? Roughly speaking, if
the features of the potential are shorter than the wavelength of the incoming particle, because then
(f (x))~f(x) does not hold in the area of the potential — the classical limit is no longer valid.

Particle dynamics, nonrelativistic free particles:
Prerequisite

The quantum operator P:

p=—inl
-t Ox
62
P2 — 2~
h 0x2

End prerequisite
For a nonrelativistic free particle, the kinetic energy is Emvz.

We write the Hamiltonian in terms of momentum operator P:

PZ

=2m

We take the original Schrédinger equation:

., 0 _
ih—- 1Y () = Hlp(®)
We get:

L@ _ 2 0%p(0)
at  2m o0x?

This is the traditional Schrodinger equation for a nonrelativistic free
particle. It describes a wave packet (a particle) that tends to spread out
and fall apart.

ﬂ}mm iniLial wave packel
x

i)
.. moving to the right

T} 'WWMWWIWWWMI T —

page 286 of 433



quantum-abc

Particle dynamics, path integrals:
Prerequisite

For any integral over the position variable x we can insert the identity:

I= flx)(xl dx

The Lagrangian L(x, x) is kinetic energy minus potential energy:

1 1
- -2__k 2
me > X

End prerequisite

Classical t

According to the least action principle, classical trajectories are that of ¢,
minimum (stationary) action. Action is a technical term and stands for

the integral of the Lagrangian between the end points of the

trajectory.

For a particle moving in one dimension, the action is:

t2

A= f L(x, x)dt X Xz

t1

We insert the Lagrangian:
tz
1 1
A= | =mx? —-kx?dt
fzmx > X
ty

We search the path with the least action A by help of calculus procedures.
Quantum mechanical

The idea of well-defined trajectory between the two points makes no sense in quantum mechanics
because of the uncertainty principle.

The global version of quantum mechanics asks: Given a particle starts at (x4, t;), what is the
probability amplitude it will show up at (x5, t,)?

We call the amplitude C; , == C(xq,t1; X3, t7).
The initial state of the particle is:
[(t1)) = |x1)
Over the time interval between t; and t, the state evolves to:
[(ty)) = e~ HEmt|xy)

Note: we use units for which A = 1.
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We replace (t, — t;) by t. The probability amplitude to detect the particle at |x,) is the inner
product:

(e |P(82)) = (x|~ |xy)

The process of quantization starts with splitting the time interval t into two smaller intervals of size %

The operator e "t can be written as the product of two operators: t
) ot Lt ¢

e—lHt — e_lHEe_lHi 2

We integrate this via the help of the identity operator: ¢

. ..t
C12 =f<x2|e ' 2|x><x|e )

x1> dx

t

The heart of this process is: the amplitude to go from x; to x, over the

X X X
time interval t is an integral over an intermediate position x and is the ! ?
product of two amplitudes.

t
& We repeat this until we have time intervals of size € (remember this

process in calculus ...). In the end, the amplitude is an integral over all
possible paths between the end points. Feynman discovered that the

% amplitude for each path has a simple relation to an expression of classical
mechanics, the action for that path.

X X2

The exact expression for the action A of each path is:

A
e'h

Feynman’s formulation can be summarized by the equation:

A
Cl,Z = f elﬁ

paths

In quantum field theory this is the principal tool for formulating the laws of elementary particle
physics.

Particle dynamics, quantization:

Quantum mechanics starts with a familiar classical system and quantizes it. Sometimes this works
well, the quantum motion of electrons, quantum electrodynamics. Sometimes this works not so well
like the quantization of general relativity. Some phenomena have no classical counterpart like the
spin of a particle.

Particle dynamics, time-independent Schrodinger equation:
The time-independent Schrodinger equation essentially is the eigenvector equation for the
Hamiltonian:

H|y) = E|p)
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We write this in terms of the wave function ¥ (x):

h? 9%)(t)
- "7 _F
2m  0x? Y)
We try the function:
ipx
Yx)=eht
We insert it into the Hamiltonian H|y) = E|y):
h? 0% ix
——— e h =
2m 0x?
h? 9 (6 iP_x)
———|—e h =
2m dx \0x

h? 9 (ip ip_x)
2mox \h

_@i( %)=

2m ox

hipip ipx
e h
2m h

p? ipx

2m

We get:

pZ

- 2m

E represents an energy eigenvalue of the Hamiltonian.

Particle dynamics, velocity and momentum:
Prerequisite

In statistics you get the expectation value of a continuous variable (x) by the integral over the

probability density f(x) multiplied by x:

(x) = fxf(x)dx

The commutator of momentum operator P and position operator X:
[X,P] =inh
[X, P?] = 2ihP
End prerequisite

We will work with the connection between the quantum mechanical operator P and the classical
notion of momentum p = mv.

The velocity of a quantum mechanical particle is the time derivative of the average position (| X|y):

e dy|X|y)
o dt
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We write this in terms of wave function:

v =X d fxl/)*(x, Oy (x, t)dx

xza

Instead of working through the time-dependent Schrédinger equation we use the quantum

mechanical methods.

We replace the position x by the position operator X and use:

ALy i
T —E([L'HD

We calculate:

We get:

We translate this into:

(P) =mv

The average momentum equals mass times velocity. Let us suppose the
wave function has the form of a packet. The expectation value of x will be

approximately at the center of the packet. This center of the wave packet “’““'\W

will travel according to the classical rule p = mv.

Particle, measuring moving particles in the three-

dimensional space:

A basis of states for a particle moving in the three-dimensional space is
specified by the position of the particle with three position coordinates:

- moving to the right .

—wﬂfﬂrwwnmiww:

|x, y, z). All spatial coordinates can be simultaneously measured.

Particles:

Coordinates of particles:

Imagine a space where the coordinates of a particle lay along the x-axis on a finite number of

coordinates x4, X5, ..., X,. Then we could use a vector of n coordinates to describe possible positions

of that particle and we could do matrix-based quantum mechanics.
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A particle moving along the x-axis can be found at any real value of x, we must switch to wave
functions to describe the system and expand the idea of vectors to include functions. Eigenvectors
and eigenvalues will translate to eigenfunctions and eigenvalues, operators will become functions of
functions.

With appropriate restrictions, functions like Y (x) satisfy mathematical axioms defining a vector
space.

Particles, Heisenberg Uncertainty Principle and coordinates of particles:
Prerequisite

[4, B] is the commutator of the operators 4 and B.
(Y|[A, B]|y) gives the expectation value of the commutator of the operators A and B.
The value of the commutator [X, P]:
[X,P] = ik
The momentum operator P in terms of wave functions:

ipx

1
Yp(x) = \/T_ne z

Note: 1, (x) is the eigenfunction (eigenvector) of the momentum operator P with the specific
eigenvalue p. It is a function of the position x and thus can be used to calculate the probability for
finding the particle at position x, but it is labeled by an eigenvalue of P.

End prerequisite

The Heisenberg Uncertainty Principle puts a quantitative limit on the simultaneous uncertainties of
two observables AA and AB:

1
AAAB zzl(sz[A,B]ll/))I

Note: if two operators commute, [4, B] = 0, then there is no uncertainty — both operators can be
measured simultaneously exactly.

We take the position operator X and the momentum operator P:

1
AXAP 2§I<wI[X,P]I¢)I

We use:

We get:

We will illustrate this.
The position operator X acting on a state [):

X|Y) = xq

Note: ... via the help of the Dirac delta function § (x — x;).
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In terms of wave functions, this becomes:

xP(x) = xoP(x)
The wave function of an eigenstate of X is infinitely concentrated around some point x;, on the x-
axis. It is perfectly localized. We can measure the position with no uncertainty.
On the other hand, the momentum operator P in terms of (position) wave function:

()_LWT}C
wpx—me

Note: this is a function of x, but it is labeled by an eigenvalue p of P.

We calculate the probability for a position x out of this wave function:

P(x) = ()¢ (x) =

1 _x 1 ipx

——e h —e h
Ver V2r
1 1

0 —
2n 2n

The result is a constant, independent from x. A state with definite momentum is completely
uncertain in its position.

Particles, Hermitian operators and particles:
The distillation of many decades of experimental observation: about a particle on the x-axis we know
either position x or momentum p.

The position of the particle is an observable, the Hermitian position operator X associated with it.

The momentum of the particle is an observable, the Hermitian momentum operator P associated
with it.

The operators X and P do not commute:
[X,P] =ih
Operators that do not commute gives observables that are not simultaneous exactly measurable.

Particles, Fourier transforms between position and momentum basis:
Prerequisite

We can write the identity operator I:

1=l
i
Note: |i) are orthonormal basis vectors of a state. Because momentum and position are both

Hermitian, the sets of vectors |x) and |p) each define such a set.

We replace summation with integration:

I'=[|x)x| dxorl = [|p)Xp| dp
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The inner product of a position eigenvector |x) and a momentum eigenvector |p):
1 ipx

(alpy ==
1 _ipx

(plx) = N R

End prerequisite

We have two ways to represent a state-vector. One way is the position basis Y (x) and the other the
momentum basis 1) (p). Both represent exactly the same state-vector [).

We search a transformation between these representation and find it in the Fourier transformation.

We start with the wave function in position representation:

Y(x) = (x[p)
We use the definition of the wave function in momentum representation:
P(p) = (plY)

We switch to continuous functions:

P(p) = f(leP) dx =
f (Pl dx =

[ plxsiatp) ax =
_ [Ty
— | e myY(x)dx
\V2m v
In the other direction we start with the wave function in momentum representation:
D) = (plp)

We use the definition of the wave function in position representation:

Y(x) = (x[p)

We switch to continuous functions:

Y(x) = f (xlp) dp =
f (xlIlp) dp =
f (xIpYply) dp =

1 px _
Ejehlp(mdp
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We compare our results:

Y(p) e hw(x)dx

"7

Y(x) = eh 2 (p) dp

=

Position and momentum representations are reciprocal Fourier transforms of each other.

Particles, state of particles:

In classical mechanics, for a particle of mass m moving along a one-dimensional axis x, the
momentary state of the system is described by the pair (x, p). x is the location, p is the momentum.
These two variables define the phase space of the system.

Given this, one might guess that the quantum state of a particle would be spanned by a basis of
states labeled by position and momentum

|x, p)

with the wave function:

Y(x,p) = (x,pl)

This is not correct.

What we have is a wave function in the position representation ¥ (x) (resulting from the position
operator X) and a wave function in the momentum representation 1,l~)(p) (resulting from the
momentum operator P).

Both represent exactly the same state-vector |).
Both are Fourier transforms of each other:

Y(p) e fll/)(x)dx

"7l

Y(x) = e T P(p) dp

=/

Particles, eigenvalues and eigenvectors of position:
The position operator X multiplies by x. What are possible outcomes of measuring X, and what are
its eigenvalues and eigenvectors?

The eigen-equation for the operator X:
X)) = xo[)
Note: X is the operator, x, is eigenvalue, ) is eigenvector to the operator X.
In terms of wave functions:
xp(x) = xop(x)

The only function ¥ (x) that reproduces itself when multiplied by x is the Dirac delta function:

P(x) = 8(x — xo)
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With the Dirac delta function, we get the inner product of a state ) and a position eigenstate |x,):

(xolip) = f 8(x — xo)P(x) dx = (xo)

Because this is true for any x,, we write:

(x[p) = P(x)

This is the wave function in the position representation.

Particles, Momentum and its eigenvectors:
The momentum operator P:

P = 'hd
B ldx

What are possible outcomes of measuring P, and what are its eigenvalues and eigenvectors?
The eigen-equation for the operator P:

PlY) = plyp)
Note: P is the operator, p eigenvalue, 1)) eigenvector to the operator P.

In terms of wave functions:

—ih () = Py ()
Solution:
1 _ipx
Yp(x) = \/ﬁe

Note: the subscript p is a reminder that 1, (x) is eigenvector of P with eigenvalue p. It is a function
of x, but labeled by an eigenvalue of P.

This is the wave function in the momentum representation.

Path integrals:

Suppose a classical particle starts at position x; at time t; and arrives at t
position x, at time t,. Action is a technical term, and it stands for the
integral of the Lagrangian between the end points of the trajectory.

For simple (classic) systems, the Lagrangian is kinetic energy minus
potential energy. For a particle moving in one dimension the action is:

2 (mx? 7
A= J; <T - V(X)> dt

1

X; Xz

Under all possible paths the stationary ones (e.g. the minima, least action) are possible solutions.

In guantum mechanics the idea of a well-defined trajectory has its limits in the Heisenberg
Uncertainty Principle. The quantum mechanical question is:

Given a particle starts at (x,, t;), what is the probability amplitude it will show up at (x,, t,)?

page 295 of 433



Parameters, counting parameters - Pure states, density matrices and pure states

With the simplification t, — t; = t we call the amplitude C(xy, x5, t) resp. C; ,.
The initial state of the particle is:
[(t1)) = [x1)
The state evolves to:
[w(t2)) = e~ Ht|xy)
Note: we use units with h = 1.
The amplitude to detect the particle at |x,) is the inner product of |[(t,)) with |x,):

C1z = (2] |xy)

Now we begin to break up the time interval t into smaller intervals of t
. t

size -. t;
The operator e it can be written as:

t

e_th — e—iH%e—iH%
We insert the identity operator: £
1= f|x)(x| dx o 2
We rewrite the amplitude:
—int —ink
Cio= f(xz e 2|x> <x e 2 x1> dx

The amplitude to go from x; to x, is the product of the amplitude to go from x; to x and the
amplitude to go from x to x,.

If we continue to divide into N time intervals of size &, we have the ¢
product of many factors: 6
o —ieH
We define: .
U(e) = e iH
We write the entire product: E
(x2|UN|x1) " "

We insert identity operators between each U and get the amplitude for the given path. In the limit of
a large number of infinitesimal time intervals, the amplitude is an integral over all possible paths
between the end points.

The elegant fact that Feynman discovered is that the amplitude for each path bears a simple relation
to a familiar expression from classical mechanics — the action for that path.
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The exact expression for each path is:

Note: A is the action for the individual path.

Feynman’s formulation can be summarized:

A
C1,2 = f eh
paths

In quantum field theory it is the principal tool for formulating the laws of elementary particle physics.

Pauli matrices:
The Pauli matrices:

=1 =G 9o=( )

The identity matrix is a Pauli matrix too.

Phase ambiguity, phase factor:

A complex number of the form z = e? is called a phase-factor.

For phase-factors holds:
z'z=1
z = cos(0) + i sin(6)
No measurable quantity is sensitive to the overall phase-factor, the orthogonality of states remains.

Therefore we can ignore it when specifying states.

Photons:
1.

Light of a given wavelength is composed of photons whose momentum is related to the wavelength:

2mh
A=—
p
2. wix)
’| ” I‘ initial wave packet
Photons can be represented by wave packets: M‘I‘WmluJ||u|‘|’|‘{'mw
‘ t
3.
The energy of an electromagnetic wave is quantized in indivisible units: 1o
il
2rhe ~iiflh-
) il
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Planck’s constant:

h kg m?
h=—=1,05457 ... % 10‘34&
2T S

Planck’s constant seems so small because the units we use are anthropomorph — meaning they
reflect us. A meter is used to measure rope or cloth, a second is about as long as a heartbeat.
Planck’s constant is so small because we are so big and slow. In many books about quantum
mechanics units are used for which Planck’s constant equals 1.

Poisson brackets, commutators and Poisson brackets:
Prerequisite

The time derivation of an operator L:

dL— i[LH]
dt~ k-

End prerequisite
Given a phase space with two functions f(p;, q;, t) and g(p;, q;, t).

The Poisson bracket:

{f.g}= i (g_;g_;i B 2_;%>

The Poisson brackets of the canonical coordinates are:

{avq;} =0
{pupj}=0
{aipj} = &)

This resembles a quantum mechanical commutator. The formal identification between them:
[L,H] & ih{L, H}
We use the time derivative of the operator L:
i

dL— [L, H]
dt~ k-

We insert the Poisson brackets:

d i
— L =——in{L H
It hlh{, }

We get:

d
—L=1{LH
L ={LH}

In fact, in the Poisson bracket formulation of classical mechanics we find:

L ={L H}
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Polarization vector:

The states of a spin are characterized by a polarization vector. Along that polarization vector the

component of the spin is predictably +1.

Polar representation of complex number:

We can represent complex numbers by a plane with the horizontal real axis and the vertical

imaginary axis. This is called the cartesian mode.

Im
z=a+bi=re'?
2

' ... graphic courtesy of

Wikipedia ...
» _W_J

A second way of representation describes a complex number by the angle it has with the real axis
and its length resp. the absolute value. This is called the Gaussian mode. In this mode we write a

complex number as r - e'?.

We can switch from one representation to the other:

Givenz = a + ib:

resp.
Given z = re'?:

or

|z] or r = Va? + b? <p=arccos(%) ifb>0

¢ = —arccos (g) if b <O0.
a =1-cos(p)

b =r-sin(¢)

z =71+ (cos(p) +i-sin(p))

Position:

Eigenvalues and eigenvectors of position:
Prerequisite

The inner product for continuous functions:

(W) = f " ()b (x) dx

End prerequisite
Eigenvalues and eigenvectors of the position operator X.

The eigen-equation for the operator X:

X)) = xol¥)

Note: in this case |Y) is eigenvector to the operator X with eigenvalue x,.

Note: x is a real number.
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In terms of wave functions:
xp(x) = xop(x)
The function ¥(x) that solves this equation is the Dirac delta function:
6(x —xg)
The wave functions ¥ (x) = §(x — x,) represent the state in which the particle is located at x,,.
The inner product of a state [i)) and a position eigenstate |x,):
(xol¥h)
Note: as x; is a real number, |xy) = (x,].

We build the inner product in terms of wave functions:

(xol) = j 5(x — xo)P(x) dx = (xo)

The wave function Y (x) of a particle moving in the x-direction is the projection of a state-vector |y)
onto the eigenvectors of position. Y (x) is the wave function in the position representation.

Proposition for position:
In formal logic following propositions are possible:

A certain particle has position x.
A certain particle has momentum p.
According to classical logic, propositions can be combined by the logical or resp. the logical and:
(A certain particle has position x) or (A certain particle has momentum p)
(A certain particle has position x) and (A certain particle has momentum p)
For classical physics both combinations are true.

For quantum mechanics only the first one is (always) true, because position and momentum cannot
(always) be measured simultaneously.

Position representation of wave function:
Prerequisite

The inner product of a position eigenvector |x) and a momentum eigenvector |p):

(xIp) = (plx)*
( )_L ipTx
x|p —me

ipx
[

1
(plx) = Ee
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By help of the identity operator we can expand inner products:

1=me

Note: |i) must be a complete set of basis vectors.

This works with integrals too:

I= flx)(xl dx

I = flzﬂ(pl dp

Note: eigenvectors of position operator X and momentum operator P define an appropriate basis.
End prerequisite
Suppose we know the wave function of the abstract vector |y) in position representation:
Y(x) = (x[p)
To know the wave function J)(x) in momentum representation we do the following steps.

5. We use the definition of the momentum-representation wave function:

P(p) = (PlY) = (plY)

Note: P is the momentum operator, p is eigenvalue of [).

6. We insert the unit operator:

) = [ (plaaly) dx
(x|y) is just the wave function Y (x).

7. (plx)is given by:

8. Result:

- 1 _ipx
Y(p) = Nz e h(x)dx

By knowing 1(x) in the position representation we calculate the corresponding wave function in the
momentum representation.

This works also the other way around. We know the wave function in the momentum representation
P (p) and calculate the position representation:

1. We use the definition of the position-representation wave function:

Y(x) = (X|y) = (x|y)

Note: X is the position operator, x is eigenvalue of [i).

2. We insert the unit operator:

W) = [lp)ply) dp
(pl) is just the wave function P (p).
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3. (x|p)is given by:
(xlp) = ——=e'h"
X = —0e n
P V2m
4. Result:
i

_ 1 %’" d
l/)(x)—ﬁfe Y(p)dp

Position and momentum representation are reciprocal Fourier transforms of each other.
Potential functions:
The potential energy function is denoted by V (x).

In classical mechanics it is related to the force on a particle:

av
F = —-—
(x) I
Combined with Newton’s second law, F = ma:
d?x v
Mz T ox

In quantum mechanics the potential energy function becomes an operator V that gets added to the
Hamiltonian:

The operator V acting on a wave function ¥ (x):
Vi) = V() (x)

Potential functions, spiky potential functions:

Whether an experiment follows the rules of classical physics or
guantum mechanics depends (among others) on the form of the
potentials involved.

Vi

If a potential is “spiky” in relation to the other participant

uncertainty in position, then the wave packet tends to scatter and
break up.

If a potential is “smooth”, the wave packet tends to remain and to show classical behavior.

Precession of spin in magnetic field:
Classical mechanics

The z component of the angular momentum is constant, the x and y components of the angular
momentum are precessing.

We define the angular momentum L:

L=xpy,—ypx

page 302 of 433



quantum-abc

The Poisson brackets:

{x, LZ} =y
{y' Lz} =X
{z,L,} =0

Quantum mechanics

The expectation value for a g, measurement does not change with time, but the o, and o,
expectation values do. Regardless, the result of each individual measurement is either +1 or —1.

(0x) = _w<0-y>
(O:y) = w(oy)
(d;)=0

Principle of least/stationary action:

Suppose a classical particle starts at position x; at time t; and arrives ¢,
at position x, at time t,. Action is a technical term, and it stands for

the integral of the Lagrangian between the end points of the

trajectory.

For simple (classic) systems, the Lagrangian is kinetic energy minus
potential energy. For a particle moving in one dimension the actionis: ¢;

ty .2
A= f (mx - V(x)> dt X %
A\

1

Under all possible paths the stationary ones (e.g. the minima, least action) are possible solutions.

In quantum mechanics the idea of a well-defined trajectory has its limits in the Heisenberg
Uncertainty Principle. The quantum mechanical question is:

Given a particle starts at (x4, t;), what is the probability amplitude it will show up at (x5, t,)?
With the simplification t, — t; = t we call the amplitude C(xy, x;,t) resp. Cy 5.
The initial state of the particle is:
[P (t1)) = 1x1)

The state evolves to:

l(t2)) = e ™|x;)
Note: we use units with A = 1.
The amplitude to detect the particle at |x,) is the inner product of [ (t;)) with |x,):

C1z = (xz]e™H|xy)
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Now we begin to break up the time interval t into smaller intervals ¢
.t
of size -. t
2
The operator e %t can be written as: L
o-iHE — e—iH%e—iH%
ti
We insert the identity operator:
X; X X5
I = flx)(xl dx
We rewrite the amplitude:
—int —~ink
Cip = f(xz e 2 x><x e 2 x1> dx

The amplitude to go from x; to x, is the product of the amplitude to go from x; to x and the
amplitude to go from x to x,.

If we continue to divide into N time intervals of size &, we have the product ¢
of many factors: t, _
e ieH Ef
We define: : (
U(e) = e~iet (—
We write the entire product: X X
(2 |UN |x1)

We insert identity operators between each U and get the amplitude for the given path. In the limit of
a large number of infinitesimal time intervals, the amplitude is an integral over all possible paths
between the end points.

The elegant fact that Feynman discovered is that the amplitude for each path bears a simple relation
to a familiar expression from classical mechanics — the action for that path.

The exact expression for each path is:

BUES

Note: 4 is the action for the individual path.
Feynman’s formulation can be summarized:

A
C1,2 = f e
paths

In quantum field theory it is the principal tool for formulating the laws of elementary particle physics.

=
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Probability for experimental outcome:
1.

In the case of spin measurement, the measurements will always give either +1 or —1 as a result.
Other probabilities we get as an average over a number of measurements, not directly as a result of
one measurement.

2.

In classical physics you test two propositions A, B. Generally, the sequence has no influence on the
result.

In quantum mechanics the sequence can be critical. If the two propositions are not simultaneously
measurable, the sequence A then B can give other results as B than A.

It seems that the logic foundation is different in quantum mechanics.
3.

Possible results of a measurement are the eigenvalues of the operator that represents the
observable — the result of a measurement is guaranteed to be this.

If |A) is the state vector of a system, and the observable L is measured, the probability to observe
value 4; is:

P(A) = KAIADNN? = (Al X A:1A)
Note: A; is eigenvalue of the operator L, |1;) eigenvector of the operator L.
4,

We calculate the average value, the expectation value of a measurement:
DESWHICH
i

Note: this is the standard formula for an average value.

5.

In terms of wave functions the probability for an experiment to have outcome A is:
PO =y (DY)

Note: Y/(A) is a complex valued function of the discrete variable 4.

Note: this works only for a discrete (finite dimensional) variable A.

Probability for experimental outcome replaced by probability densities:
For a discrete variable A the probability for an experiment to have outcome A is:

P =y" (DY)
Note: /(1) is a complex valued function of the discrete variable A.
For a continuous variable x, P(x) = ¥*(x)y(x) becomes the probability density.

As probability is defined by the integral over the probability density, the probability at exactly one
point is zero.
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We then can measure only the probability between two limits a and b:

b b
P(a,b)zf P(x) dx = f Y (DY) dx

With this we can normalize the vector (wave function):
| wowwar=1

Schrodinger ket and probability for experimental outcome:
1. Derive, look up, guess, borrow or steal the Hamiltonian operator H for the system.
2. Prepare an initial state | (0)).
3. Find the eigenvalues and eigenvectors of H by solving the time-independent Schrodinger
equation:
H|Ej) = Ej|E;)
You will get:
i
a;(t) = a;(0)e R
Note 1: "E;" is eigenvalue to the eigenvector |Ej).
;
Note 2: H|Ej) = Elej) leads to a differential equation that determines a;(t) = aj(O)e_gEft.
Calculate the initial coefficients a;(0) = (E;|y(0)).
5. Rewrite [(0)) in terms of eigenvectors |Ej> and initial coefficients a;(0):

() = ) @) IE)

j
6. Replace each a;(0) with a;(t) to capture its time-dependence. As the basis vectors |Ej) do

not change, this leads to:

() = ) @@ F" |E)

J

We can now predict the probabilities for (any) experiment as a function of time. Suppose the
observable (the operator) L has eigenvalues A; and eigenvectors |4;).

The probability for outcome A is:

P1(t) = KAl ()

Probability:

Entanglement and probability:
Prerequisite

We have an entangled two-spin system of Alice and Bob.

Alice’s density matrix (a 2 X 2 matrix):
pua = ) ¥ (@, bYp(a’,b)
b

This is purely a function of Alice variables a and a’ because we have summed up over all b of Bob.

End prerequisite

page 306 of 433



quantum-abc

We calculate the probability P(a) that the system of Alice will be left in state a if a measurement is
made.

We begin with P(a, b), the probability that the combined system is in state |ab):

P(a,b) = ¥*(a, b)y(a’, b)

We sum over b and get the total probability for a:
P(a) = ) (e, byp(a’ )
b

This is just a diagonal entry in the density matrix, so we can write:
P(a) = paa

Wave function and probability:
The wave function 1 (x) is used to determine the probability for finding a particle at position x:

P(x) = (X [¥)? = (XY} plX) = Y™ (x) = " ()P (x)

The wave function 1)(p) is used to determine the probability for finding a particle with momentum p:

P(p) = KPIY)I? = (PIYXYIP) = P(p)P* () = P* @) (p)

P (x) and P(p) are reciprocal Fourier transforms of each other:

I = % e~ Fp(dx

_ [ Fi)
— | eh d
Nz Y(p)dp
Probability amplitude:
In a single spin system |A):

|4) = ay|u) + agld)

a, and a4 are the components of |A) along the basis directions |u) and |d).
The quantity a,,* @, is the probability that a measurement of g, = 1.

The quantity a;*a, is the probability that a measurement of g, = —1.

The values a,, resp. a; are called probability amplitudes. To compute the probabilities for up or
down, their magnitudes must be squared:

P, = (AluKuld) = a, " ay,

Py = (A|ldXd|A) = ag"ay
Phase factors e change the probability amplitude, but not the probability:
a, # age'?

a o, = oy e e’ = a ae e = a,
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Probability density:

The probability density for finding a particle at position x:

P(x) = 9" (0)¥(x)

This is combined with the normalization condition:

1= f P OOP) dx

The probability to find the particle anywhere on the x axis must be one.

A classical pure state is a special case of a probability density being nonzero at only one point. In the
case above this would be the Dirac delta function that gives an “infinite” probability density at x, and
zero elsewhere.

Probability density replacing probabilities:
For a discrete variable A the probability for an experiment to have outcome A is:

P =" (DY)
Note: Y/(1) is a complex valued function of the discrete variable A.
For a continuous variable x, P(x) = ¥*(x)y(x) becomes the probability density.

As probability is defined by the integral over the probability density, the probability at exactly one
point is zero. We can measure only the probability between two limits a and b:

b b
P(a,b) =j P(x)dx = f Y (DY) dx

With this we can normalize the vector (wave function):

f_ YY) dx = 1

Probability distribution:
1.

If the probability distribution for an observable is a small, nice bell-shaped curve, then the
expectation value is the value you expect to measure. It behaves like a classical one.

2.

Suppose you have a probability distribution P(a, b) for two variables a and b.

If the variables are completely uncorrelated, then the probability distribution will factorize:
P(a,b) = P(a)P(b)

In terms of averages (of our two-spin system):

(0408) = (a4 ){0p)
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3.

The mathematical indication of correlation is that the probability distribution does not factorize. In
terms of averages:

(0408) # (a4 ){0p)

Probability distribution in classical mechanics:
In classical mechanics, the use of probability is always associated with an incompleteness of
knowledge relative to all that could be known.

In classical mechanics, the complete knowledge of a system implies complete knowledge of every
subsystem.

Particle dynamics and probability distribution:
In classical physics particles are moving.

In quantum mechanics probability distributions are moving (change their shape with time).

Uncertainty and probability distribution:
The uncertainty is the standard deviation.

Let A be an observable (operator) with eigenvalues a.

The expectation value of A:

(4) = lARp) = ) aP(@)

a

We define the operator A:
A=A—(A)
The expectation value of 4 is zero.
The eigenvectors of 4 are the same as those of A. The eigenvalues are shifted:
a=a—(A)

The square of uncertainty or standard deviation of A:

(a4)? = > @*P(@) = ) (@ (A)*P(a) = (WIA7I)

a

If the expectation value of the operator A is zero, the square of the uncertainty is the average value
of the operator A?:

(A4)? = (PlA*[Y)

Probability function:

An average is defined as a weighted sum:
(L= D AP
i

Note: P(4;) is the probability function.

P(A;) is the fraction of observations whose result was 4;.
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Suppose the normalized state of a quantum system is |A). We expand |A) in the orthonormal basis of

eigenvectors of L:
) = 1)

4

LAY = ) Laila) = D aillh) = ) aidil)

i i

(AILIAY = > (lay" > kil =

] 2

Z(Aﬂ aj*ailliMi) =

iJ

Z aj*ai/li(/lj |Al) =

i,j
Z a;"a;d

i

We calculate (A|L|A):

Note: (4;|4;) is the Kronecker delta &;;.

We get:

(AILIA) = ) @i aihy

i
We compare this with:
(L= D 2P
i
We get the average of an observable (an operator) L by sandwiching it between the bra and ket
representations of the state-vector A:
(L) = (A[L|A)
The probability P(1;) = a;*«;.
Product states:

The simplest type of state for a composite system (a two-spin system) is a product state. It consists of
two independent spins.

The system of Alice:

au|u> + adld)
The system of Bob:

Bulu) + Bald)
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Each state is normalized:
ayay, +agag =1
BiBu + BaBa =1
Note: without normalization no product state.
The product state describes the combined system:
Iproduct state) = {ay|u) + ag|d)} @ {Bylu) + Bald)}
We expand this:
ay|u) @ Bulu) + aylu) ® Bald) + agld) @ Bulu) + aqld) ® Bald)

ayfu(u) @ [u)) + ayfa(|u) @ |d)) + aghu(ld) & [u)) + agBa(ld) ® |d))
We get:

|product state) = a, [y, |uu) + ayBalud) + azBy,|du) + agB,4]dd)

Note: |u) is a two-dimensional state vector. |[u) @ |u) resp. |uu) is a four-dimensional state vector.

Product states, correlation of product states:
Let us assume that A is an Alice observable and B is a Bob observable.

(A) is the expectation value of 4, (B) is the expectation value of B and (AB) is the expectation value
of the product.

If a combined state is a product state, the observables are independent:
(AB) = (A)XB)
Correlation is defined as:
(AB) — (A)XB)
In a product state, the correlation between two observables is zero:
(AB) — (AXB) =0

Product states, counting parameters for product states:
To specify a product state (of two spins), we need four complex numbers a,,, 8., @4, B4 or eight real
numbers:

|product state) = a, [y |uu) + ayBalud) + agfy|du) + azB41dd)
The normalization condition reduces this by two.
The overall phase have no physical significance, this reduces further by two.
There remains four real parameters to describe the combined system.

Note: this is valid only for product states. For entangled states we might need the full set of
parameters.

Product states, density matrix and product states:
The eigenvector of a density matrix for a product state has exactly one nonzero eigenvalue, which
equals 1. The eigenvector with this nonzero eigenvalue is the wave function of Alice’s subsystem.
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We try this for a product two-spin system of Alice and Bob.

The wave function of the combined system with a = u, d and b = u, d for each subsystem:
Y(a,b) = Yyy + Yyg + Yau + Yaa

In terms of the subsystem values:
auﬁu + auﬁd + adﬁu + adﬁd

We have the normalization condition:
a, o, +aja; =1

BubBu + BaBa =1

The density matrix of Alice:

Paa = ) ¥'(@,bYp(a,b) =
b

Y@, wWy(a,w) + 9 (a, dy(a, d)

Note: the right-hand index of p, that is, the a’ index, corresponds to the complex conjugate state-
vector Y*(a’, b) in the summation. This is a consequence of the convention:
Lgar = (alLla’)
We calculate each of the four possible terms:
Puu = P"(w, WP w,w) + ¢ (w, DY(u, d) =
Bty By + auBaauBa =
@ty Puu + ayauBaBa =
oty (BuBy + BaBa) =
a,ay
Pua =P (d, WP w,w) + P*(d, DY (u,d) =
aaButtyPu + agBaaufa =
ayagPuPu + ayagBaBa =
@y g (Bubu + BaBa) =
g
Pau = Y (w,wWP(d,w) +*(u,d)y(d, d) =
uPuaPu + ayPaaBa =
ay@aPubu + ayaaPaba =
@y q(BuBu + BaBa) =
a, g
paa =¥ (d, wW(d,u) +P*(d,d)p(d,d) =

agPudafy + agBaafa =
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agaPubu + aq@aPaba =
aq@q(BuPu + Baba) =
agq
The density matrix for Alice:

(a;iau auag)
Qug Agaq

The diagonal of this matrix consists of real values.
The matrix is Hermitian.

The Trace of the matrix gives 1.

Note: any Hermitian matrix can be diagonalized.

We remember: The eigenvector of a density matrix for a product state has exactly one nonzero
eigenvalue, which equals 1. The eigenvector with this nonzero eigenvalue is the wave function of
Alice’s subsystem.

We know the wave function of Alice’s subsystem:

wu +ll)d - aulu) + adld)

The state-vector:

The equation for the eigenvector/eigenvalue:
(al*lau auag) (au)
a,ey  azag) \Xd

(a{iauau + aua;}ad> _
A,xa0, + aja g

(i + i) _ (e

ag(ayay + agag) ®a
Result: (ad) is eigenvector to the density matrix of Alice with eigenvalue 1.

Product states, density matrix test for entanglement and product states:
Suppose the state [1) is a product state of Bob’s factor |8) and Alice’s factor |9). Then the composite
wave function also is product of Bob’s factor and Alice’s factor:

Y(a,b) =9(a)6(b)

Alice’s density matrix:

Para =9 (@)9(a) ) 6°(D)6D)
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As the state |y) is a product state of Bob’s factor |#) and Alice’s factor |[9), both Alice’s and Bob’s
state separately are normalized, so:

Z 0" ()a(b) = 1
b

And Alice’s density matrix becomes pg,, = 9*(a)9d(a’).

We prove a theorem about the eigenvalues of Alice’s density matrix that is only true for product
states but not for entangled states and thus can serve to identify them: for product states the density
matrix of Alice or Bob has exactly one eigenvalue of value one.

The eigenvalue equation for Alice’s matrix pg,q:

z Pa'a%a = Aag =
a
Z 9*(a)9(a)ay = ﬁ(a’)z 9" (@)
a a
Y9 (@)a, has the form of an inner product. If the column vector « is orthogonal to 9, then

Y9 (a)a, is zero giving an eigenvector with eigenvalue zero.

In a space state of dimension N we have N — 1 vectors orthogonal to 9, so we have only one
possible direction for an eigenvector with nonzero eigenvalue 9(a):

9" (a)a, = 0 foralla, # 9(a) and 1 for a, = 9(a).
Alice’s system is in a pure state, all of her observations are described as if Bob never existed.

In a maximally entangled system on the other hand Alice’s density matrix is proportional to the unit

L . 1
matrix with all equal eigenvalues I

1
N(Sa’a

Pa'a =

As the density matrix gives the probability for an outcome this means that every outcome has equal
possibility.

For partial entanglement the weights of p,, move from the equal distribution towards a
concentration on a single value 1 on the diagonal of the density matrix.

Although in a maximum entangled state Alice can’t predict the outcome of her experiments, she
knows (after the experiment has been done) exactly about the relation between her and Bob’s
outcomes.

Product states, description of product states:
Given two states, |A) = a, |u) + a4|d) and |B) = B, |u) + f4]d).

Each state is normalized: a;, a0, + agag = 1 and B, Ly + Bafa =1
The product state describing the system is: |product state) = {a, |u) + a;|d)}®{L,|u) + B4|d)}.
Expanding and switching to composite notation gives:

|product state) = a, Sy |uu) + a, Balud) + agfy|du) + agBq1dd)

This state vector of the combined system is automatically normalized too: a, B, + @, fq + 4By +
ad,Bd =1.
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The density matrix A as well as the density matrix B have exactly one nonzero eigenvalue 1, the
eigenvector with this eigenvalue is the wave function of system A resp. B.

The wave function is factorized: Y(a)y(b).
The expectation values are: (g,)* + (0;,)* + (0,)* = 1 and (7,,)* + (1,)* + (1) = 1
The correlation between the two systems is zero: {(g,7,) — (0, ){T,) = 0

The main feature of a product state is that each subsystem behaves independently of the other.

Projection operator:

The outer product of a normalized ket |1) with its corresponding bra (1| is called a projection
operator:

[) Wl

Note: this is a kind of tensor product.
Properties of projection operators:

e Projection operators are Hermitian
The vector |y) is eigenvector of its projection operator with eigenvalue 1:
X1 1) = 1)
e Any vector orthogonal to |i) is eigenvector with eigenvalue zero. Thus, the eigenvalues of
|| are either zero or one, and there is only one eigenvector with eigenvalue 1, |¢) itself.
e The square of a projection operator is the same as the projection operator itself:
I = Y)Yl
e The trace of an operator or any square matrix is defined as the sum of its diagonal elements.
We define the trace Tr of an operator L by using an appropriate basis |i):

Tr = z(ilLli)

l
This gives the sum of the diagonal elements of L.

if we add all projection operators for a basis system, we obtain the identity operator I:
Ml =1
i

The expectation value of any observable L in state |y) is given by:

(L) = (WIL[Y) = Tr [YpXp|L

Propositions:

Classical propositions:
Formal logic means the classical logic that works with 1 and 0 resp. true and false.

A proposition can be true or false. Mathematical propositions can be equations like 2 + 3 = 5. An
equation like 2 - x + 3 = 7 is not a proposition but a propositional expression that becomes true or
false depending on what you insert for the variable x.

If you concatenate propositions with “and” resp. the “or”, the result follows rules. We must
carefully distinguish between the inclusive or we normally use when speaking and the
exclusive or. The exclusive or in formal logic is written as XOR.
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Let A and B be propositions, then the truth values (A “or” B) are:

A B AorB
0 0

_ oo
_ O R
=

The truth values for (A “and” B):

Y =N =N

Sometimes the logical connections are referred to as + and - :

A B A+ B
0 O 0
0 1 1
1 O 1 Note that 1+1 gives 1 because
1 1 1 “double true remains true”.
A B A'B
0 O 0
0 1 0 ... perfect ...
1 0 0
1 1 1

There is a special logical operator, the “not”, that simply switches the truth value to its opposite:

A A
0 1
1 0

Classical computers work on basis of formal logic, computer memory consist of binary storage
locations that only distinguish between 0 and 1 (and so does the processing unit too). That is pity
because if we could isolate every single storage location perfectly then we would be able to store not
only a binary digit but a real number (at least more than two different states).

In quantum mechanics often used is the orientation of a spin in space. This spin can be “up” or
“down”. We need a way to describe these. A simple variable with e.g. 1 for “spin up” and 0 for “spin
down” is not sufficient, we use two variables for the orientation, one representing “up”, the other
“down”.

a
As they are logically connected to each other, we write them as (b)

(é) defines the state with the spin-vector “up”, (0) the state with the spin-vector “down”.

1

This fits with our formal logic. The proposition “the spin is up or down” is true for both combinations:

A B A+ B
0 1 1
1 0 1
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The proposition “the spin is up and down” is false for both combinations:

A B A-B
0 1 0
1 0 0

We need a method to show that the positions “up” and “down” are mutually exclusive. We adopt the

dot product: (g) . (2) = ac + bd and apply it: ((1)) : ((1)) =1-04+0-1=0.

We check another (“useless”) proposition: “The spin is up” and “the spin is up”. This is a true

1) =1-140-0 =1 delivers the “1” for “true”.

proposition. According the dot product ((1)) ' (0

Unfortunately, things are a little bit more complicated in quantum mechanics. The result of

measuring the spin gives either ((1)) or ((1)), the spin itself can take all combinations in between:

a ((1)) and ((1)) with a and S being fractions between 0 and 1.

a

1) and B (2) merge to (ﬁ) We check the

0
oy . . . a . . a . .
proposition “the spin is (B)” and “the spin is (ﬂ)"’ this should give +1 too. We test:

We standardize the notation for the spin positions: a (

a a
(g) () =a-a+p-p=a*+p’
As the result should be 1, we get a normalization condition: a? + [)’2 =1.

Constantly writing terms like (1) is cumbersome, therefore Dirac invented the symbol |u) for ((1))

0
1

and |d) for ((1)) He named this notation “ket”. Using kets instead of a (0) and B ((1)) we can write

more easily a|u) + B|d).

There will be a constant change between all possible notations, because for some problems special
notation fits best.

Quantum propositions:
We take two composite propositions:

(1) the particle has position x and momentum p
(2) the particle has position x or momentum p
In classical logic both propositions are true.

In quantum mechanics proposition (1) cannot always be verified because measuring one component
may destroy the other. It is not possible to always measure both simultaneously exact.

There seems to be a logical difference between classical and quantum concepts of the state of a
system.
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Pure states

In a pure state the density matrix p corresponds to a single state, it is a projection operator that
projects onto that state. A pure state represents the maximum amount of knowledge one can have
of a quantum system.

A classical pure state is a special case of a probability density, in which the density matrix p has
exactly one nonzero entry (on the diagonal).

Pure states, composite system and pure states:

We take a system composed of two parts, A and B, two spins or any other composite system. We
suppose that Alice has complete knowledge of the state of the composed system, she knows the
wave function Y (a, b).

We assume that Alice is not interested in B. Instead, she wishes to find out all about A without
looking at B. She selects an observable (an operator) L that belongs to A, and does nothing to B
when it acts.

She calculates the expectation value of L:

L) = D B @D gy aptb(ab)

ab,arbr

L belongs to A and acts trivially on the b-index (b’ = b):

()= > W' @by g(ab) =

a,a’,b

Y L ah(@b)y(@h) =

a,a’,b

Note: each summand is a (complex) number.

E La’,apaa/
aa’

with:
Paar = ) P(abyp*(@'h)
b

Despite the fact that the composite system is described in a perfectly pure state, the subsystem A
must be described by a mixed state.
Note: for a mixed or entangled state:

p*>#p

Trace(p?) < 1

Only in case of a product state p will have the form of a projection operator.
Note: for a product state:

p>=p

Trace(p?) = Trace(p) = 1
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Pure states, density matrices and pure states:

If the composite Alice-Bob system is in a product state, then Alice’s or Bob’s density matrix has one
and only one eigenvalue equal to 1, and all the rest is zero. In this situation, both subsystems are in a
pure state.

For pure states hold:
p>=p
meaning the matrix has a single entry “1” on the diagonal.

Trace(p?) =1
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Quantization:

A well-known and well-trusted procedure to get the correct description for a free (one-dimensional)
particle in terms of a quantum mechanical process is quantization.

1. Start with a classical system, use a set of coordinates x and momenta p.
The coordinates and momenta come in pairs, x; and p;.
The classical system also has a Hamiltonian, which is a function of all x; and p;.

2. Replace the classical phase space with a linear vector space. In the position representation,
the space of states is represented by a wave function /() that depends on the coordinates
—in general, all of them.

3. Replace the x; and p; by the position operator X; and the momentum operator P;.

Each X; acts on the wave function by multiplying it with x;.
Each P; acts on the wave function by differentiating to the coordinate i:
. a
p; - —lha—xi

4. The Hamiltonian becomes an operator that can be used in either the time-dependent or

time-independent Schrédinger equation.

The time-dependent equation tells us how the wave function changes with time.

The time-independent form allows us to find the eigenvectors and eigenvalues of the
Hamiltonian.

Note: Sometimes this procedure is successful, e.g. in fields ranging from the motion of particles to
guantum electrodynamics.

Note: The spin of a particle has no real classical counterpart usable for this procedure.
Note: The quantization of general relativity has largely failed (date of this statement: 2020).

A paradigmatic example is the quantization of the harmonic oscillator.

Quantum abstractions:
Quantum abstractions are fundamentally different from classical ones.

The idea of a state in quantum mechanics is conceptually different from its classical counterpart.
States are represented by different mathematical objects and have a different logical structure.
States and measurements are two different things, and the relationship between them is subtle and

nonintuitive.

Quantum field theory, path integrals and quantum field theory:

Feynman'’s path integral formulation is the principal tool for formulating the laws of elementary
particle physics:

A
C1,2 = f elﬁ

paths

Note: A is the action for the individual path. C; , is the probability amplitude for a particle to transit
from state 1 to state 2 and is the integral over all possible paths and their action A.

For reasons of completeness: The path integral formulation is a description in quantum mechanics
that generalizes the action principle of classical mechanics. It replaces the classical notion of a single,
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unique classical trajectory for a system with a sum, or functional integral, over an infinity of
guantum-mechanically possible trajectories to compute a quantum amplitude. (courtesy Wikipedia)

Quantum Hamiltonian:

H=—+V(x)
P is the momentum operator:
Y
PY = —ih—
v ! 0x

V is the operator of the potential energy:

Vip =V (x)(x)
We get the Schrodinger equation:

O _ K2 8%(t)

hoc = "am axz VY
In terms of Energy:
h? 0%(t)
Ep = - — o+ VY

Quantum mechanics:

Quantum mechanics as calculus of probabilities:

For practical reasons, we will adopt the following: Quantum mechanics is unavoidably unpredictable.
Quantum mechanics is as complete a calculus of probabilities as is possible. The job of a physicist is
to learn and use this calculus.

Classical mechanics vs. quantum mechanics:
Classical and quantum worlds have some important things in common. Quantum mechanics,
however, is different in two ways:

1. Fundamentally different abstractions. The idea of a state in quantum mechanics is
conceptually different from its classical counterpart. States are represented by different
mathematical objects and have a different logical structure.

2. Inthe classical world one can perform an experiment to show the state of a system —the
state of a system will not be altered by the experiment.

In the quantum world, this is not true. States and measurements are two different things.
Sometimes, measurements show the state of a system. Sometimes, measurements set the
state of a system.

Conservation of energy and quantum mechanics:
For an observable (an operator) L:
d i

— L ==

LH
T o (L H]

Note: [L, H] is the commutator of the observable L with the Hamiltonian H.

Note: [L, H] = LH — HL
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The Hamiltonian H is the energy of the system. The condition for the energy of the system to change:

d i
—H=——

i
R - [H,H] = —(HH — HH) = 0

The energy of the system is conserved.

Fundamental theorem of quantum mechanics:

a) The eigenvectors of a Hermitian operator are a complete set.
Any vector the operator can generate can be expanded as a sum of its eigenvectors.

b) If 1, and A, are two unequal eigenvalues of a Hermitian operator, then the corresponding
eigenvectors are orthogonal.

c) Even if two eigenvalues are equal, the corresponding eigenvectors can be chosen to be
orthogonal.
This situation is called degeneracy.

In toto: the eigenvectors of a Hermitian operator form an orthonormal basis.

For an explicit check of these conditions please see “Eigenvectors of a Hermitian operator”.

Planck’s constant and quantum mechanics:

34 kg-mz

Planck’s constant h originally had a value of about 6.6 X 10~ . Usually it is used in form of h:

h kg - m?
h:=—=1.054571726...x 10734 gm
2T S

As quantum mechanics is working with complex numbers and complex numbers are connected with
sin and cosin, there often appears the value 2. h prevents us from repeatedly writing 2.

Max Karl Ernst Ludwig Planck, 1858 — 1947, was a German theoretical physicist whose discovery of
energy quanta won him the Nobel Prize in Physics in 1918. Planck made many contributions to
theoretical physics, but his fame as a physicist rests primarily on his role as the originator of quantum

theory, which revolutionized human understanding of atomic and subatomic processes. (Courtesy
Wikipedia)

Quantum mechanics, principles of quantum mechanics:

The principles of quantum mechanics all involve the idea of an observable, and they presuppose the
existence of an underlying complex vector space whose vectors represent system states.

An observable could also be called a measurable. It is a thing that you can measure with a suitable
apparatus.

e Principle 1: The observable or measurable quantities of quantum mechanics are represented
by linear (Hermitian) operators L.

e Principle 2: The possible results of a measurement are the eigenvalues of the operator that
represents the observable. We will call these eigenvalues A;. The state for which the result of
a measurement is unambiguously 4; is the corresponding eigenvector |4;).
Results of a measurements is always a real number.

e Principle 3: Unambiguously distinguishable states are represented by orthogonal vectors.

e Principle 4: If |A) is the state-vector of a system, and the observable L is measured, the
probability to observe the value 4; is:

P(A) = [(AIA)]? = (AlA;)XA14)
e Principle 5: The evolution of state-vectors with time is unitary.
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|”

Principle one: observables are the “real” things, results of measurements. Operators are their
theoretical counterpart, needed to compute probabilities for results of measurements.

Principle two defines the relation between the operator representing an observable and the possible
numerical results of a measurement. The result of a measurement is always one of the eigenvalues of
the corresponding operator.

Principle three requires physically distinct states to be represented by orthogonal state-vectors. Two
states are physically distinct if there is a measurement that can tell them apart without ambiguity.
The spin directions up and down are an example. But you cannot unambiguously distinguish
between the spin directions up and left. The inner product of two states is a measure of the inability
to distinguish between them. Sometimes the inner product is called overlap — overlap zero means
physically distinct states.

Principle four quantifies the results of possible measurements. If we assume that a system has been
prepared in state |4), and subsequently measure the observable L, then the outcome will be one of
the eigenvalues A; of the operator L:

P(A) = KAI)? = (Al2;)4;14)
Note: |4;) is eigenvector, A; eigenvalue. P(4;) is the probability for outcome 4;.

Principle five follows from the “minus first law”, the conservation of distinctions. Distinguishable
states are orthogonal to each other. Suppose that |1/(0)) and |¢(0)) are two distinguishable states.
Therefore, they must have an orthogonal representation (no overlap):

W(0)lp(0)) =0
The minus first law requires this to be true for all times:
W®NP®) =0
We have a time-development operator U(t).
[(£)) = Uy (0))
W®1 = WOIUT )
Note: UT(t) is the Hermitian conjugated of U(t).
lp(©) = U@®)[¢(0))
We modify (¢(t)|¢(t)) = 0 by the time-development operator:
W®1D®) = WOUTOU®[P©0) =0

This requests UT (£)U(t) to be the identity matrix (operator). An operator with this property is called
unitary.

Quantum mechanics, 3-vector operators and quantum mechanics:
The spin operator o is neither a state-vector (a bra or a ket) nor a spatial 3-vector. It has resemblance
to a 3-vector because it is associated with a direction in space.

The spin operator o is frequently used as though it were a simple 3-vector and is called a 3-vector
operator.

There is a spin operator for each direction in which an apparatus measuring spin can be oriented.
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The operator g consist of the three components oy, 0, and o, with the associated state-vectors
|left) and |right) for o,

lin) and |out) for g,

and

|up) and |down) for a,.

The components of the spin operator ¢ are represented by the Pauli matrices:

7= (7 o)

= )
Note: i is the imaginary unit.

9z = (é _01)

Behaving like a 3-vector, the component of o along any direction 7 is the dot-product of o and 7:
Op =01 = oxny + oyny, + o0,

Written in terms of the Pauli matrices this gives:

We can combine this to a single matrix:

Oh:< n, @x—m»)

(nx + iny) —N,

If we find the eigenvectors and eigenvalues of g,,, we will know the possible outcomes of a
measurement along the direction of 7 with the corresponding probabilities. We have a complete
picture of spin measurement in the three-dimensional space.

Quantum mechanics, measurement and operators:
e Operators are the things we use to calculate eigenvalues and eigenvectors.
e QOperators act on state-vectors, not on actual physical systems
e On operator acting on a state-vector produces a new state vector

There is a difference between “measuring an observable” and “operating with the corresponding
operator on the state”.

Suppose we are interested in measuring an observable L. The state of the system before we do the
measurement is |A). It is not correct to say that the measurement of L always changes the state to
l|A) with [ being a number.

We show this with an example.
We prepare the state |r) which is not eigenvector of g,. We can express the state |r) in terms of |u)

and |d):

)= —lw) + 1)
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Acting on this state vector with o,:

S S I
o |7 —\/Eazlu ﬁazl =5 7z

The measurement result would be either +1, leaving the system in state |u), or —1, leaving the
system in state |d) — one of them.

lu) ——=1d)

The state after acting with the operator is a superposition of both states |u) and |d).

Quantum mechanics, spin operators:
The spin operator ¢ is not a state-vector (bra or ket). It is not exactly a spatial 3-vector either, but it
has a strong resemblance because it is associated with a direction in space.

We call it a 3-vector-operator.

A spin operator can only provide information about the spin component in a specific direction. To
determine the direction of a spin we need a spin operator for each axis in space.

Quantum mechanics, spin operators, constructing spin operators:
The spin operators represent the components of a spin, oy, 0, and d;.

The component o,

We begin with g, that has definite, unambiguous values for the states up and down, |u) and |d):

=3

0=()

Note: these are the state vectors, not the orientation of spin in space.
Measurements will give g, = +1.
We have three principles:

e Principle 1:
Each component of o is represented by a linear operator.
e Principle 2:
The eigenvectors of g, are |u) and |d). The corresponding eigenvalues are +1 and —1. We
express this with the equations:
ozlu) = u)
o,ld) = —|d)
e Principle 3:
States |u) and |d) are orthogonal to each other:
(uld) =0

From principle 2 we calculate the matrix representation of g,:

G, = ((02)11 (02)12)

(02)21 (02)22
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21 (07
(@n o) 6)= )
(s @) D=-()
This gives the values for o,:

9z = (é —01)

We repeat this for the other two components of spin, gy, and dy,.

The component o,

The state vectors right, |r) and lef't, |l) expressed in terms of state vectors |u) and |d):

) +—1d)
1 1 1
|T>=ﬁ($)+ﬁ(2)=ﬁ(i)

l)._i )_i d)
I -—\/Elu \/El

Ir) =

=50 -5 =5
V2N\0/ 2\l V2 \-1
Note: any spin state can be represented as a combination of the basis vectors |u) and |d).

We check whether those two vectors are orthogonal:

1 1,1 1 1 1
(rll)=ﬁ(11)-ﬁ(_1)=§(11)-(_1)=§(1-1+1-(—1))=0

Note: the bra (r| to the ket |r) is the complex conjugated, but as |r) is real it follows (r*| = (r|.

The matrix representation of g,,:
_(0 1
Ux_(1 0)
We check the eigenvector property:
0 1y 1y 1Teo-141-1y 1,1
(@) = (3 o) \/5(1)_\/5(1-1+0-1)_\/§(1)
|r) is eigenvector to the operator g, with eigenvalue 1.
0 1. 1,1 1/0-141-(-1) 1,1
= D550 ) -5
1 0/ 2\-1 2\1:1+0-(-1) V2 \-1

|1} is eigenvector to the operator g, with eigenvalue -1.
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The component o,,

The state vectors in, |i) and out, |0o) expressed in terms of state vectors |u) and |d):

1 i 1
=)+ (1) =50

=) -5 -5(1)

Note: any spin state can be represented as a combination of the basis vectors |u) and |d).

Both vectors are orthogonal to each other:

(ilo) = \Fm( ) - \F( )=—(1< - (1) =
14 () (D) =3 (42 =0
2( l l —2 l =

Note: the bra (i| to the ket |i) is the complex conjugated.

The matrix representation of g,,:

We check the eigenvector property:
A_(0 —iy 1 _1(0-1—1'2)_1 1
(“y|l)_(i 0) ﬁ(i)_ﬁ i 1+0-i _ﬁ(i)
|i) is eigenvector to the operator gy with eigenvalue 1.
0 —iy 1.1 _1( 0-1+i? )_ 1.1
<0y|0>_(i 0) ﬁ(—i)_ﬁ i-1+0-(-0)/ ﬁ(—i)
|o) is eigenvector to the operator gy, with eigenvalue -1.

Conclusion

The matrix representations of the spin operators oy, g, and g;:

w=( o) =0 ) e=( 2)

Note: these are the Pauli matrices.

The representation of the state vectors in the up — down system:

w=(). W=
=50 w=5(")

w==() =5
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Quantum mechanics, spin-polarization principle:
Any state of a single spin is an eigenvector of some component of the spin.

Given a state |A) = ay|u) + a4|d), there exists some direction 7, such that:
¢ - 7|4) = |4)

This means that for any spin state, there is some orientation of the measurement apparatus that it
will constantly register +1 when measuring the spin.

In physics language we say that the states of the spin are characterized by a polarization vector.
Along that polarization vector the component of the spin is predictably +1.

Note: for any state of a single spin system, the expectation values of all three components of o sum
to1:

<0x>2 + <0y>2 + (Uz)z =1

Quantum simulation:

Imagine a computer game representing an entangled two-spin system for Alice and Bob on two
terminals connected to a single computer. In its memory is stored the state-vector of the combined
system, four complex numbers a,,;,, @y 4, Xgy, @a4- The computer updates these numbers using the
Schrédinger equation.

Each terminal shows a single spin of this two-spin system and A
an apparatus that can be used to measure the orientation of
this single spin.

We assume that the terminals can access the central @
computer instantaneously but only to update the state-vector.
No information exchange between Alice and Bob is possible.

This device can simulate the quantum mechanics of the two-spin system, as long as the connection of
the terminals is online and works instantaneously.

As long as Alice and Bob cannot use it to instantaneously exchange other information, no locality-

violating information exchange between them takes place.

Quantum spins:
1.

The isolated quantum spin is an example of the general class of simple systems we call qubits —
guantum bits — that play the same role in the quantum world as logical bits play in defining the state
of your computer.

2.

Measuring a spin in whatever direction gives the result +1 or —1. There is no more to know, or that
can be known.

3.

Quantum spins can be simulated by classical computers.
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Quantum states:

Along the x-axis and along the y-axis:
Prerequisite

We choose vectors |u) for up and |d) for down as the two basis vectors along the z-axis and write
any state as linear superposition of these two:

|4) = aylu) + aqld)
|A) needs to be normalized:
a, o, +ajag =1
We name the vectors |r) for right, |l) for left on the x-axis and |i) for in, |o) for out on the y-axis.
End prerequisite
Any spin state can be represented as a linear combination of the basis vectors |u) and |d).

If we prepare a spin along the x-axis and then measure in z-direction, there will be equal
probabilities for up and down.

A vect tisfying this rule:
vector |r) satisfying this rule A2

) = —=lw) + —=1d)
1=l +

V2 V2

We use that both vectors must be orthogonal:

(rly =(llry =0

We get the vector |1):

FRRIE I
WA

With similar reasoning and evaluating more conditions, we get the vectors |i) and |o0):

Ir) =

) = ) + = |d)
0=l + |

V2 V2
_ 1 i d
lo)_ﬁlu)_ﬁl )

Note: i is the imaginary unit.

Note: all possible orientations are expressed in terms of up and down, the basis vectors in z-
direction.

Quantum states, counting parameters:
The general spin state is defined by two complex numbers, a,, and a,. This gives four real
parameters.

The normalization condition: aja,, + ajay; = 1 reduces the number of variables to three.

The physical properties of a state-vector do not depend on the overall phase-factor, this reduces the
number of variables to two.
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This is the same number of parameters to define a direction in a 3-dimensional space —two angles
are needed.

Quantum states, incompleteness of quantum states:
We would not raise the question about hidden parameters. Quantum mechanics is a complete
calculus of probabilities, and we use it.

Quantum states, representing spin states as column vectors:
We have the basis kets |u) and |d).

They are orthogonal:
(uld) =0

We represent them as column vectors:

0=

=)

Note: as all spin directions can be expressed with kets |u) and |d), we can represent all spin states
with these two vectors.

Quantum states, spin states:
Prerequisite

We have an apparatus A to measure the direction of a spin.

Note: measuring a spin means prepare the spin in this direction.

We can orient A into every possible direction in space.

If we express a state-vector A in a basis
|4) = ay|u) + ag4ld)

then the corresponding state-vector needs complex conjugated coefficients:
(Al = (ulay, + (d]a

End prerequisite

If A is oriented along the z-axis, the two possible states that can be prepared correspond to g, =
+1. We call them up and down and denote them by kets |u) and |d).

The space of states for a single spin has only two dimension.
We can write any state A:
|4) = aylu) + aqld)
Mathematically, we can identify the components of |A) by the inner product:
a, = (ul4)
ag = (d|4)

The quantity a,,@,, is the probability to measure g, = 1, a;a, is the probability to measure g, =
—1.
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The values a,, and a itself are probability amplitudes.
The kets |u) and |d) are mutually orthogonal:
(uld) = (dlu) =0

Two orthogonal states are physically distinct and mutually exclusive. If the spin is in one of these
states, it cannot be in the other one. This idea applies to all quantum systems.

Note: do not mistake the orthogonality of state-vectors for orthogonal directions in space. The
directions up and down are not orthogonal in space (they are antiparallel), their associated state-
vectors are.

The normalization requirement:
a,a, +azag =1
This means that the state-vector |A) is normalized:
(AlA) = ((ulay, + (d]ag)(ay|u) + aqld)) =
(ulayayu) + (ulayaq|d) + (dlagayu) + (dlagag|d) =
aya, (ulu) + ayaq(uld) + aja,(dlu) + ajay(d|d) =
a1+ aja;0+aja, 0+aza;-1=
a, o, +aza; =1

This is a general principle of quantum mechanics: the state of a system is represented by a unit
(normalized) vector in a vector space of states.

The squared magnitudes of the components of the state-vector (along particular basis vectors)

represent the probabilities for experimental outcomes.

Quantum systems, combining quantum systems:

We have a composite system of two spins of Alice and Bob with the notation |u) ... for both Alice’s
and Bob’s system.

The notation |uuw) ... labels a single basis vector of the combined system, labeling the case that the
spin of Alice is up and the spin of Bob is up etc.

Let M be a linear operator (a matrix) acting on the space of states of the composite system. As usual
the matrix elements are constructed by sandwiching the operator between basis vectors:

(a'b'|Mlab) = Mgy ap
The vectors |ab) build an orthonormal basis:
(abla'b’) = 8qa:Opp
Note: this are two Kronecker deltas.

Any state in the composite system can be expanded as:

)= ) (a blab)
a,b
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We make this explicit.

The basis vector for the |u) state of each Alice and Bob is ((1)), equivalently the basis vector for the
. (0

|d) state is (1)

We combine by help of the tensor product.

) = ) @ [u) =
(0)® (o) =
1)\ _[o

o)/ \o

0
2 and
0

= o O O

1 0
The basis vectors for the states |uu), |ud), |du) and |dd) are 8 , é ,
0 0

Obviously, the operator (the matrix) M must be a 4 X 4 matrix.

Combining quantum systems by help of the tensor product will give a product state meaning that
both states of Alice and Bob can be treated as independent states, they are not entangled.

Quantum tunneling:

Consider the case that a wave function describes the position of a
wave packet (a particle) within a potential.

potential V-

Quantum mechanics only gives the probability for the position
(with an average and an uncertainty).

wave function X

There is a chance that the particle can be found outside of the
potential, regardless how “high the walls” are.

This effect is called quantum tunneling and is completely unknown in classical physics.

Qubits:

The isolated quantum spin is an example of the general class of simple systems we call qubits.

They play the same role in the quantum world as logical bits play in the state of a computer.
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Raising operator (creation operator):
The Hamiltonian can be expressed in terms of the operators P and X:

1 1
H= E(P2 + w?X?) = E(P + iwX) (P — iwX)

Note: % is needed because P and X do not commute.

(P + iwX) is called the raising operator, (P — iwX) the lowering operator, written as a* and a™.

The raising operator a* shifts the energy level of the harmonic oscillator to the next possible higher
level, the lowering operator a™ to the next possible lower level.

Applying the lowering operator to the ground level with Energy E, = %ﬁ annihilates this ground level.
Symbolically this is expressed as

a”|0)=0

with |0) representing the ground level and 0 representing the number zero.

Real numbers, quantum mechanics and real numbers:
Real numbers play a special role in physics. The results of any measurements are real numbers.

We can put it in other words: observable quantities are equal to their own complex conjugates.

Quantum mechanical observables are represented by Hermitian operators. Hermitian operators are
equal to their own transposed and complex conjugated:

H=Ht

The connection is made by the fact that the eigenvectors of Hermitian operators (matrices) have real
eigenvalues only.

We show this.

Let L be a Hermitian operator, |1) an eigenvector with eigenvalue A:
L|A) = A|A)

Switching from the ket L|A) to the bra needs Hermitian conjugation of the matrix (operator):
LAY & (ALY

The eigenvector relations remains valid but gives the complex conjugated eigenvalue:

(AILT = (A|2*
For Hermitian operators holds:
L=1Lt
We combine this and get:
L|A) = 2|A)
@AILt = @
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We multiply the first one by (1| and the second one by |1) and use L = L':
(AIL]2) = (A|A]2) = A4]|4)
(AIL]2) = (A|27]2) = A*(2]4)
We get:
A=

For both equations to be true, A must be a real value.

Reversibility:

Things are changing with time. Reversibility means that change can not only be described in the
direction of future but also in the direction of past. An actual state has a predecessor and a follower.
A good law describes both.

The quantum mechanical version of this is the minus first law: information is never lost. If two
identical systems start out in different states, they stay in different states and they were in different
states. The quantum version of this is called unitarity.

Row vectors, bras and row vectors:
Let z be a complex number, |A) any ket. The corresponding term to the product of z with |A):

z|A) & (A|z”

Note: there is an implicit complex conjugation in switching from a ket |4) to its correspondent bra
(A|] that might give some confusion in the beginning.

a

Let |A) be the column vector ( :

), then the corresponding bra (4] is (af, ..., 7).
an
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Schrodinger, Erwin:

Erwin Rudolf Josef Alexander Schrédinger 1887 — 1961 was a Nobel Prize-winning Austrian-Irish
physicist who developed a number of fundamental results in quantum theory: the Schrodinger
equation provides a way to calculate the wave function of a system and how it changes dynamically
in time. (Courtesy Wikipedia)

There are (at least) two ways of thinking about quantum mechanics that go back to Heisenberg and
Schrédinger. Heisenberg liked algebra, matrices, and, had he known what to call them, linear
operators. Schrodinger thought in terms of wave functions and wave equations.

The two ways are not contradictory. Functions form a vector space and derivatives are operators.

Schrédinger equations:
The generalized or time-dependent Schrédinger equation:
)

o = —iH[)

The time dependent Schrodinger equation describes the time-development of the state-vector. The
essential ingredient is the Hamiltonian H, which in both classical and quantum mechanics represents
the total energy of a system.

In the case of a nonrelativistic free particle we need a dimensional correction and get:

)
ih——=H
o = Hlw)
Because the Hamiltonian of a nonrelativistic free particle is independent of the position, the
Hamiltonian consists only of the momentum operator P:

PZ
~ 2m
P = —in g
-t dx
and we get:
.halw _ h? 0%y
o T T 2moax?

This is the traditional Schrodinger equation for an ordinary nonrelativistic free particle.

Schrédinger, path integrals and Schrédinger equations:

In quantum field theory, the path integral formulation is the principal tool for formulating the laws of
elementary particle physics. The Schrodinger equations and all the commutation relations of
guantum mechanics can be derived from it.

Schrodinger, solving Schrodinger equations:
The time-dependent Schrodinger equation tells us how the state-vector of an undisturbed system
changes with time:

ayY)

o = —iH[)
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The time-independent Schrodinger equation, written with the Hamiltonian in ket-style is the
eigenvalue equation:

H|E;) = Ej|E;)
Note: |Ej) is eigenvector, E; eigenvalue of the operator H.

Let us suppose we have found all energy eigenvalues E; and the corresponding eigenvectors |E]) We
use that information to solve the time-dependent Schrodinger equation by the fact that eigenvectors
form an orthonormal basis. We expand the state-vector |) in that basis:

() = > alE)
j
Since the state-vector [)) changes with time and the basis vectors |E]) do not, it follows that the
coefficients a; must depend on time:

0
5EW©) = ) 6 OIE)
J

We feed this back into the time-dependent Schrodinger equation h —— lw) —iH|y) and get:

R G (O1E) = —iHp)
J

> G ©IE) =~ HI)

j

Za](t)|E HE o (D)|E;)

j

With H|E;) = E;|E;) we build the final result:

Za](t)lE zEa,(mE

J

The eigenvectors form an orthonormal basis therefore the equation must be valid for every
coefficient:

i
& (D) = =7 Eja; (D1 E;)
. i
(a](t) + EEjaj(t)> |E;) =
i
dj(t) + gEja](t) =0
For each eigenvalue E; we have the differential equation:

i
——Eja;(1)

d] ) = A
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The solution is:
i
a;(t) = a;(0)e R

E.
We see that the real part is oscillating with the cos(— 7’ t). Oscillating frequency and energy are

connected throughout quantum mechanics.

The factors a;(0) are the values of the coefficients at time zero — the projections of the state-vector
|1} at time zero on the eigenvectors:

a;(0) = (E;|$(0))

We write the full solution of the time-dependent Schrédinger equation:

YO = Y a0 5) =

J

Z<E,-Iw<0>>e‘%lej> =

J
S ME b 0)e
Jj

Note: (E]-|1/J(O)) is a (complex) number.
What we have is a description of a (time changing) state vector in terms of the energy basis vectors.

Schrédinger equations for time derivatives:
Suppose the state of a system at time t is represented by ket |) and bra (y|.

The expectation value of the observable (the operator) L at time t:

W®ILIY(©)

The expectation value changes with time:

d . ,
ZPOILY©®) = GOIL®) + POLR®)
The Schrodinger equation in terms of kets and bras:
: i
) =~ HIY)
and
. i
(Wl = @WIH

We insert the Schrodinger equation in the time change of the expectation value:
0 =L@l =
(L) = = WOIL @) =

CWOHILIO) ~ £ WOILIHYO) =
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=OIHLIB(O) == WOILHIYO) =
~((OIHL — LHp(6)) =

[ i
=OIH, L) = = ([, L]
Note: [H, L] is the commutator of the two operators H and L.

What we get is: the time change of the expectation value of the operator L is proportional to the
expectation value of the commutator of this operator with the Hamiltonian:

dL—i H,L
(L) == ([H, LD

Note: [H, L] = —[L, H]. With this we can write:
2 0= - m)
AN
Schrodinger ket:
1. Derive, look up, guess, borrow or steal the Hamiltonian operator H for the system.
2. Prepare an initial state | (0)).
3. Find the eigenvalues and eigenvectors of H by solving the time-independent Schrédinger
equation:
H|E;) = Ej|E;)
You will get:
i
aj(t) = a;(0)e R
Note 1: "E;" is eigenvalue to the eigenvector |Ej).
Note 2: H|Ej> = Ej|Ej) leads to a differential equation that determines a;(t) = aj(O)e_ﬁEft.
Calculate the initial coefficients a;(0) = (Ej|1/)(0)).
5. Rewrite [(0)) in terms of eigenvectors |Ej> and initial coefficients a;(0):

l(0)) = Z“j(o) |E})

j
6. Replace each a;(0) with a;(t) to capture its time-dependence. As the basis vectors |Ej) do

not change, this leads to:
i
() = > a0 B |;)

J

Sets, Boolean logic and sets:

Boolean logic is a formalized version of the classical logic of propositions — a logic that works with 1
and 0 resp. true and false.

A proposition can be true or false. Mathematical propositions can be equations like 2 + 3 = 5. An
equation like 2 - x + 3 = 7 is not a proposition but a propositional expression that becomes true or
false depending on what you insert for the variable x.
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If you concatenate propositions with “and” resp. the “or”, the result follows rules. We must
carefully distinguish between the inclusive or we normally use when speaking and the
exclusive or. The exclusive or in formal logic is written as XOR.

Let A and B be propositions, then the truth values (A or B) are:

A B AorB
0 0

==
_ o
=

The truth values for (A and B):

__-o o

Sometimes the logical connections are referred to as + and - :

A B A+ B

0 0 0

0 1 1

1 O 1 Note that 1+1 gives 1 because
1 1 1 “double true remains true”.

... perfect ...

Y ==
moR oW
_ o oo

There is a special logical operator, the not ( =) that simply switches the truth value to its opposite:

A A
0 1
1 0

Logical connections can be represented as intersections and combinations of sets, e.g. by a Venn
diagram.

Simultaneous eigenvectors:

We have a two-spin system and measure with two different operators L and M.

If we measure both spins, the system winds up in a state that is simultaneously eigenvector of L and
eigenvector of M.

L has eigenvectors |4;) with eigenvalues 1;, M has eigenvectors |u,) with eigenvalues p,.

We assume that there is a basis of state-vectors |4;, 1) that are simultaneous eigenvectors of both
observables: L|4;, itg) = 4|4, ig) and MIA;, ig) = gl tta)-
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Omitting the subscripts for better readability, we write
LIA, p) = A4, 1)
M4, 1) = ul4, 1)

In order to have a basis of simultaneous eigenvectors, the operators (the matrices) L and M must
commute.

We apply both operators to any of the basis vectors:

LM|A, p) = Lu|a, u) = Ap|A, 1)

ML|A, p) = MA|A, ) = pA|4, 1)
u and A are numbers that can be swapped:

LM|A, u} = ML|A, u)
(LM — ML)|A, u) = [L, M]|A,u) = 0
Because this is valid for all basis vectors:
[L,M] =0

If an operator annihilates every basis vector, it annihilates every vector in that space — it is a zero

operator.

Singlet state:

We have a system of two spins, ¢ and t:
G T = 0yTy +0,T, + 0,7,
The most general vector in the composite space of states:

lpuuluu) + lpudlud> + lpduldu> + wddldd>

The singlet state is a maximally entangled state:

[sing) = % (Jud) — |du)
The singlet state is eigenvector of o - 7:
1
|sing) = NG (lud) — |du))

We apply 6 * T to |sing):

o Ising) = o7, <= (ud) = ) = o= (fu) = ) = =)~ fud)) = =lsing)
1 1 1
oy Ty|sing) = ayryﬁ(lud) — |du)) = ayﬁ(—iluu) —ildd)) = ﬁ(ldu) — |lud)) = —|sing)

1
vz

6,1, I5ing) = 0,7, ~= (lud) — |du)) = 0, = (~|ud) — |du)) = iz(—md) + |du)) = —|sing)

V2 V2
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We get:
o - T|sing) = —3|sing)
|sing) is eigenvector of ¢ - T with eigenvalue -3.

Singlet state, correlation:
The correlation between the two systems is —1:

<UZTZ> - (Uz><Tz> =-1

Singlet state, density matrix:
For the composite system:

p>=p
Trace(p?) =1

For each subsystem (Alice and Bob): the density matrix is proportional to the unit matrix, having
equal eigenvalues that add up to 1.

For the subsystems:
p*#p
Trace(p?) < 1

Singlet state, description of singlet state:
The composite system as a whole is fully characterized. There is no information about Alice’s and
Bob’s subsystem.

Singlet state, entanglement status of singlet state:
Fully entangled system.

Singlet state, expectation values:
For the subsystems:

(o) = (0) = {0;) = 0
(22 = (1)) = (1,) = 0
For the composite system:
(t204) = (1,0y) = (1,0,) = —1

Singlet state, normalization:
Yoy + l/)‘l.*ldl/)‘u.d + lp:iull)du + lp:idlpdd =1
Singlet state, state-vector:

Ising) = %auw ~ \du))

Singlet state, wave function:

Y(a,b)

Note: the wave function is not factorized.
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Space of states:
1.

The space of states of a quantum system is a complex Hilbert vector space.
2.

The space of states for a single spin has two dimensions. All possible spin states can be represented
in a two-dimensional vector space.

The directions up and down are not orthogonal in the spatial 3-dimensional space. Their associated
state-vectors are.

3.

The space of states for a coin-die system has twelve dimensions:

state labels of Bob
1 2 3 4 5 6
State labels | Head | H1 | H2 | H3 | H4 | H5 | H6
of Alice Tail T1 T2 | 173 | T4 | TS5 T6

We give Alice the coin, Bob the die.
The system of Alice S, (it is a quantum system) has two dimensions:
ap|H) + a¢|T)
The system of Bob Sp (it is a quantum system too) has six dimensions:
aq1|1) + az|2) + a3|3) + ay|4) + as|5) + ae|6)
The combined system S 5 (quantum) has twelve dimensions:

apaq|H1) + apay,|H2) + apas|H3) + apa,|HA) + apas|HS) + apaq|H6) +
araq|T1) + apaq|T2) + apaq |T3) + ara1|T4) + araq|T5) + aray |T6)

Note: |H1) etc. are the basis vectors of the combined system.

A superposition of two of these basis vectors might look like:
apaz|H3) + apas|H4)

The space of states for a two-spin system has four dimensions:

up down
up upup updown
down | downup | downdown

The system of Alice S, (it is a quantum system) has two dimensions:

au|u> + adld)
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The system of Bob Si (it is a quantum system too) has two dimensions:
Bulu) + Bald)
The combined system S,5 (quantum) has four dimensions:

ayBuluu) + ayfalud) + agfyldu) + agfqldd)

Note: these are the basis vectors of the combined system.

A superposition of two of these basis vectors might look like:

ayBalud) + aqBy|du)
4.

In a two-spin system we label the components of the spins of Alice oy, g5, 0, and Bob 7y, 7, T,.
If we take the basis of the z-components up and down we have the basis vectors:
|luw), lud), |du), |dd)
The vector |ud) is the state in which the Spin of Alice is up and the spin of Bob is down.
5.

The most general vector in the composite space of states:

lpuuluu) + lpudlud> + lpduldu) + lpddldd)

Note: if P, etc. is used instead of a,, B4 etc. this indicates that we work with an entangled system
and are not interested in the subsystems of Alice and Bob.

Entangled states in the case of two spins are the singlet state and the triplet states:

|sing) = %(Iucb ~ lduy)

1
IT1) = ﬁ(lud) + |du))

1
|T2) = ﬁ(luu) + |dd))

1
T3) = — (Jluu) — |dd))
T3 7 | I
One fascinating feature of entangled states: an entangled state is a complete description of the
combined system, but nothing is known about the individual subsystems.

6.

a) composite system
If a composite system is in a product state, then the density matrix of Alice (or Bob) has one
and only one eigenvalue equal to 1, the rest of the eigenvectors have eigenvalue zero. The
eigenvector with the nonzero eigenvalue is the wave function of each subsystem.
In this case we call the state of the subsystem a pure state.
The subsystems are completely independent.

b) The opposite extreme of a pure state is a maximally entangled state. Nothing there is known
about the subsystems, but we have complete knowledge of the combined system.
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In this case, the density matrix for a subsystem is proportional to the unit matrix, all the
entries on the main diagonal have the value 5 with N being the dimension of the space of
states.

7.
We can take the measuring apparatus A into account being a part of whole system.
The simplest way is to assign the states:

|b), |+1), |-1)

The measuring apparatus can show a blank result |b) before the measurement is made and either
| + 1) or | — 1) after the measurement of the spin is made. These states have to be combined with
the states of the spin system.

8.

When the observables are discrete, we have a vector space of finite dimension — the spin with two
dimensions, a (quantum) die with six dimensions and so on.

A particle along the x-axis has an infinite number of possible locations — the wave function becomes
a function of a continuous variable. We have to expand the idea of vectors to include functions.

With appropriate restrictions, functions like 1 (x) satisfy the mathematical axioms that define a
vector space.

Vector space Functions
Closure: the sum of two vectors is a vector: The sum of any two functions is a new function
|4) + |B) = |C) Y(x) + d(x) = 6(x)
Vector addition is commutative: The addition of two functions is commutative
|4) + |B) = |B) + |A) Y(x) + ¢(x) = (%) + P(x)
Vector addition is associative: The addition of functions is associative
{|[A)+ B} +[C) =14y +{[B)+|C)} (W) +d(x) +0(x) = p(x) + (p(x) + 6(x))
Existence of the O: There is a unique zero-function
|4) + 0 = |A) P(x) +0(x) =9(x)
Existence of the inverse: To every function there is an inverse function
|4) + (=14) =0 P(x) + (—P(x)) = 0(x)
Multiplication by a scalar produces a new Multiplication by a scalar produces a new
vector: function®”
|zA) = z|A) = |B) zP(x) = P(x)
Distributive property: Addition is distributive
z{|A) + |B)} = z|A) + z|B) z{p(x) + p(x)} = zp(x) + zp(x)
{z + w}|4) = z|A) + w|4) {z+whp(x) = z¢p(x) + wip(x)

) 2 (x) # P(zx) with the exception of rare cases.

9.

The classical phase space is the space of coordinates and momenta.

The quantum mechanical phase space is the linear vector space of states.

The change of states with time — classical — leads to Hamilton’s equations and Liouville’s!”) theorem.

The change of states with time — quantum mechanical — leads to the principle of unitarity and to the
Schrédinger equations.
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) for reasons of completeness: let p be the density matrix. The quantum mechanical version of
Liouville’s theorem is the von Neumann equation:

op i

— =——_[H
3% h[ ,P]

It resembles the time change of the expectation value of an observable (an operator).

Speed of light, particles moving at speed of light:

Prerequisite

The time-dependent Schrédinger equation:

L 0lY)
lhT = Hll/))

The momentum operator:
P=—-ih—

Wave functions need to be normalized:

wawww=1

End prerequisite
We start with a simple Hamiltonian, a fixed constant times the momentum operator P:
H = cP

We insert this Hamiltonian into the time-dependent Schrodinger equation:

., OlY) 0
th = —Clha |lll)
In terms of wave-functions:
oY(x,t oP(x,t
IRIICONN >
ot Ox
Note: P (x, t) is a function of both x and t.
We cancel the term ih:
daP(x,t) _ Y (x,t)
ot ox

Any function of (x — ct) is a solution.
We check this with an example:

P(x, t) = (x — ct)?
Left side:

d(x — ct)?

o =2(x —ct)(—c) = —2c(x —ct)
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Right side:

d(x — ct)?
—c———=—2c(x —ct)
d0x

Both sides are equal. This may be enough for our quick check.
Any normalized function of this form solves the Schrédinger equation.

We look at the time evolution of Y (x — ct). How does a wave function
Y (x — ct) evolve with time?

ket

|“||‘ m»,,,w.

= '\lm\‘H I

We start at time t = 0.

Our wave-function is a wave-packet localized on the x —axis.

i)

iiny to the right

-

As t increases the wave-packet is shifting to the right with uniform velocity
c.

This description is pretty close to the correct description of a neutrino that
moves immeasurably slower than the speed of light.

Spherical coordinates: z
To define a direction in space we need two angles.

To define a vector in space we need additionally the
length of this vector.

We can convert spherical coordinates into cartesian
coordinates:

L e,
r sinf sing
x = rsin(8) cos(¢)
y = rsin(0) sin(¢)

z =1 cos(0) /x

We can convert cartesian coordinates into spherical coordinates:

S
_ 4
¢ = arctan (x)
z

6= arctan(
Spin:
Spin, 3-vector operators and spin:

State-vectors e.g. |u) for “up” and |d) for “down” describe the state of a spin. They are part of a two-
dimensional, complex-based vector-space.

The pauli-matrices ay, g, and g, are operators written as matrices:

=0 D= (} 2arse=( )
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They act on state-vectors.

The vector ¢ := g, + gy + 0, is a 3-vector with the components ay, 0, and g, and can be written as

- (1 1—i
7= (1 +i -1 )
Spin, spin along the x-axis and the y-axis:
Note: the names up-down, left-right, in-out refer to the spatial arrangement:
Z up-down

Y in-out

right-left

Note: the ordering z, y and x is due to the fact that we chose up-down as starting point, so the other
pairs are derived from this.

The up and down state-vectors are |u) and |d), written as state-vectors:

= (ons )= ()

The in and out state-vectors are |i) and |o0). They are linear superpositions of |u) and |d):

1 i
i) = —=|u) + —=|d)

N ARG
)= — ) ——=1d)
|O _\/zlu \/zl

Written as state-vectors:
1 j 1
|l)=ﬁ(é)+é(g)=ﬁ(})
o) = f| >_T' )= f(ll)

The right and left state-vectors are |r) and |l). They are linear superpositions of |u) and |d):

r) = f|u>+7|d>
) = = Ju) — —|d)

Written as state-vectors:
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Spin, density matrix for spin:
We have Alice with her single spin system. Her density matrix:

Paar = P"(a)P(a)
In the g,-basis each index a and a’ can take the values up and down.
The density matrix of Alice is a 2 X 2-matrix.
The density matrix for |Y) = alu) + £|d):
Yy =a P =a
Y(d)=p; P*(d) =p"

= (55 58)
= (5 55

Spin, expectation values of spin:
We have a spin g, oriented with the angle 8 in respect to the z-axis and work in the up — down
basis.

The expectation value of an observable (a measurement) L:
1) =) 4P()
i
Note: this is a standard formula for an average value, the sum over all eigenvalues of the operator

(the matrix) multiplied by the probability P.

If the angle between spin and x -axis is 8 then the probability to get the result +1:

0
P(+1) = cos? 5

Analog:

0
P(—1) = sin? >

We calculate the expectation value:

(0n) = zaip(ai) -

0 0
(+1)cos? > + (—1)sin? 5=

29 ; 29_ 0
cos > sin z—cos()

Note: regardless of the value of angle ¢ because we work in the up — down basis.

Note: (o,)? + (0y,)* + (0,)*> = 1 for any orientation of the spin.
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Spin, interaction with apparatus:

In contrast to classical physics the measurement of a spin is not a “measurement” that leaves the
spin unchanged. The first interaction with the apparatus prepares the (floating) spin to one of the
two possible directions up or down (with respect to the orientation of the apparatus).

Subsequent measurements (with undisturbed spin) confirm that state.

If we rotate the apparatus after the preparation by e.g. 90° it starts to give randomly results of +1 or
—1 with an average of zero but never the zero directly.

Spin in magnetic field:
Prerequisite

The Pauli matrices:
w=(1 =0 o=( )

Let [(t)) be a state vector and L an operator. The change of the expectation value of an operator L
with time:

d i
ZWOILPE) = =+ (L H)

Written in shorthand form:
L= : ([L,H])
h L H]

End prerequisite

When a classical spin (a charged rotor) is put into a magnetic field, it has an energy that depends on
its orientation. It is proportional to the dot product of the spin and the magnetic field.

The quantum version of this:
H~6 "B = 0B, + oyBy + 0,B,
Note: oy, 0, and g, represents the components of the spin operator.

The magnetic field lies along the z axis. We absorb all numerical constants without # into a single
constant w and get the quantum Hamiltonian:

hw
H = TO'Z

We search how the expectation value of the spin changes with time, (g, (t)), (o, (t)) and (g,(t)). We
use:

() = =7 (o H)

(6) =~ (loy, H)

(62 = Lo, H)
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We plug in the quantum Hamiltonian H = hTwJZ and get:
. lw
<0x) = _7<[0x:0-z]>

. iw
<0y) =- 7 ([Gy' oz])

. iw
(O-Z> = _7<[O-Z' JZ])
We check this explicitly for (g,,) = —%w([ax, a,]) by using the Pauli-matrices:
[O'x; GZ] = 0x0; — 050, =
0 Inhn/1 O 1 0 0 1\ _
(1 0) (0 —1) B (0 —1) (1 0) B
0o -1 0 1, _(0 -2y _
(1 0)_(—1 0)_(2 0)_
(0 =i\ _
—Zl(i 0 ) = —2io,
We get:
. iw .
() = = 5-(~2i0,) = —w(oy)
The results:
(o) = —w(ay)
() = w(oy)

(a,)=0

In classical mechanics, the x and y components of angular momentum are precessing around the z
axis.

In quantum mechanics the expectation values for {g,) and (o,,) will be precessing, but each single
measurement will always give +1 or -1. The expectation value for {g,) remains unchanged.

Spin, number of distinct states for a Spin:
To define a direction in three-dimensional space it takes two angles — two parameters.

The general spin state is defined by two complex numbers «,, and a; — four parameters:
aylu) + agyld)

The general spin state has to be normalized — minus one parameter.

The general spin does not depend on the overall phase-factor — minus one parameter.

This leaves two parameters to specify the state of a spin.
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Spin components, simultaneous measurement of spin components:

Two operators can be simultaneously measured if they commute.
The commutator of two operators A and B (matrices):
[A,B] = AB — BA

The three spin components ay, 0, and g, (the Pauli-matrices) in matrix representation:

%=1 o)
“&:(? 35
”Zz(é —01)

We try whether o, and o,, commute:

[ax, ay] = 040y — 0y0y =
G ¢ -0 He -
((i) Bi) - (_oi ?) =

i 0

2(; ) =0
0 —i

This holds for the other combinations too. It is not possible to measure two components of the spin

simultaneously.

Spin operators:
The three spin operators (the Pauli-matrices):

=7 o)
o= %)
UZ:((l) _01)

Note: the 2 X 2 identity-matrix can be regarded as the fourth Pauli-matrix.

Spin operators, constructing spin operators:
The three principles of quantum mechanics:

e Principle 1: Each component of g is represented by a linear operator (a matrix).
e Principle 2: The eigenvectors of g, are

v, (1)

and
|d), down, ((1))

with the corresponding eigenvalues +1 and —1:
azlu) = [u)
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ozld) = —|d)
e Principle 3: states |u) and |d) are orthogonal to each other:
(uld) =0

The eigenvector equation of 0 ,:

o) =10~ (£ 3)(5) = (o)

@ @) =) -a=1
aldy=-1d)~ (¢ 2) () =-()
@ DD=()-a==

The operator o,:

We calculate the spin operators o, and g,
The eigenvectors of g, are |r) and |I), right and left.
The eigenvectors of g,, are |i) and |o), in and out.

We express all eigenvectors by linear superpositions of |u) and |d):

V2 V2

:

—
Sk
———

1 1
|T)=—Iu)+—ld)—>lr)=\

(L)

Lt Lol V2
Il)—ﬁlu) ﬁld) 1) = 1
2

1

, 1 i ﬁ
=5l + I =10 = |
V2

1

1 i ﬁ
lo) = ﬁlu) ﬁld) lo) = i
V2

Note: i is used in different meanings. |i) is the state vector along the y-axis. In —=

unit.

‘\/'_I

i is the imaginary
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The eigenvector equation of o ,:

Bk
N~
Il
ek

b
oelly =~ - (&

[N
il =

N—r

From g, |r) = |r) we get:

a b 1
Z'Z|_| v
c d 1
Z'VE \%
From o, |r) = —|l) we get:
(2-2) (-3
BRI
c d 1
@) \7)
We have four equations:
a b
ﬁ+—2=T—>a+b=
c d 1
ﬁ+—2=ﬁ—>c+d=1
a b 1
Z R woeh
c d 1
izt

Froma+b=1anda—b=—-1wegeta=0andb =1.
Fromc+d=1andc—d =1wegetd =0andc = 1.

The operator (the matrix) oy:

%=1 o
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The eigenvector equation of o,

aliy=10-(* 1)

S~
|
Sl-l-

d
1 1
V2 2
From g, |i) = |i) we get:
a ib 1
3.4
L N
\z* %) \a)
From g, |0) = —|o) we get:
a ib 1
w3
c_u L
\&" 2 \%)
We have four equations:
i+£—— a+ib=1
222 )
i+£———>c+id=l
222
e b__1 a—ib=-1
V2. V2 2 -
e _ i
NN c—id=1i

Froma+ib=1anda—ib=—1wegeta=0andb=%=—i.
Fromc+id =iandc—id =iwegetd =0andc =1i.

The operator (the matrix) o,
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Spin-Polarizing principle:

Any state of a single spin is eigenvector of some component of the spin. Given a state |A) = a,,|u) +

ag4|d) there exists some direction 7, such that (¢ - n)|A) = |A).

The states of a spin are characterized by a polarization vector, and along that polarization vector the
component of the spin is predictably +1. This meets our expectations that the spin must have exactly

one direction, even if we do not know it.

This means further that the expectation values of the components must sum up to 1:

<0x>2 + <0y>2 + (Uz)z =1

This is a kind of classical expectation and does not hold for entangled states.

Spin states:

Spin states as column vectors:
The spin states in z-direction are:

wvun ()

and
|d), down, ((1))

From this we can derive the spin states in y-direction and x-direction:

(L)
), right = — ! Iu)+ild> Ir>=|ﬁ|
V2 V2 \L/

7

1
1), left = = u) - — i) - |l>—/ﬁ\
’ NG N k L/
7

1

i in = — |u>+i|d> |l>—/ﬁ\
=+ k_)

7

Nl

1 i
|0>,0ut—ﬁ|u> 2Id> lo) = (

<||

Note: i is used in different meanings. |i) is the state vector along the y-axis. In —=

unit.

‘\/'_I

i is the imaginary
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The pairs are mutually orthogonal:

(uld)z(l)(2)=0+0=0

0
1 1
V2 V2
1 1
V2 V2

Note: if we change from the ket |i) to the bra (i| we must complex conjugate the vector. The first
two pairs (u|d) and (r|l) had only real coefficients making this invisible.

Spin states, representing spin states:
We chose |u) and |d) as basis vectors and write any state |A) as linear superposition:

|4) = aylu) + aqld)
We get back the components a,, and a,; by:
a, = (uld) resp. a;, = (Alu)
ag = (d|A) resp. a = (A|d)
The quantity a;,a,, is the probability that the spin would be measured as g, = +1, spin up.
The quantity aja, is the probability that the spin would be measured as g, = —1, spin down.

The values a,, and a are the probability amplitudes. To measure the probabilities, they must be
squared:

P, = (Alu)ulA)

Py = (Ald)(d|A)
|u) and |d) are mutually orthogonal:

(uld) = (d[u) =0
The total probability for the spin:

a, o, +aza; =1
This is equivalent to the vector |A) being normalized:

(A14) = 1
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P |
b |

Spring constant:
The force of a spring to an attached object:

F =—kx

BT

This corresponds to a potential energy function:

Graphic courtesy

k Wikipedia by Svj
V(x) = 52 ikipedia by Svjo
2

The negative sign in the force tells us that the force acts opposite to the displacement x and pulls the
mass back towards its origin.

This is important because almost any smooth function looks like a parabola close to a minimum of
the function. The harmonic oscillator has a lot of applications in physics.

e If an atom situated in a crystal lattice is displaces slightly from its equilibrium position, it gets
pushed back with an approximately linear restoring force.

e The electric current in a circuit of low resistance often oscillates with a characteristic
frequency.

e If a water surface is disturbed, it sends out waves.

e Alight wave or a radio wave oscillates.

Standard deviation:
The standard deviation is also called uncertainty.

Let A be an observable (operator) with eigenvalues a.

We begin with the expectation value (the average) of A:

(4) = WlAlY) = > aP(a)

a

To make calculations easier we define the operator A:

A=A—-(A)
The operator A is centered around zero, meaning that the expectation value of 4 is zero.
The eigenvectors of A are the same as those of A because the basis is unaffected by this change.
The eigenvalues are shifted all:

a=a—(A)
The square of uncertainty or the square of standard deviation of A:
(a4)? = > @*P(@) = ) (@~ (A)*P(a) = (WIA7I)
a a

If the expectation value of the operator A is zero, the square of the uncertainty is easier to calculate,
it is the average value of the operator A?:

(A4)? = (Y| A%[p)
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State:

State of apparatus:

If the measuring apparatus (for spatial spin orientation) comes into play as a quantum system too, in
the simplest description it has three states, a blank state and two outcome states with the following
basis vectors: |b), |[(+1)) and [(—1)).

The starting state at time 0 is always the blank state.

If we measure a single spin system |u) and |d) and form the tensor product with the states of the
apparatus:

|u, b), |u, +1), |u,—1),|d, b), |d, +1),|d, —1)
The composite system has six dimensions.

State, change over time:
Quantum mechanical time development is unitary.

Quantum systems change over time and follow the rule of the “minus first law” — distinctions are
conserved. This leads to a unitary time-development operator U(t):

[(6)) = Uy (0))
Note: |1 (0)) stands for i at any time t,.
A unitary operator (matrix) satisfies:
utu =1
Note: U is the transposed and complex conjugated version of U.
Note: every unitary matrix is quadratic.

Examples of unitary matrices:

Example 1:
v=(3 o)
=2 %)
cu=(5 DG -G D=6 )
Example 2:

1 . s
T
UT::%

G2

1(1—i 1+i)_1(1+i 1—i)

ty ==
UVU=2l14i 1-i 1—i 1+4i

2

G 200D 1)
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1((1—i)(1+i)+(1+i)(1—i) (1—i)(1—i)+(1+i)(1+i))
4 \1+DA+D+A-DA-0) A+DA-D+A-DA+10D)
17242 =2i42i\_(1 0
Z(Zi—Zi 242 )_(0 1)

State, maximally entangled state:

The opposite extreme of a pure state is a maximally entangled state. This is a complete description of
the system as a whole, as complete as quantum mechanics allows, but nothing is known about either
subsystem.

The state |sing) is a state of two maximally entangled spins of Alice and Bob.

When Alice calculates the density matrix p,, for her subsystem (dimension 2), she gets:

Paar =

oS N -
N| = O

All states have the same probability of 1/2 — she knows nothing about her subsystem.

In general, the density matrix is proportional to the unit matrix:

Lo o

N

0 o L
N

State, measurement and state:
In classical physics we perform an experiment to determine the state of a system.

In quantum mechanics we perform an experiment to set the state of a system —that is in general not
correct but describes the relationship between state and measurement that are subtle and
nonintuitive.

State, mixed state:
A mixed state is represented by a density matrix made of several projection operators. It is a matrix
that has entries only on the diagonal, summing up to 1.

In contrast: a pure state is represented by a density matrix that has only one entry on its diagonal
and this entry is 1.

State, near singlet state:
The near singlet state is a partially entangled state.

The state-vector:

J0,6]ud) —/0,4|du)

or in the extended form:

|nearsing) = Oluu) + /0,6]ud) — /0,4|du) + 0|dd)
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We have only one normalization condition:
YuuWuu + YuaPua + YauWau + YaaPaa =1
in this case reducing to:
YuaPua + YauPau = 1
The density matrix for the full composite system: p? = p, Tr(p?) = 1.
The density matrix for Alice’s subsystem A: p? # p, Tr(p?) < 1
We check the density matrix for Alice’s subsystem:
The density matrix of Alice: Para = 2p ¥ (a,b)y(a’,b)
expanded a, a’ (with 1" = 1 due to all coefficients being real):
Puu = Y (w, WP (w,w) +9*(u, d)yp(u,d) = 0.6
Pua = ¥ (w,wp(d, w) +*(u,d)yp(d,d) = 0
Pau =P (d, WP w,w) + ¢ (d, DY (u,d) = 0
paa =¥ (d, wWP(d,u) +¢*(d,d)p(d,d) = 0.4

gives Alice density matrix:
_ (06 0
p= ( 0 0.4)
The wave function is not factorized (partial entanglement): ¥(a, b).
The expectation values:
(07) = 0,2(0y) = (0y,) = 0

(t) = =02 (1) = (1,) = 0

(t,0,) =—1
(ty0,) = —24/0,24
The correlation between the two systems: (0,T,) — (0,){1,) = —0,96

The main feature of a partially entangled state is that the composite system as a whole is fully
characterized but there is no complete information about the subsystems.

State of a particle:

In classical physics we describe the state of the system by the pair (x, p), the coordinate x and the
momentum p. Together with a potential V we can use Hamilton’s equations to calculate position and
momentum for all times — a flow through the phase space.

If we use the same approach for quantum mechanics, the quantum state of a particle would be
spanned by a basis of states labeled by position and momentum:

|x, p)
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The corresponding wave function:

Y(x,p) = (x,plh)
But:

(x,pl) = (p, x|)

Both observables position x and momentum p are not simultaneous measurable. This is the
distillation of many decades of experimental observations and we had to find a mathematical
framework confirming these results. We found it in terms of commutating operators (matrices) and
their eigenvectors.

State, pure state:

In a pure state the density matrix p corresponds to a single state, it is a projection operator that
projects onto that state. A pure state represents the maximum amount of knowledge one can have
of a quantum system.

A classical pure state is a special case of a probability density, in which the density matrix p has
exactly one nonzero entry (on the diagonal).

State, guantum state:
Any spin state can be represented as a linear combination of the basis vectors |u) and |d).

If we prepare a spin along the x-axis and then measure in z-direction, there will be equal
probabilities for up and down.

A vect tisfying this rule:
vector |r) satisfying this rule A2

Ir) = Iu) +—=|d)

7

We use that both vectors must be orthogonal:

(rl) =(llr)y=10

We get the vector |1):

Ir) = NG Iu) \/—

With similar reasoning and evaluating more conditions, we get the vectors |i) and |o0):

1 i
[i) = —=|u) + —=|d)

N ARG
)= —lw) - —=1d)
|O _\/'zlu \/’zl

Note: i is the imaginary unit.

Note: all possible orientations are expressed in terms of up and down, the basis vectors in z-
direction.
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State, in quantum mechanics:
In the classical world, the result of a measurement describes the state of a system — the system left
unchanged.

In the quantum world, the measurement (sometimes) alters the system.

State, singlet state:
We have a system of two spins, g and 1:

G T = 0yTy +0,T, + 0,7,
The most general vector in the composite space of states:

1:l)uu|uu> + lpudlud> + lpduldu> + ¢dd|dd>

The singlet state is a maximally entangled state:

Ising) = %auw ~ lduy)

The singlet state is eigenvector of 7 - 7:

1
sing) = —(lud) — |du
|sing) \/E(l ) — |du))
We apply ¢ - T to |sing):

1 1
—= (juu) = |dd)) = —=(|du) — |ud)) = —|sing)

1
(lud) — |du)) =% 7z

\/_

OxTx|SiNG) = 0,Tx—=
0y Ty|sing) = Ty\/_ (lud) — |du)) = ay\/_( iluu) —i|dd)) = ?(|du) |lud)) = —|sing)

1 1
—= (=lud) = |du)) = —=(~|ud) + |du)) = —|sing)

1
(lud) — |du)) = %5 N

\2

0,T|sing) = 0,7, —

We get:
o0 - T|sing) = —3|sing)
|sing) is eigenvector of ¢ - T with eigenvalue -3.

States that depend on more than one measurable:
a) A particle moving in the 3-dimensional (spatial) space. A basis of states takes three position
coordinates x, y and z, written in terms of kets:
|x, v, 2)
All spatial coordinates can simultaneously be specified.
b) A system of two physically independent spins, L and M, a system of two qubits. Each qubit L
and M is characterized by the z-observable of the spin.
Quantum mechanics does not forbid simultaneous knowledge of these two observables.
c) A system of two maximally entangled spins. Quantum mechanics allows complete knowledge
of the behavior of the entangled system, but nothing about the individual spins.

We will treat case b) in detail.

We measure each spin separately by associating the measurements with the operators (matrices) L
and M.
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To work with two different compatible operators L and M, we need two sets of labels for their basis
vectors 4; and y;.

We assume that we can produce a basis of state-vectors |/1l-,uj) that are simultaneous eigenvectors
of both observables (e.g. by help of the tensor product):

LI, u5) = 44|45, 1)
M5, 1) = w51, 145)

Note: 4; and y; are eigenvalues, |4;, uj> is eigenvector of the combined system with |1;) and |uj)
being the constituents of each subsystem — no entanglement here.

In order to have a basis of simultaneous eigenvectors, the operators (matrices) L and M must
commute

[L,M]:=LM — ML =0
because LMl/li,uj) must give the same result as ML|/1i,uj).

Note: the operator [L, M] is called the zero operator, the analogous to the zero vector. In
mathematics, the zero vector is a special vector of a vector space, the defined neutral element with
respect to vector addition. It is used to define some key terms of linear algebra.

State, triplet state:
In a system of two spins we have three triplet states:

1
|t1) = ﬁ(lud) + |du))

1
|tz) = ﬁ(luw + |dd))

Its) =%(|uu>— dd))

The triplet states are maximally entangled and cannot be written as product states.

The triplet states are eigenvectors to the operator ¢ - T with the same (degenerate) eigenvalue 1.

State, unambiguously distinct state:
Unambiguously distinguishable states are represented by orthogonal state vectors.

Two states are physically distinct if there is a measurement that can distinguish between them
without ambiguity. In the basis system of eigenvectors of the appropriate operators their state
vectors must be orthogonal.

State labels for the composite system:

We use two single spin system of Alice and Bob. The basis vectors in the system of Alice are |u) and
|d), the basic vectors in the system of Bob are |u} and |d}.

If we combine the two systems to one, we write |ab) to label a single basis vector of the combined
system, in our case: |uu), |ud), |[du) and |dd).

The corresponding bra to |ab) is (a'b’|.
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In the combined system of Alice and Bob we have four basis vectors: |uu), [ud), |du) and |dd).

The basis vectors in the two-dimensional system of Alice are |u) and |d), the basic vectors in the two-
dimensional system of Bob are |u} and |d}. If we combine the two systems to one, we get a four-
dimensional combined system with basis vectors |uu), |ud), |du) and |dd).

|uu) is one four-dimensional basis vector. The labelling |uu) etc. is chosen to indicate the origin: |uu)
is composed out of |u) Alice and |u} Bob.

Example: consider a linear operator M acting on the space of states of the composite system of Alice
and Bob. As usual, it can be represented as a matrix. The elements of the matrix can be extracted by
sandwiching the operator between the basis vectors:

(a’b'[Mlab) = M1y qp

As basis vectors usually are orthonormal, this means that the inner product (a’b’|ab) gives the
Kronecker delta:

(a’bllab) = 5aa’6bb’

With the basis vectors we can write any state vector in the composite system as:

)= ) (,blab)
a,b

For a product state of Alice and Bob this gives:

) = Y, w)luw) + Y (u, d)|ud) + Y(d, w)|du) + Y(d, d)|dd)

State of system, classical vs. quantum physics:

Classical physics: a particle has position x and momentum p. Both can be measured simultaneously
exact.

Quantum physics: a particle has position x or momentum p. Both can be measured simultaneously
only with uncertainty.

Measuring the position uses the position operator X. Measuring the momentum uses the
momentum operator P. Both can be simultaneous measured (exactly) only if the commutator of
both operators is zero:

[X,P] = XP —PX =0

The commutator [X, P] = ih # 0.

State vectors:
We have a single spin, knowing it is in the state |u) up or |r) right.

We can perform no single measurement that tells unambiguously the true state of the spin.

Single measuring o, will give +1 if the spin was up, but also +1 if the spin was right with a chance
of 50%.

For this reason, state |u) or |r) are said not to be physically distinguishable.

In contrast: if we know that the spin is either in state |u) (up) or |d) (down), a single measurement
tells us unambiguously what state it is in: +1 up, —1 down.
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For this reason, state |u) or |d) are said to be physically distinguishable.
We compare this with the result of the inner product:
[u) - |r) # 0
lu)-1d) =0
The inner product is sometimes called overlap.
The inner product of two states is a measure of the inability to distinguish them with certainty.

Note: do not mix up state vectors with spatial directions of the spin in space. state vectors |u) and
|d) are orthogonal, the spatial directions up and down are not.

State vectors, action of Hermitian operator on state vectors:
Prerequisite

Any state vector A can be written in the orthonormal basis of eigenvectors of a Hermitian operator L:

14) = > ail)

41= ) (la;

Note: |4;) resp. (4;] are eigenvectors of the Hermitian operator L.
End prerequisite

Suppose the normalized state of a quantum system is |A). We expand |A) in the orthonormal basis of
eigenvectors of the Hermitian operator L:
14) = > i)

i

Note: |4;) are the eigenvectors of the operator L.

LAY =) aili2) = ) aikidd)

l l

We let L act on the state |A):

Note: A; are the eigenvalues of the eigenvectors |4;).

What we have so far is a new state vector 4; :

A1) = > @il i)

L

We take the inner product of |A;) with (A|:

(AlA,) = Zuuaz‘z ahilA) =

As the |A;) build an orthonormal basis system, the double sum collapses via the Kronecker delta:

Zw ZM» = 5
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Result:
(AlAL) = Z ajad; = Z P2
i i
This is the statistical average.

In summa: to calculate the expectation value (L) (the average) of a Hermitian operator L, we
“sandwich” the operator in between the normalized state vectors A of a quantum system.

(A|L|A) = (L)

State vectors, evolution of state vectors with time:
This is principle 5 of quantum mechanics: The evolution of state vectors with time is unitary.

Let us consider a closed system (no external forces etc.) and two distinguishable states 1 and 8 that
changes with time: |y (t)) and |6(t)).

The states at time t are given by some operation that we call U(t), an operator acting on the states
at time zero:

[W(@)) = U(®)|(0))

IGIEXVIOIUA

16()) = U)|6(0))
U is called the time-development operator for the system.

Suppose [P (0)) and |8(0)) are two distinguishable states (in a closed system), then this must be
valid for all times:

¥(0)]6(0)) = (Y(®O)|6(t)) =0
We take a look at (¥(t)|0(t)):
W®16(®) = 0 = YO)|UT()U(t)|6(0))
From this follows that U (£)U(t) must be the identity operator I:
ut@u) =1

An operator that satisfies UT(t)U(t) = I is called unitary, therefore time evolution is unitary in
guantum mechanics.

State vector of near singlet state:

The near-singlet state is a state of partial entanglement and has the state-vector v/0,6|ud) —
+/0,4|du) or in the extended form:

|nearsing) = 0|uu) + ,/0,6|ud) + (—,/0,4)|du) + 0]dd)
In contrast the singlet state is a state of complete entanglement and has the state vector % lud) —
1 .
NG |du) or in the extended form:

1

ﬁ)|du) 4 0|dd)

|sing) =0 |uu) + %| ud) + (

page 366 of 433



quantum-abc

The singlet state is in an equilibrium concerning the weights of the basis vectors |ud) and |du), the
near-singlet state is not.

State vectors, operators and state vectors:
1. Operators are used to calculate eigenvalues and eigenvectors.
2. Operators act on state-vectors, not on actual physical system.
3. When an operator acts on a state-vector, it produces a new state vector.

Note: measuring an observable is not always the same as operating with the corresponding operator
on the state.

Example: if a spin is prepared in the right-state |r) = % |u) + % |d) and we act with the operator g,

1 1
the result would be the state-vector NG [u) — NG |d).

The spin itself after the measurement in z-direction would be either up |u) or down |d).

State vectors, phase factor and state vectors:

A number of the form z = e'? has the absolute value 1: |ei‘p| = VelPe—ip = /g0 = V1=1.1ltis
called a phase factor.

No measurable quantity, no observable is sensitive to an overall phase-factor, so we can ignore it
when specifying states.

State vectors, physical properties of state vectors:
To define a direction in three-dimensional space it takes two angles — two parameters.

The general spin state is defined by two complex numbers a,, and a: four real parameters:
aylu) + agld)

The general spin state has to be normalized, a,,2 + a4? = 1: minus one parameter.

The general spin does not depend on the overall phase factor: minus one parameter.

This leaves two real parameters to specify the state of a spin.

State vector of product state:
Given two single spin states, |A) = ay|u) + a4|d) and |B) = B, |u) + B4|d).

The product state describing the system:
|product state) = {a, |u) + ay|d}IQ{By|u) + B4ld)}
Note: ® is the tensor product.
Expanding and switching to composite notation gives
|product state) = a, Sy, |uu) + ay,Balud) + azB,|du) + ayzf4]dd)

The product state represents a classical system with complete knowledge about both subsystems
and combined system.
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State vector, representing spin states using state vectors:
We have a single spin system |A) and chose |u) and |d) as basis vectors. With this we can write any
state |A) as linear superposition:

|4) = aylu) + aqld)
We get back the components «,, and a by:
a, = (ulA) resp. a;, = (Alu)
ag = (d|A) resp. a; = (A|d)
The quantity a;,a,, is the probability that the spin would be measured as o, = +1, spin up.
The quantity a;a  is the probability that the spin would be measured as g, = —1, spin down.

The values a,, and a are the probability amplitudes. To measure the probabilities, they must be
squared:

P, = (Alu)ulA)

Py = (Ald)(d|A)
|u) and |d) are mutually orthogonal:

(uld) = (dlu) =0
The total probability for the spin:

a, o, +aza; =1
This is equivalent to the vector |A) being normalized:

(Al4) =1

The state of a system is represented by a unit (normalized) vector in a space of states.
State vector of singlet state:

The singlet state is a state of complete entanglement and has the state vector % |ud) — % |du) orin

the extended form:

1
2z
In contrast the near-singlet state is a state of partial entanglement and has the state-vector
V0,6|ud) — +/0,4|du) or in the extended form:

Inearsing) = 0fuu) +/0,6[ud) + (—/0,4)|du) + 0|dd)

The singlet state is in an equilibrium concerning the weights of the basis vectors |ud) and |du), the
near-singlet state is not.

|sing) =0 |uu) + %| ud) + ( ) |du) + 0|dd)

State vectors, time derivative of state vectors:
Prerequisite

Time evolution is unitary in quantum mechanics:

[(£)) = U©)[y(0))
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If £ is very small, the unitary operator U(¢) is close to the unit operator:
U(e) =1—ieH
Note: H is an observable with a complete set of eigenvectors and eigenvalues — the Hamiltonian.
End prerequisite
Time evolution of a state Y(t) can be written with the unitary time development operator U(t):
[W(@)) = U®)|(0))
We begin with the infinitesimal case t = ¢ and apply the time development operator:
(€)= U(e)Y(0)) = (I — ieH)|Y(0)) =
I1Y(0)) — ieH [y (0)) = [(0)) — ieH[1h(0))
We get:
[(e)) = [(0)) — ieH[p(0))
We build the differential equation:
[(e)) = [¥(0)) — ieH[p(0))
[W(€)) = [$(0)) = —ieH[p(0))
[¥(e) — [¥(0)) _ _ieH|$(0))

& &

() — (0)) _

&

—iH[(0))

This is the time derivative of the state vector i:

a|p(0)) .
o = —HP(O)
We can replace [(0)) by any fixed time [(t)):
) .
S = —HI(©)

What we got is the time-dependent Schrédinger equation.

State vectors, time evolution of state vectors:
Let [(t)) be a quantum state, varying with time t.

Knowing the state at a specific time t = 0 we can use quantum equations of motion to calculate the
state at any time by acting on | (0)) with the time development operator U(t):

[W(©) = U@®) [ (0))

State vectors, wave functions and state vectors:
We have a basis of states for some quantum system with the orthonormal basis vectors |a4), |a3), ...
resp. (@], (2|, .

|a1), |az), ... belongs to a complete set of commutating observables A4, A, ... with eigenvalues @4,
ay, ..
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Any state vector [1)) can be expanded in this basis:
)= ) w(@pley)
j

The quantities 1 (a;) are the coefficients, each of them equal to the inner product of i) with one of
the basis vectors (a; :

¥(ey) = (oy]¥)

The set of coefficients tp(aj) is called the wave function of the system in the basis defined by the
observables A;.

Note: the probability for the commuting observables to have values a4, a5, ...:
P(ay) = ¥ (o) ¥(a;)

Note: the total probability sums up to one:

DV (@)v(e) =1

Statistical correlation:
In general: let P(a, b) the probability distribution for two variables a and b.

If the variables are completely uncorrelated, the probability will factorize:
P(a,b) = P(a)P(b)
P(a,b) —P(a)P(b) =0
In quantum mechanics

Let A and B be two observables (operators),

(A) the expectation value (average) of observable 4,

(B) the expectation value (average) of observable B,

(AB) the expectation value (average) of the product of the operators A and B.

The two observables are correlated:
(AB) = (AXB)
(AB) —(AXB) =0

Subset: A

A is a proper subset of B. (Graphic courtesy Wikipedia)
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Sumes, integrals replacing sumes:

Schematically:
Z —>fdx

2

The inner product discrete:

Let |A), | B) be two state vectors written in an orthonormal basis |4;):

4) = > il

IB) = Zﬁiw
4l= ) (la;

We build the inner product:
(AIB) = > (ila; - ) Bildiy = D @il Y 1208 =;
i i i i

The |4;) build an orthonormal basis, so the summation collapses to the Kronecker delta:

Z(M ZIM = 6y

We get:

(4IB) = > aifs

i

The inner product continuous.

In the discrete case the a; and f3; depend on the i basis vectors — in the continuous case they depend
on the variable x.

The sum transforms into the integral:

(A|B) = f & (B () dx

Note: a*(x) or a(x) and B(x) then would be the corresponding wave functions to A and B.

Note: this works best if the wave functions 4 and B are normalized:

f_o;a*(x)dx =1

J._O:O,B’(x)dx =1
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Symmetric eigenfunctions:

The eigenfunctions of the harmonic Lo () 72360

oscillator have a characteristic ;’/\\".

pattern. ’J,"‘ ‘-\ |
[\ A

Each eigenfunction is a polynomial in ‘ . S \/

_w,2
x multiplied by e "2n*".

_w,2 R s
The term e 22 makes these 1y (x) s (x)
eigenfunctions normalizable.

The polynomial makes successive ',[\
eigenfunctions alternate between / 3 N

T -
being symmetric and antisymmetric. \/ V, v

Systems:

Systems, number of parameters characterizing systems:
The general state of a single spin system is defined by two complex numbers, a,, and a,. This gives
four real parameters.

The normalization condition: aja,, + ajas; = 1 reduces the number of variables to three.

The physical properties of a state-vector do not depend on the overall phase-factor, this reduces the
number of variables to two.

This is the same number of parameters needed to define a direction in a 3-dimensional space — two
angles are needed.

Systems, combining quantum systems:
Prerequisite

We have two single spin systems of Alice and Bob with state vectors |a) for the system of Alice and
|b) for the system of Bob (sometimes written as |b} to emphasize that they are not in the same
space of states). Both systems are two-dimensional.

We can combine the two systems and get a four-dimensional system with basis vectors |ab).
End prerequisite

Let M be a linear operator (a matrix) acting on the space of states of a composite system made from
two single spins.

M is a 4 X 4 matrix.
The matrix elements can be constructed by sandwiching the operator between basis vectors:
(a'b'|M|ab) = M1, 4,

Note: a’b’ and ab each are a single index of the combined system, a single basis vector of an
orthonormal basis:

lifa"=aandb’' =b

(a’b’lab) = 6‘a/aé‘b/b = {0 else
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Any state in the composite system can be expressed by help of the basis vectors:

)= ) (a,b)lab)
a,b

Note: in the case of combining two single spin systems the wave function i (a, b) has four
components matching the four basis vectors |ab).
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Tensor product of matrices:

Lo (Q11 Q12 _ (b1 ba12)
Let A and B be two 2 X 2 matrices: A4 := (a21 a21)' B = (b21 bys

The matrix version of the tensor product, sometimes called the Kronecker product:

aiq a12) (bn b12>

Az1 A2z by, by,
b1, b12> (b11 b12>

a a
1 (bz1 by, 12\by; by,

a (bn b12) a (b11 blz)
21\by1 by, 22\by1 by,

ay1b11  ai11biz;  aizbyy  agzbg;

A®B=(

a11by1  ai1by;  ag2by  agzby;
az1by1  az1b1z  azzby  agzby;
az1by1  az1ba;  aAzzbyy  azzba;

Tensor product in composite form:
Let A and B two single spin systems, described each in the up and down basis.

The tensor product of the up and down state vectors (for each subsystem):

= (3

=)

We combine by help of the tensor product:

1 1
(o)
1 1 0 0
(o)) \o
The same way the other combinations:
0 0 0
|1 _10 _ 10
lud) = L |du) = 1 and |dd) = 0
0 0 1
. (1 0 0 1y,
We combine operators. g, = (0 _1), Ty (1 0).
0 1 0 1 0 1
0. ®T =(1 O)®(O 1)= 1(1 0) 0(1 0) 1 0
z Ty 0 —1 1 0 0(0 1) _1(0 1) 0 0
1 0 1 0 0 0
We apply 0,7, = 0,81, to |ud):
01 0 0 0 1
— _[1 0 O 0 11_(0]_
0 0 -1 0 0 0
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This result is according to the (short form) spin operation table, the operator g, etc. acting on the

first index, the operator 7, etc. acting on the second index:

two-spin eigenvectors

|uu) lud) |du) |dd)
o, | luu) |ud) —|du) —|dd)
Oy |du) |dd) [uw) lud)
ay i|du) i|ldd) —i|uu) —ilud)
T, luw) —|ud) |du) —|dd)
Tx lud) luu) |dd) |du)
Ty ilud) —i|uu) i|dd) —i|du)

Test for entanglement:
prerequisite

Suppose the state [i) is a product state of Bob’s factor |8) and Alice’s factor |9). Then the composite
wave function also is product of Bob’s factor and Alice’s factor:

Alice’s density matrix:

Y(a,b) = 9(a)f(b)

para = 0" (@8(@) ). 0" (B0 b)

As the state |y) is a product state of Bob’s factor |#) and Alice’s factor |9), both Alice’s and Bob’s

state separately are normalized, so:

And Alice’s density matrix becomes pg,, = 9*(a)d(a’).

End prerequisite

Z 0 ()0 b) = 1
b

We prove a theorem about the eigenvalues of Alice’s density matrix that is only true for product
states but not for entangled states and thus can serve to identify them: for product states the density
matrix of Alice or Bob has exactly one eigenvalue of value one.

The eigenvalue equation for Alice’s matrix pg,q:

Z Pa'qla = A0g =
a

Z 9*(a)9(a)ay = ﬁ(a’)z 9* ()

Yo 9" (a)a, has the form of an inner product. If the column vector « is orthogonal to 9, then
Yo 9" (a)a, is zero giving an eigenvector with eigenvalue zero.

In a space state of dimension N we have N — 1 vectors orthogonal to 9, so we have only one

possible direction for an eigenvector with nonzero eigenvalue 9(a):

9*(a)a, = 0 foralla, # I9(a) and 1 for a, = 9(a).

Alice’s system is in a pure state, all of her observations are described as if Bob never existed.
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In a maximally entangled system on the other hand Alice’s density matrix is proportional to the unit

. . . 1
matrix with all equal eigenvalues I

1
Naa’a

Pa'a =

As the density matrix gives the probability for an outcome this means that every outcome has equal
possibility.

For partial entanglement the weights of p,,7, move from the equal distribution towards a
concentration on a single value 1 on the diagonal of the density matrix.

Although in a maximum entangled state Alice can’t predict the outcome of her experiments, she
knows (after the experiment has been done) exactly about the relation between her and Bob’s
outcomes.

For reasons of completeness a worked-out example (this may become a little bit lengthy...)

The system of Alice:

|14) = J0,6]u) +/0,4]d) = (%)

The system of Bob:

w/0,8)
= , , d =
IB) = /0,8|u) + 1/0,2|d) (m

Both states are normalized:
2 2
J0,6 +404 =1
2 2
/0,8 +402 =1
The wave function of Alice:
x(w) =406
x(d) =04
The wave function of Bob:
¢(w) =08
¢(d) = /0,2

The probability for Alice to measure spin up:

X xw) =,/0,6-/0,6 =06

The probability for Alice to measure spin down:

x'@x(@) =04-/04=04

The probability for Bob to measure spin up:

¢ (WPw) = 0,808 =08
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The probability for Bob to measure spin down:

¢ ()p(d) =/0,2-,/0,2 =02

The two systems are combined by help of the tensor product:

(). (E 1) ()
I () L)\ )

We now ,forget” how this combined system was built and work with the wave function of the
combined system:

Y(ab) = ¢p(a)x(b) = p(w)x(w) + p(w)x(d) + p(d)x(w) + ¢(d)x(d) =
Y(uu) + p(ud) + Y(du) +(dd)

The wave function of the combined system in detail:

p(uu) = /0,48
P(ud) = /0,12
P(du) = /0,32
p(dd) = /0,08

The wave function of the combined system is normalized:

P () uw) + P  (ud)yp(ud) + ¢~ (dwyp(du) + ¢*(dd)y(dd) = 1

The density matrix of Alice:

para = ) W' (@byp(a'h)
We expand this:
= ¥ (uw)y(uu) + * (ud)yp(ud)
Pua = ¥ (dwp(uu) + " (dd)y(ud)
u = Y ()P (du) + " (ud)yp(dd)
Paa = Y" (dwyp(du) + *(dd)y(dd)

With concrete values:

=.,/0,48,/0,48 +,/0,12,/0,12 = 0,6

Pua = +/0,32,/0,48 +,/0,08,/0,12 = \/0,1536 + /0,0096 = /0,24 (*)

=,/0,48,/0,32 +/0,12,/0,08 = \/0,1536 + /0,0096 = /0,24

paa = +/0,32,/0,32 +,/0,08,/0,08 = 0,4

Note: (*) numerical result, this ought to be proven mathematically.
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The density matrix of Alice:

_< 0,6 w/0,24>
Para J024 04

The eigenvalue equation for Alice’s density matrix:

06 -1 0,24
det =0
024 04-2

(0,6 —1)(0,4—-1)—0,24=0
A2—-21-024+024=0
A—-21=11-1)=0
We have two eigenvalues,A; =land 41, =0
The eigenvector equation for the eigenvalue 1; = 1:
< 0,6 m> (x) _ (x)
\/m 0,4 y y

06-x+024-y=x

v024-x+04-y=y

—0,4x + /0,24y = 0

J0,24x — 0,6y =0

0,24y
0,4

X =

0,24x

The eigenvector for the eigenvalue 1:

1 1 1
V024 | = | V0,22 :< > )
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The eigenvector equation for the eigenvalue 1; = 0:

[ "2 )0)-@

0,6-x++/024-y=0

J024-x+04-y=0

0,24y
0,6

0,24x
0,4

y=-

The eigenvector for the eigenvalue 0:

1 1 .
024 | = \MM-:< 19

0,4 V16

We check orthogonality:

Both eigenvectors are orthogonal. In contrast to the combined state we take the singlet state, a
maximally entangled state and check this one.

The wave function for the singlet state:

) = 0
Plud) = —
7
P(dw) = ——
7

P(dd) = 0

The wave function of the singled state is normalized:

P () (uu) + 3 (ud)yp (ud) + ¥ (dw)p(du) + ¢ (dd)y(dd) = 1
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The density matrix of Alice as part of the singlet state:

paa = ) W' (@byp(a’h)
We expand this:
Py = Y () (uu) + Y™ (ud)p(ud)
Pug = ¥ (du)p(uu) + ¥~ (dd)y (ud)
Pau = P" () (du) + ¢ (ud)yp(dd)
Paa = ¥ (dw)p(du) + ¢~ (dd)y(dd)

With concrete values:

The density matrix of Alice:

Para =

oS N -
N|—= O

The eigenvalue equation for Alice’s density matrix:

0,5—41 0 _
det (70 " g5 2) =0
05-21)%=0
We have one eigenvalue:

/’11/2 = 0,5

The eigenvector equation for the eigenvalue 4, , = 0,5:

1
?1)6)-36)
2

Any vector fulfills this eigenvector equation. Obviously, we have neither an eigenvector to the
eigenvalue one nor an eigenvector to the eigenvalue zero — the combined system is not a product
system.

The density matrix of Alice shows complete uncertainty about the outcomes of her subsystem.
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Time:

Time, change in expectation values over time:
Let L be an operator (a matrix), H be the quantum Hamiltonian.

The change of the expectation value (the average) of the operator L:

L 0y =21l

ac’" T a
Note: |H, L| is the commutator of the operators H and L:

|H,L| = HL — LH

Note: if the operators commute, HL = LH, the commutator is zero and there is no time change in
the expectation value of the operator L.

Note: this is often written in the shorthand form:

dL—ilHLl
A

Time, conservation of distinctions and time:
Principle five of quantum mechanics: The evolution of state-vectors with time is unitary.

Principle five of quantum mechanics follows from the “minus first law”, the conservation of
distinctions. Distinguishable states are orthogonal to each other.

Suppose |(0)) and |¢(0)) are two distinguishable states. Therefore, they must have an orthogonal
representation (no overlap):

W(0)|p(0)) =0
The minus first law requires this to be true for all times:
W®Ip@) =0
We have a time-development operator U(t).
[(£)) = Uy (0))
W®] = YOIVt ()
Note: UT(t) is the Hermitian conjugated of U(t).
lp(©) = U@®)[¢(0))
We modify (0(£)|$(t)) = 0 by the time-development operator:
W) = (W(O)|UTOU®)|$(0)) =0
This requests UT (£)U(t) to be the identity matrix (operator):
utu =1
An operator with this property is called unitary.

Note: if |A) and | B) are two distinct states and U is a unitary operator, then the inner product of |4)
and |B) is the same as the inner product of U|A) and U|B). This is called the conservation of
distinctions or the conservation of overlaps.
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Time, determinism and time:
Time evolution of a state vector is deterministic in probability.

Let the state of a spin be |r).
The outcome of a measurement g,, = 1.
The outcome of a measurement g, will be a series of —1 and 1, giving an average of 0.

Quantum evolution of states allows us to compute the probabilities of the outcomes of later
experiments.

Time, time evolution operator:
Time evolution is unitary in quantum mechanics:

[(£)) = Uy (0))
U(t) is a unitary operator.
For small times t := ¢ the unitary operator U(¢) is close to the unit operator:
U(e) =1—ieH
Ut(e) =1+ ieH?
The unitary condition:
Ut(e)U(e) =1
(I+ieHY)(I —ieH) =1
I? + lie(H' —H) + e?H'H =11
I+1Ilie(HN —H) 4+ e?H'H =1
We omit the second order in &:
I+1lie(H —H) =1
lie(H' —H) =0
HY—-H=0
HY=H

H is a Hermitian operator, an observable with a complete set of orthonormal eigenvectors and
eigenvalues — the quantum Hamiltonian.

We begin with the infinitesimal case ¢ = & and apply the time development operator:
[ (&) = U(e)[y(0)) = (I —ieH)|p(0)) =
I (0)) — ieH[y(0)) = [$(0)) — ieH[(0))
We get:
[P (e)) = [$(0)) — ieH | (0))
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We build the differential equation:
lw(e)) = [¥(0)) — ieH|[p(0))
[W(©) — [¥(0)) = —ieH[p(0))
Y (&) — 1¥(0)) _ _ ieH[yp(0))

& &

() — (0)) _

&

—iH[y(0))

This is the time derivative of the state vector i:

a|p0)) .
= = —iH[P(0))
We can replace [(0)) by any fixed time [ (t)):
@) _ .
1 10)

What we got is the time-dependent Schrédinger equation.
Time dependence:
1.

The time dependence of an observable is given by the commutator of the observable with the
Hamiltonian,

or, in more elaborated writing:

21y = qm L)
dt h
Note: (L) and {|H, L|) are the expectation values (averages).
Note: |H, L| is the commutator of the operators H and L:
|H,L| = HL — LH

Note: if the operators commute, HL = LH, the commutator is zero and there is no time change in
the expectation value of the operator L.

2.
Let |(0)) be an initial state at time t = 0.

Find the eigenvalues and eigenvectors of the Hamiltonian H by solving the time independent
Schrédinger equation:

H|E;) = Ej|E))

Note: E; are the eigenvalues, |Ej) the according eigenvectors.
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Calculate the initial coefficients:
a;(0) = E;j[1(0))
Rewrite [ (0)) in terms of eigenvectors |Ej) and initial coefficients a;(0):

() = D ;(0)15)

j
Replace each a;(0) with a;(t):

(o) = ) a© IE)

J

Replace a;(t):

i
@ (t) = ;(0)e F"

We get the time dependence of the state | (t)):

(0 = ) ay(0)e H |E)

J

Time dependent Schrédinger equation:

We get the time dependent Schrédinger equation of a state [ (t)) by applying the Hamiltonian to
this state:

aPp®) _

h—s = = —iHP(0))

If we know the state vector at a specific time t, the equation gives what it will be next (and what it
was before).

Particle dynamics and time dependent Schrddinger equation:
Let the Hamiltonian operator H be very simple, being a fixed constant times the momentum
operator P:

H = cP

A classical physicist would use Hamilton’s equations to describe a particle:

aH__

ap_x
and

aH_ )

ox p
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Carrying out the partial derivatives with our simple Hamiltonian H = cP, these become

6H_,

6p—x—c
and

aH_ —0

ox P=

In the classical description of the particle, the momentum is conserved,
and the particle moves with constant speed c.

inilial wave packel

In quantum mechanical description, the whole probability distribution
and the expectation value move with velocity ¢ — quantum mechanical
and classical description match.

B(x)

Solving the time dependent Schrodinger equation:
We get the time dependent Schrodinger equation of a state [(t)) by
applying the Hamiltonian to this state: |

'hd =H
ih— ) = HI)

w moving to the right ..

This is the time dependent Schrédinger equation.
The Hamiltonian operator H represents the energy with eigenvalues E; and eigenvectors |Ej):
H|Ej) = Ej|E;)

Note: this is the time independent Schrodinger equation, used to find eigenvectors |EJ) and
eigenvalues E;.

Suppose we found all energy eigenvalues E; and eigenvectors |Ej) of the time independent
Schrédinger equation.

They form an orthogonal basis we can expand the state vector in:

) = Z a;|E;)

J

The basis vectors does not change with time but the a; will:

() = ) a(OIE)

J

We feed this back into the time dependent Schrodinger equation ih% [Y) = H|Y):
ih Y dOI5)=H ) a0lE) =
j j

Z Eja; (6)|E;)
j
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We get:

ihz @, (t)|E;) — Z Eja;j()|E;) = 0
j j

z (ihdj(t) - Ejaj(t)) ) =0

J

The eigenvectors |Ej) form an orthonormal basis, so the argument in the summation must be zero
for every index J:

lha’](t) - E](Zj(t) =0
lha’](t) = E]a'](t)

i

d](t) = _h

E]aj(t)
This is a differential equation with the solution:
gt
a;(t) = a;j(0)e "/
The factors a;(0) are the values of the coefficients at time zero. We have:

W) = Y aOIB) = Y a0 i |E)

J ]

We get the values a;(0) by the inner products of [1) with the basis eigenvectors:

a;(0) = (E;|(0))
The solution of the time dependent Schrodinger equation,
LT
() = D (Bl @) |5)

J

more elegant written as:

() = ) 1E)E b (0))e 7
J

Time derivatives:

The time derivative of a state vector is its product with the Hamiltonian:

aly) _

[
o =R

Note: this is the time dependent Schrédinger equation.

Note: the time dependent Schrodinger equation for a bra:

oWl _ i
e~ R
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Schrodinger equation for time derivatives:
Prerequisite

[4, B] is the commutator of the operators (the matrices) A and B:

[A,B] = AB — BA
Note:

[A,B] = —[B, A]
If the commutator [4, B] is zero, AB = BA, we say that the operators commute.
Note: every operator commutes with itself:

[A,A] =0

End prerequisite

Let (L) be the expectation value of an observable at time t in a state represented by a ket |y) and a

bra (y[:
(L) = W@OILIP®)
We build the time derivative (L):
d . .
2 POIL©) = OILR®) + @ O[L[P @)
Note: L itself has no explicit time dependency.

We insert the bra and ket versions of the time dependent Schrodinger equation:
d .
ZWOILRPO) = 3 (OIHLIPE) — GOILHDO) =

= (WOIH, IO

We get:

dL—iHL
S = (H.L)

Note: if the operators (the matrices) H and L commute, the expectation value of the observable L
does not change with time.

Time development operator:
The quantum equation of time development:

[Y(©) = U®Iy(0))
The operator U is called the time development operator for the system.

Note: instead of /(0) we can choose any fixed time Y (t,).
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Conservation of distinctions and time development operator:
Principle five of quantum mechanics: The evolution of state-vectors with time is unitary.

This principle follows from the “minus first law”, the conservation of distinctions.
Distinguishable states are orthogonal to each other.

Suppose [P (0)) and |¢(0)) are two distinguishable states. Therefore, they must have an orthogonal
representation (no overlap):

W(0)$(0)) =0
The minus first law requires this to be true for all times:
W®Ip®) =0
We have a time-development operator U (t).
[Y(©) = U@®Iy(0))
WOl = @O
Note: UT(t) is the Hermitian conjugated of U(t).
l$(8)) = U()]¢(0))
We modify (¢ (t)|¢(t)) = 0 by the time-development operator:
W®OIP®) = (YO |UTOU®)|p(0)) =0
This requests UT (£)U(t) to be the identity matrix (operator):
utu =1
An operator with this property is called unitary.

Note: if |[A) and |B) are two distinct states and U is a unitary operator, then the inner product of |A4)
and |B) is the same as the inner product of U|A) and U|B). This is called the conservation of
distinctions or the conservation of overlaps.

Time evolution:

In quantum mechanics, the Hamiltonian controls the time evolution of a system by the time-
dependent Schrodinger equation:

0y (0)

ih ot

= H|y)

Time evolution, determinism and time evolution:
In classical mechanics, there is no real difference between states and measurements. In quantum
mechanics, the difference is profound.

Classical determinism allows us to predict the result of experiments. The quantum evolution of states
allows us to compute the probabilities of the outcomes of later experiments.
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Time independent Schrodinger equation:
The time-independent Schrédinger equation:

H|E;) = Ej|E))

Note: H is the Hamiltonian, E; the (energy) eigenvalue to the (energy) eigenvector |E]-).

We take a known particular value of energy E; and calculate the ket-vector |E]-) that solves the

equation or we search for eigenvectors |Ej) by trying arbitrary values of Ej.

Trace:

Trace of a density matrix:
Prerequisite

The trace of an operator L (a matrix that must be a square matrix) is defined as the sum of its

diagonal elements. Let |i) and (i| be a basis:

Trl = Z(iILIi)

End prerequisite

We have a single spin system of Alice in the up — down basis:
1 0
) = alw) +Bld) = a () + 8 (})
The wave function of Alice:
YW =a P W) =a’; P(d) =p; Pp*(d) =p"

The density matrix of Alice:

_ (a*a a*ﬁ)

Qala - ,B*a B*ﬁ

*

Quu=aa
Qua =a’p
Qau =B’
Qaa = BB

The trace of the density matrix:
TT Qara = Quu + Qaa = @@ + BB
The trace of a density matrix is 1:
Tr(e) =1
The eigenvalues of a density matrix are all positive and lie between 0 and 1.

If one eigenvalue of a density matrix is 1, all others are zero.
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For a pure state holds:
e’=¢
Tr(e®) =1
For a mixed or entangled state holds:
e*#o
Tr(e®) <1
The trace of a product of two matrices A, B does not depend on their order of multiplication:
Tr(AB) = Tr(BA)
This is true even if:
AB # BA

Trace of a projection operator:
Prerequisite

A projection operator is the outer product of a normalized ket with its corresponding bra:

) (¥l

A projection operator projects a vector |A) onto the direction defined by [):

) lA) = alp)

Note: a is a real number.
A projection operator is always a square matrix.
End prerequisite

The trace of a projection operatoris 1.

Trajectories, path integrals and trajectories:

Suppose a classical particle starts at position x; at time t; and arrivesat ¢,
position x, at time t,. Action is a technical term, and it stands for the
integral of the Lagrangian between the end points of the trajectory.

For simple (classic) systems, the Lagrangian is kinetic energy minus
potential energy. For a particle moving in one dimension the action is:

t, mJ'CZ
A= -[t <T — V(X)> dt X

1

Under all possible paths the stationary ones (e.g. the minima, least action) are possible solutions.

In guantum mechanics the idea of a well-defined trajectory has its limits in the Heisenberg
Uncertainty Principle. The quantum mechanical question is:

Given a particle starts at (x4, t;), what is the probability amplitude it will show up at (x,, t,)?

With the simplification t, — t; = t we call the amplitude C(xy, x5, t) resp. C; ,.
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The initial state of the particle is:

[P (t1)) = |x1)
The state evolves to:
[ (ty)) = e Ht|x;)
Note: we use units with h = 1.
The amplitude to detect the particle at |x,) is the inner product of |[(t,)) with |x,):

Cra = (x2|e™[x1)

L . . .t
Now we break up the time interval t into smaller intervals of size >

The operator e "*Ht can be written as:

) ot Lt
e—lHt — e—lHEe—lHE t

We insert the identity operator:

I= f|x)(x| dx

X, X X5
We rewrite the amplitude:

Lot
_H_
e V2 x1> dx

-
Crp = f(xz x> <x|e_LH§

The amplitude to go from x; to x, is the product of the amplitude to go from x; to x and the
amplitude to go from x to x,.

If we continue to divide into N time intervals of size &, we have a t
product of many factors: 5
e—ieH (
We define: )
U(e) = et j
We write the entire product: &
(x| UM |21) . Y

We insert identity operators between each U and get the amplitude for the given path. In the limit of
a large number of infinitesimal time intervals, the amplitude is an integral over all possible paths
between the end points.

The elegant fact that Feynman discovered is that the amplitude for each path bears a simple relation
to a familiar expression from classical mechanics — the action for that path.

The exact expression for each path is:

LN

Note: A is the action for the individual path.
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Feynman’s formulation can be summarized:
A4
Cl,Z - f e h
paths
In quantum field theory it is the principal tool for formulating the laws of elementary particle physics.

Transposing:

In matrix notation, interchanging rows and columns is called transposing and indicated by a

superscript T:
a b c\" a d g
(d e f) =(b e h)
g h j c f ]

Note: the diagonal remains unchanged.

A matrix needs not to be diagonal to transpose it:
(a b c)T _ Z Cei
d e ] =

Triangle inequality:
For real vector spaces:

[X[[Y| > |X + 7|
X|[7| =% -7

Note: X - ¥ is the inner product, the dot product.

In squared form this is the Cauchy-Schwarz inequality:

For complex vector spaces:
Let |X) and |Y) be any two vectors in a complex vector space:
21X[1Y] = KX1Y) + (Y |X)]

This is the form of the Cauchy-Schwarz inequality that will lead to the uncertainty principle.
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Triplet state:

Prerequisite

d is the spin operator of Alice with the components gy, gy and g, according to three possible
orientations of a single spin in space. 7 is the spin operator of Bob with components 7, 7y and 7.

The effect of spin operators (matrices) on 2-Spin eigenvectors:

two-spin eigenvectors

luw) lud) |du) |dd)
o, | fuu jud) ~[du) ~|dd)
Ox |du) |dd) |uu) lud)
oy i|du) i|dd) —i|uu) —ilud)
T, |uu) —|ud) |du) —|dd)
Ty |ud) |uu) |dd) |du)
Ty ijlud) —i|uu) i|dd) —i|du)

End prerequisite

The triplet states for a combined spin system of Alice and Bob are maximally entangled states:

T2 = <5 () + [du)
1Ty} = —= (jua) + |dd))
V2
1T5) = —= () — d)
V2
The triplet states are eigenvectors of the operator (the matrix) ¢ - 7 with eigenvalue one:
d - 7|Ty) = |Ty)
0 7|Ty) = |T,)
G- 7|T3) = |T3)

Note: if different eigenvectors have the same eigenvalue this is called degeneracy.

A worked-out example for g - T|T;) = |Ty):

-

G T = 0,Ty +0,T, + 0,7,

0vtaTy) = axrx%(md) + ldu)) = ox%uuu) +ldd)) = %(Idu) £ lud)) = ITy)
1 1 1
0y Ty|Ty) = O'y‘[yﬁﬂud) + |du)) = ayﬁ(—iluu) +ildd)) = ﬁﬂdu) + |ud)) = |Ty)
0,1,ITy) = %%uud) + |du)) = JZ%(—|ud> + |du)) = 715("”‘” ~ldw) = —ITy)

Result:
0 - T|Ty) = 0x7x|T1) + 0,7y |T1) + 0,7,|T1) = |T1) + |Ty) — |Ty) = |Ty)

|T,) is eigenvector of ¢ - T with eigenvalue 1.
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Truth-value:

Truth-value is a fundamental idea in Boolean logic. A proposition is either true or false — nothing in
between:

The die shows the number three
is either true or false.
Propositions can be combined by the logical operators such as and, or, not.
The not operator applied to the proposition above would lead to something like:

It is not true that (The die shows the number three)

Two spins:

We need at least two single spins to work with combined and entangled systems. In quantum
mechanics they are usually called the system of Alice and the one of Bob.

Two spins, entanglement for two spins:
Worked out example

We have a system of two spins of Alice and Bob in the state [):

1 1
lp) = 0+ Juu) +ﬁ|ud) +ﬁ|du) +0-|dd)

Note: |uu) etc. denote a single basis vector out of four basis vectors.
Note: the state is normalized.

Note: all coefficients are real.

Note: this is a fully entangled state, a triplet state.

For all possible inputs uu, ud, du, dd the values of the wave function:

Y(uu) =0
Plud) = —
7
(du) = —
7
Y(dd) =0

We are interested in Alice’s subsystem only. We calculate her density matrix:
owa = ) ¥ (@h)p(@h)
b

Note: a and b can take the values u and d.
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We get the elements of the density matrix of Alice:

Quy = Y () (uw) + ¢~ (ud)y(ud) =

Qua = ¥ (dwyp(uw) + ¢~ (dd)yp(ud) =
Qay = ¥* (W) (du) + ¢ (ud)y(dd) =

Qaa = ¥ (dw)y(du) + ¢ (dd)y(dd) =

N|l—= O S N

The density matrix of Alice:

Qara

S N
N|= O

In general
An operator L acting on the subsystem of Alice only:
Laiprap = (a’b’|L|ab)
Note: this is the observable (the operator) written in the notation of the combined system.

As the operator acts only on the subsystem of Alice, we can filter out all elements that deals with the
subsystem of Bob:
Larprab = LaraOpip

Note: the 4 X 4 matrix Lg,p,qp is factored into a tensor product of two 2 X 2 matrices L,,, and &p,p-
Note: 8y,p is the 2 X 2 identity matrix, a kind of Kronecker delta.
We calculate the expectation value (the average) of L in the composite system:
L) = WL = D P @) Lapab(ab)
ab,a’,br

The operator acts only on the subsystem of Alice and leaves the subsystem of Bob unchanged
Larap = LaraSpin:

Wl = D ' @b)Laap(ab)
a,b,ar
We can pull out the sum over b:
Z’)b*(ab)lp(a’b) = Qara
b

Note: this is the density matrix of the subsystem of Alice. It does not depend on any b-index since it
has already been summed over b.

Note: this is purely a function of the variables of the subsystem of Alice.
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We rewrite the expectation value (the average) of L:

<L> = Z QaraLlaar

a,al

Z Qaralaar

a,al

Note:

is a sum of diagonal matrix elements, the trace of the matrix pL. The expectation value (the average)
of the operator L can be written as a trace:

(L) =Tr pL

Two state system:

We take a single spin with two states, either head up or down. We call ¢ a degree of freedom that
can take two values.

State up:
o=+1

State down:

Note: this is called a qubit.

We have at hand an apparatus A to make measurements.

Il

=

AR THESRIPETNEEH, SHpATSLE.

We orient the apparatus in z- direction and measure.

After the measurement the spin is oriented in z-direction, the apparatus shows the result +1.
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Note: the first measurement changes the orientation of the spin.
Any following measurement with the scene unchanged will repeat this value.

We turn the apparatus upside down (spin undisturbed) and measure again:

@n

The result will be —1.

We turn the apparatus by 90° (spin undisturbed) and measure again:

—8

The repeated experiments will give a random series of +1 and —1.
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Instead of the classical result (the component of the spin along the x-axis with value zero) we get this
zero as a statistical average of multiple measurements.

Quantum mechanical systems are not deterministic, but if we repeat an experiment many times,
average quantities can follow the expectations of classical physics.
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Uncertainty:

Uncertainty, definition of uncertainty:
Roughly speaking, the uncertainty is the standard deviation.

Let A be an observable (operator) with eigenvalues a.

The expectation value of A is the average:

(4) = lAlp) = ) aP(@)

a

Note: a are the eigenvalues, P(a) are the probabilities of each eigenvalue.
To make calculations easier we define the operator A:

A=A—(A)
The expectation value of 4 is zero.
The eigenvectors of A are the same as those of A but the eigenvalues are shifted:

a=a—(A)
The square of uncertainty or standard deviation of A:
(84 = ) @P(@) = ) (a—(A)*P(@) = (WIAIp)
a a

If the expectation value of the operator A already is zero, we need no shifting, the square of the
uncertainty is the average value of the operator A?:

(A4) = (Y| A%[Y)

Uncertainty, triangle inequality/Cauchy-Schwarz inequality and uncertainty:
The triangle inequality for real vectors:

squared:
=12 L o2
(X1 +1¥]) =[x +Y]
left side:
5 L2 . N N This is the
(|X| + |Y|) = |X| + |Y| + 2|X”Y| dot product
right side: ..
Z+7] = (R+7)E+7) = X + |7 +2(X°7)
We get:

[X1[¥] = [X -]
Squared this is called the Cauchy-Schwarz inequality:

- - =2
XY =[x -¥]
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The triangle inequality for complex valued vectors.

For complex vector spaces we get a more complicated form. We have to prove:
21X1Y] = KX1Y) + (Y [X)|

We assume all vectors X and Y being nonzero.

Let A be:

A= w > (X|Y) = KY|Y)
(Y1y)

Out of this definition we can conclude:
(Y1X) = (XTY) = AY[Y) = KY|Y)
We try:
0<(X—-AY|X-AY) =
(X1X) — AUX|Y) — KY|X) + AY|Y) =

(X|X) = 2HX|Y) = ANY|Y) + AY|Y) =

(X1X) = KX|Y) =
IXIZ—W'(XIY)
Intermediate result:
0< IXIZ—W'(XIY)
@'(XIY) < |X|?

&Iy - XIY) < |X1?|Y|?
KXIV)I? < IXI2|Y]?
KXIY) < |X]]Y]

We multiply the result by 2:

2[(XIYV)| < 21X]1Y|
We get the following chain:

21XI1Y| = 2KX[Y)| = (XIY)] + KX|Y)| =
KXV + KY1X) = [(X]Y) + (Y] X)]

We get the form of the Cauchy-Schwarz inequality that is applicable for the uncertainty principle:

21X[lY] = KX|Y) +(Y]X)|
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Uncertainty principle, Heisenberg:

Classical physics: a particle has position x and momentum p.
Quantum mechanics: a particle has position x or momentum p.

Why? Because the momentum operator P and the position operator X do not commute.
Observables belonging to operators that does not commute are not simultaneously measurable
precisely.

Prerequisite
Let X and Y be vectors. The Cauchy-Schwarz inequality:

21X||Y] = (X]Y) + (Y| X)]
End prerequisite

Let |Y) be any normalized ket and let A and B be any two observables. Observables are always real.
We define |X) and |Y):

|X) = Alp) and (X| = (|4
|Y) = iB|y) and (Y| = (Y| — iB

With these the Cauchy-Schwarz inequality becomes

1
VAAZNB?) 2 S [(WIABIY) — (PIBA[Y)]

or, written with the commutator:

1
V(A2NB?) 2 S I(pI[AB] 1Y)

For simplicity reasons let A and B have expectation values of zero. In that case, {(42) is the square of
the uncertainty in 4 := (A A)? and similar B := (A B)2.

We get:

[(A2)(B2) >A A A B
1
AAAB> 3 [(|[AB]| )]

In plain words: the product of the uncertainties cannot be smaller than half the magnitude of the
expectation value of the commutator.

If the commutator of A and B is not zero, both observables cannot simultaneous be certain.

Note: if A and B do not have expectation values of zero, we can shift them and build two new
variables:

A:=A—(4)
B :=B —(B)
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For these new variables hold:

A A% = (4?)
A B* = (B?%)
[4, B] = [AB]

For the case of position operator X and momentum operator P we know that applying the
commutator onto any wave function ¥(x) gives:

[X, Pl (x) = i (x)
We express this by writing:
[X,P] =inh

The fact that X and P do not commute is the key to understanding that they are not simultaneously
measurable. We insert them into

1
AXAP> EI(IIJI[XP]IIIJ)I

and get:

1
AXAP 2= El(ll)liﬁlllf)l =
L ih —1 ih —1h
Ell (l/J|l/)>|—§|l |—E

AXAP> 1|'h| = 1h
=23
Remember |Y) is normalized.
We got the Heisenberg Uncertainty Principle.

Unitarity:

Time development in quantum mechanics is unitary:
[(£)) = Uy (0))
The operator U(t) is called the unitary time development operator for the system.
For a unitary operator (matrix) holds:
utu =1
Note: UT is the transposed and complex conjugated version of U.
For small time intervals € the operator U is close to the identity operator I:
U(e) =1—icH
U must be unitary:

Ut(e) =1+ ieHT
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From the unitary condition for U and the small time-interval € follows:
UtU = (I —ieH)(I + ieHT) = I + ielHY — ielH + ¢2HHT
We omit the second order in &:
vty =1-
I=1+ieH" —ieH
0 =ieH" —ieH = ie(HT — H)
We get that H must be unitary too:
Ht=H

H will become the quantum Hamiltonian, a unitary operator.

Unitary evolution:

Suppose Alice and Bob have a (maybe entangled) system, one part of the system is here, the other
part on Alpha Centaury.

The wave function for the combined system is Y (ab).

The complete description of the subsystem of Alice is contained in her density matrix:
Gaas = ) ¥"(@b)p(ab)
b

The question is: can Bob with his subsystem do anything to instantly change the density matrix of
Alice? According to the laws of quantum mechanics?

Whatever happens to the subsystem of Bob must be described by a unitary matrix Uy,,. It acts on the
wave function 1 to produce an altered wave function ¥ tereq:

Yaiterea (ab) = Z Ubblll’(ab’)
br

The complex conjugated of Yy tereq is:

w*altered(a’b) = Z w*(a’b”)UerHb

brr

Note: the primes added to avoid mixing the variables up.
We calculate the density matrix of Alice for the system after Bob acted on it.

Before:
Qaar = Z lP*(a'b)l/J(ab)
b
After:

Qaar = z l/)*(a,b”)UTbe Ubbrlp(ab’)
b,b',brr
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The unitarian matrices combines to the unit matrix again:
UTbeUbbl = 5b//b/

In the sum all indices are collapsing to b:
Gaas = ) ¥"(@b)p(ab)
b

The action of Bob on his subsystem does not change the density matrix of Alice, her subsystem
remains exactly as it was. This guarantees that no “faster-than-light” signal has been sent.

Unitary matrix:
For a unitary matrix (operator) holds:

utu =1
Note: UT is the transposed and complex conjugated version of U.

Time development in quantum mechanics is unitary:
[(£)) = Uy (0))

Unit matrix:
The unit matrix I is part of the Pauli matrices:

w=(i o)io=( $)e=( 26 )

Any 2 X 2 Hermitian matrix L can be written as a sum of these four matrices:
L =aoy + boy, + co, +dl
Note: a, b, ¢, d are real numbers.

Unit matrix, density matrix and unit matrix:
We have a combined system, Alice and Bob, of two maximally entangled spins. If Alice calculates the
density matrix for her subsystem:

Qaar = N_A5ala
. . . . . 1.
All eigenvalues are equal, and given that they all sum to unity, each eigenvalue is equal to e with Ny
A

being the number of dimensions of the subsystem of Alice.

Every possible outcome is equally probable.

Unit (normalized) vector:
For normalized vectors |A) the inner product equals one:

(414) =1

For spatial vectors, normalized vectors are called unit vectors, vectors with length 1.
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Unit vector, state of system and unit vector:
The state of a system is represented by a normalized vector in a vector space of states.

a
In a single spin system |A) = (a:), (A| = (aj, a}):

* a * *
(A14) = (@i ap) (o) = anay + @zag = 1

Up state:

We prepare a spin and orient the measuring apparatus along the z-axis.

The measurement will give the result +1, the spin is in the up-state, or —1, the spin is in the down-
state.

The term up-state (and down-state) refers to the orientation of the spin relative to the apparatus.

Sy
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Vector addition:
In quantum mechanics, a vector space is composed of kets (vectors) |4), | B):

a
()
an
b,
()
by,

a, + by
|A)+|B)=< : )
a, + b,

The corresponding bras (4|, (B]:

(A| = (a3, ..., ay)
(B| = (b1, ..., by)
(Al +(B| = (a1 + by, ..., an + bp)

Note: a4, a,, b1, by, are complex numbers.

Note: there is an implicit conjugation in changing from ket to bra.

Vectors:

Vectors, basis vectors:

a)

b)

c)
d)

e)
f)

g)
h)

j)

k)

1 0 0
3-vectors: a set of three mutually orthogonal unit vectors, e.g. (0) , (1) and (O) for the

0 0 1
cartesian space.

|u) and |d) as a basis of the state of a spin.
Any state A can be written as |A) = ay |u) + a4|d)
If the state vector |A) is normalized, then (A|4A) = 1 or o, + ajay = 1

a,=a, =5 =03 = %satisfies c)

If 1 and A, are unequal eigenvalues of a Hermitian operator, then the corresponding
eigenvectors are orthogonal, and all these eigenvectors can form a basis of the state space.
If A, and A4, are equal eigenvalues of a Hermitian operator, then out of the corresponding
eigenvectors can be chosen a pair of orthogonal vectors that are necessarily eigenvectors.
Orthogonal basis vectors represent two distinguishable states — for all times.

Every normalized state |A) of a quantum system can be expanded in the orthonormal basis
of eigenvectors of L: |A) = ZiaiMj)

The Hamiltonian applied to the energy eigenvectors of a state delivers the eigenvalues (the
energy levels) of the system: H|Ej) = Ej|Ej). Please not that |E]-) are the eigenvectors, E; the
eigenvalues resp. the energies.

The elements of a matrix M can be calculated by use of basis vectors: m;;, = (j|M|k) with {j|

and |k) representing the basis vectors. Note that (j| is the complex conjugate to |j).

1), the basis vector for the |d) state is ((1))

The basis vector for the |u) state is (0
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m)

n)

p)

0
(1) and
0

_ O O O

1 0
The basis vectors for the states |uu), |ud), |du) and |dd) are 8 , é ,
0 0

Note that these are tensor product states.
The sum over the outer product of a set of basis vectors |i) and (i| delivers the identity

matrix:
Dty =1
l

Note that | stands for the running index | and not the imaginary unit and that (i| must be the
complex conjugated of |i).

If the measuring apparatus (for spatial spin orientation) comes into play as a quantum
system too, in the simplest description it has three states: a blank state and two outcome
states with the following basis vectors: |b), |(+1)) and |[(—1)). The starting state at time O is
always the blank state.

Note that in the book these kets often are written as |b},| + 1} and | — 1} to make clear
these are kets of the measuring system.

The quantum state of a particle spanned by position x and momentum p: |x, p)

Note that the associated operators are X and P.

Because momentum and position are both Hermitian operators, the sets of |x) and |p) each
define basis vectors.

Vectors, column vectors:
A column vector |A) (a ket) is a stack of complex numbers:

aq
()
an

We can add two kets:

by
o-()
by,

a, + by
IA)+|B)=< : )
a, + b,

We can multiply a ket with a complex number z:

a, za,
w-{2)-(2)
an za,

When working with single spin systems we use the kets |u) and |d), representing the two
orthogonal states up and down of a single spin:

=3

=)
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Vectors, concept of vectors:
The space of states of a quantum system is a vector space, a mathematically construction that may
or may not have anything to do with ordinary space (spatial vectors).

The vector space to define quantum mechanical states is called a Hilbert space with either a finite or
an infinite number of dimensions.

The elements of the vector space are called ket vectors or kets |A).

Vectors, functions as vectors:
A single spin system can be described by a two-dimensional space of states:

) = afuw) +pldy = a () + £ (3)
This is a discrete system.
Note: a and 8 are complex numbers.
A particle moving along the x-axis can be found at any real value of x.
For each value of x, ¥(x) is a complex number.
This is a continuous system.

With appropriate restrictions, the functions 1 (x) fulfill the mathematical axioms that define a vector
space (Hilbert space):

The sum of any two functions is a function.
The addition of functions is commutative.
The addition of functions is associative.
There exists a zero function for addition.
There exists an inverse function for addition.
Multiplying a function by a complex number gives a new function and is linear.
The distributive property holds:
a. z[p(x)+0(x)] = ze(x) + z0(x)
b. [z +w]p(x) =z(x) + wih(x)

Note: z and w are complex numbers.

NouhkwnNpe

With this we can identify functions ¥ (x) with ket-vectors |y).
The bra-vector (¥/| corresponds to the complex conjugate function ¥ *(x).
We have to replace:

a) Integrals replace sums,

(wle) = f P O ()dx

our new inner product.

b) Probability densities replace probabilities. The probability of a continuous variable at exactly
one point is zero, so we can only determine the probability that the variable is in between
boundaries a and b:

Pa,b) = [} PG)dx = [ (G (x)dx.
P(x) becomes a probability density.
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c) For probability densities holds:

LO:OP(x)dx =1

d) Dirac delta functions replace Kronecker deltas.
The Kronecker delta satisfies:
j

The Dirac delta functions § (x — x") does the same job for integrals:

f §(x —x")F(x")dx' = F(x)

2_ =20y
AT

Note: the Dirac delta function can be approximated by e.g.:

llm i e _(nx)Z

n—)OO-"TL' 25 -2 -15 -1 -05 0 05 L 5 2 |25 3

Vectors, normalized vectors:
For normalized vectors |A) the inner product equals one:

(414) =1
For spatial vectors we say they have length 1.

Vectors, orthogonal vectors:
Two vectors |A), |B) are orthogonal if the inner product is zero:

(A|B) =0
Orthogonality of vectors has a special meaning in quantum mechanics.
Observables in quantum mechanics are represented by Hermitian operators (matrices).

The eigenvectors of a Hermitian operator (matrix) form a complete set and act as an orthogonal basis
of the state.

If the eigenvalues of two eigenvectors are different, then the eigenvectors are orthogonal.

Even if two eigenvalues are equal, the corresponding eigenvectors can be chosen to be orthogonal by
the Gram-Schmidt procedure.

Unambiguously distinguishable states are represented by orthogonal vectors.

Vectors, polarization:
The states of a spin are characterized by a polarization vector.

We have a single spin system. For any spin state, there is some orientation of the measuring
apparatus A that will give the result +1 after measurement.

This is another way to express the spin-polarization principle:

Any state of a single spin is an eigenvector of some component of the spin.
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Let |A) = a|u) + B|d). There exists a direction 7:
o-n=|A)

Note: g is the spin operator, having a strong family resemblance with 3-vectors. We can use it as if it
were a 3-vector.

The components of the spin operator are ay, gy, and g;,.

gy, 0y and g, each are 2 X 2 matrices, the Pauli matrices.

Vectors, row vectors:
A column vector |A), a ket, is a stack of complex numbers:

a
()
an

Its counterpart (4|, a bra, is a row of complex numbers:

(4] = (ai, ..., ap)
Note: in quantum mechanics there is an implicit conjugation. |A) and (A| are complex conjugated.
We can add two bras:

(B| = (b7, ..., by)

(Al +(B| = (a1 + by, ..., an + bp)
We can multiply a bra with a complex number z:
z(A| = (A|z = z(aj, ..., ap) = (zaj, ..., zay)

Vectors, three-vectors (3-vectors):
Vectors in regular space, spatial vectors, are called 3-vectors.

For 3-vectors multiplication by complex numbers is not defined.
3-vectors form a real vector space, a spatial vector space.
Bras and kets form a complex vector space.

3-vectors are not rich enough to represent quantum states. For this we need bras and kets with
complex valued components.

Vectors, unit-vectors:
For unit vectors |A) the inner product equals one:

(414) =1

For spatial vectors we say they have length 1.
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Vector space:

In quantum mechanics, a vector space is made of bras (A| and kets |A), it is a Hilbert space.

We use seven axioms to define a vector space. Let |A), |B) and |C) be vectors and z, w complex
numbers, then:

1. Closure: the sum of two vectors is a vector:
|4) + |B) = |C)

2. Vector addition is commutative:
|A) + |B) = |B) + |4)

3. Vector addition is associative:
{|A) + |B)} + |C) = |A) + {|B) + |C)}

4, Existence of the O:

|4) +0 = |A)
5. Existence of the inverse:
|[4) + (—[4)) =0

6. Multiplication by a scalar produces a new vector:
|zA) = z|A) = |B)

7. Distributive property:
z{|A) + |B)} = z|A) + z|B)
{z + w}|A) = z|A) + w|A)

Axioms 6 and 7 taken together are often called linearity.

Note: spatial 3-vectors does not satisfy axiom 6, the multiplication of a 3-vector with a complex
number is not defined.

Note: the bra corresponding to z|A) is (A|z".
Note: interchanging bra and ket corresponds to complex conjugation:
(A|B) = (B|A)

Note: there is an implicit complex conjugation when switching from |A) to (A|:

aq
an

(Al = (a3, .., az)
We can write a ket |A) as a sum of basis vectors:
14) = aili)
i
Note: |i) are the basis vectors.

Note: in quantum mechanics the basis is regularly an orthonormal basis.

Note: the a; are complex numbers, the components of the vector.
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We can calculate the components by taking the inner product with the basis bras (j|:

Glay =) ai(jli

i

Note: we have an orthonormal basis, so {j|i) = §j;, the Kronecker delta. The sum collapses to one
single term:

(j14) = q;

The ket |A) is the sum of its projections onto the basis vectors:

14) = > 1(114)

Vector space, axioms:

We use seven axioms to define a vector space. Let |A), |B) and |C) be vectors and z, w complex
numbers, then:

1. Closure: the sum of two vectors is a vector:
|4) + |B) = |C)

2. Vector addition is commutative:
|A) + |B) = |B) + |A)

3. Vector addition is associative:
{l4) + |B)} + |C) = |A) + {|B) + |C)}

4, Existence of the O:

|A) + 0 = |A)
5. Existence of the inverse:
|[4) + (—[4) =0

6. Multiplication by a scalar produces a new vector:
|zA) = z|A) = |B)

7. Distributive property:
z{|A) + |B)} = z|A) + z|B)
{z + w}|A) = z|A) + w|A)

Axioms 6 and 7 taken together are often called linearity.

Vector space, bras:
A complex vector space has a dual version, the complex conjugate vector space.

For every ket vector |A) there is a bra vector denoted by (A|.
Bra vectors satisfy the same axioms as ket vectors with two peculiarities:

e If zis a complex number, the bra corresponding to z|A) is (A|z".

aq
an

(A| = (aj, ...,ay)

If we write the ket |A) as

then the corresponding bra is
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Vector space, column vectors:
Kets are identified with column vectors:

a,
=
an

Vector space, functions and vector space:
Functions satisfy the mathematical axioms that define a vector space:

The sum of any two functions is a function.
The addition of functions is commutative.
The addition of functions is associative.
There exists a zero function for addition.
There exists an inverse function for addition.
Multiplying a function by a complex number gives a new function and is linear.
The distributive property holds:
a. z[p(x)+0(x)] = ze(x) + z0(x)
b. [z +w]p(x) =z(x) + wih(x)

With this we can identify functions y(x) with ket-vectors |y). The bra-vector (1| corresponds to the
complex conjugate function Y*(x).

NouhkwnNpR

Vector space, inner products:
We have kets |4), |B) and |C). For the inner product we need the bra versions (B| and (C|.
Remember that (B| is complex conjugated:

(Bl4)
Inner products are linear:
(CI (|A) + |B)) = (C|A) +(C|B)
Interchanging bras and kets corresponds to complex conjugation:
(B|A) = (A|B)*

The inner product in concrete representation:

aq
()
an

(B| = (b1, ..., by)

a;
(B|A) = (b1, -..,bii)( : > = (biay + -+ bpay)

an
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Vector space, kets:
A ket is an element of a complex vector space:

a,
()
an

(4] = (a3, ..., an)

Note: a; are complex numbers.

Note: the corresponding bra is

Vector space, orthonormal bases:
A basis vector is a ket:

|)

We can break down a complex vector space by use of (hormalized) orthogonal basis vectors. With
these we can write any ket |A) as a sum of basis vectors:

14) = > ali)
i
Note: in quantum mechanics the basis is regularly an orthonormal basis.

Note: the a; are complex numbers, the components of the vector.

We can calculate the components by taking the inner product with the basis bras (j|:
14y =) ai(jli

4

Note: we have an orthonormal basis, so {j|i) = J;;, the Kronecker delta. The sum collapses to one
single term:

(14) = q;

The ket |A) is the sum of its projections onto the basis vectors:

14) = > 1(114)

4

Vector space, tensor product as vector space:
A tensor product is a vector space for working with composite systems.

A product state is a state vector.

Most of the state vectors in the product space are not product states.

Vector space, triangle inequality and vector space:
We can derive from the triangle inequality

IX| +|7] = |X +7|
the form:

7] |- 7]
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This is true for vectors in any vector space, provided the length of a vector is defined as the square
root of the inner product of the vector with itself.

Note: further processing gives:
21X[1Y] = KX1Y) + (Y X))
This is the form of the Cauchy-Schwarz inequality that leads to the (Heisenberg) uncertainty
principle.
Velocity, momentum and velocity:
Prerequisite
The quantum mechanical Hamiltonian for a nonrelativistic free particle:

PZ
~2m

Note: P is the momentum operator.
The commutator of two operators (matrices):
[A,B] = AB — BA
The commutator of position operator X and momentum operator P:
[P,X] = —ih
End prerequisite.

The velocity of a quantum mechanical particle:

=L Xt = =)
V=g WK =g
Note: this is the time derivative of the average position (X).

The time derivative of an operator L is the expectation value of the commutator of the Hamiltonian
H with the operator L:

dL—i H,L
(L) = ([H,1)

We insert the quantum Hamiltonian:

L{H, XD = —— (P2, x]) =

d
v =7 2mh

d

i
> (P[P, X] + [P,X]P) =
i S S
%<—Plh - lflP) = %(—ZLFLP> =
(P)

m
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Result:

(P)

v =— resp. (P) =mv
m

The center (average) of the wave packet travels according to the classical rule p = mv.

Venn diagram:

Venn diagrams are used to show combinations and intersections of
subsets. The diagram shows the intersection of A and B, the logical and.
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Wave functions:
Let L be an observable (a Hermitian operator) with eigenvalues A and eigenvectors |1).

The eigenvectors of a Hermitian operator form a complete orthonormal basis.

With this basis we can expand the vector |):
)= ) w)I2)
p)
Note: (A1) are called the wave function of the system and depend on the specific observable L we
chose.

P(A) is the wave function in the L-basis.

For a different observable, the wave function will be different, even if we are working with the same
state.

The basis vectors are orthonormal:
(i) 4) = &5
Note: §;; is the Kronecker delta.

We can identify the wave function ¥ (1) in the L-basis with the inner products (the projection) of the
state vector |i) onto the eigenvectors |A):

Y1) = (Al)

The wave function (1) is the set of components of the state vector in a particular basis:

(1/1(/11))

Y(4n)

In a more general way, the wave function is a function of a parameter A that produces a complex
number. It is a complex-valued function of the discrete variable A.

In this scenario linear operators become operations that are applied to functions and give back new
functions.

Wave functions, action of Hamiltonian on wave functions:
The action of the momentum operator P on a wave function 1 (x):

0y (x)
0x

PlY(x)) = —ih
The action of the position operator X on a wave function ¥ (x):

XY (x)) = xp(x)

The quantum mechanical Hamiltonian:

H=-P?+ w?X?
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The quantum mechanical Hamiltonian acting on a wave function ¥ (x):

1/ a8, .o 1
H(x)) - E(—iha(—ih lgi”)) S OP)

Note: we use partial derivatives because in general 1) depends on time too. We describe the system
at a fixed time.

Wave functions, calculating density matrices and wave functions:
Suppose we know the wave function of a composite system:

Y(a, b)
The probability that the system is in the state |ab):
P(a,b) = ¢*(a,b)y(a,b)

To get the probability the subsystem being in the state a we sum over b:
P(a) = ) " (a,bp(ab)
b

This is a diagonal entry in the density matrix:

P(a) = paa
Note: in a combined system of two spins, a, b can be either u or d.
A concrete example

We have a combined system of two spins (Alice and Bob) with the state vector:
1
W) = 2 Bluw) + 4[ud))

The wave function:

3 4
lp(u:u) = g:lp(u: d) = g:lp(d:u) = 0:¢(d' d) =0
The wave function is normalized:

Y (W) + ¥ (w DY (u, d) + 9 (d, wy(d, u) + *(d, d)yp(d, d) =

9 +16+0+0—25—1
25 ' 25 25

We calculate Alice’s density matrix:

44_9+16 25
55

35T 25 51

i
5

ul]l W

puu = lp*(u' u)lp(u; u) + l/)*(ul d)l/)(u, d) =

3 4
Pua = ¥ (@d WP w) +P*(d, Dpw,d) =0 +0-2=0

Pdu = ¢*(u, u)'l’(d: u) + lp*(u' d)l/)(d' d) =0
paa = ¥ (d, W)p(d,u) +¢*(d, d)(d,d) = 0
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The density matrix p of Alice:
_(1 0
p= (0 0)

We calculate Bob’s density matrix:

Puy = VWY (u,u) + Y*(d, Wy(d,u) = %%‘F 0= 29_5
4 3 12
3 4 12
pdu = 1/)*(% U.)l/J(u, d) + lp*(d! u)lp(d: d) = g b g + 0 " 0 = g
_ . 44 16
Paa =P ", DY, d) + P (d,d)yp(d,d) = st 0= 5

The density matrix p of Bob:

9 12
|25 25
P=112 16
25 25

Wave functions, collapse of wave functions:
We have a fresh quantum system, no previous measurement done.

An experiment to measure the observable L is done.
After the measurement the system is left in an eigenstate of L.

Let the state vector before the measurement be:

z a;|2;)

J

After the measurement, with probability |aj
The superposition of states collapses into a single term.
Note: subsequent measurements will reproduce this result.

Wave functions, entanglement and wave functions:
Entanglement is the quantum mechanical generalization of correlation.

Let P(a, b) be the probability distribution for two variables a and b.

If the two variables are correlated (they depend from each other in some way):
P(a,b) # P(a)P(b)

If the two variables are uncorrelated (independent):

P(a,b) = P(a)P(b)

2
, the system is in the single eigenstate |/1j).
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A concrete example

We have a combined system of two spins (Alice and Bob) with the state vector:
1
W) = 2 Bluu) + 4]ud))
The wave function:
3 4
lp(u: u) = g:lp(u: d) = g:lp(d: u) = 0:¢(d: d) =0
We calculate Alice’s density matrix:

44 9 16 25
55 25 25 25

3
5

u1|w

=y (wwypw) + P (u, dy(u,d) =

3 4
Pua = lp*(d;u)lp(u;u) + '(/J*(d, d)ll)(‘u,, d) =0- g +0- g =0
=¥ (u,WyP(d,w) + " (w, DyP(d,d) = 0
Pdaa = ll)*(d, u)lp(d: u) + ll)*(d, d)ll}(d, d) =0
The density matrix p of Alice:
1 0
p= (0 0)

We calculate Bob’s density matrix:

3 3 9

u =P WY@ +y duwyPpldu) =c-c+0=7

4 3 12

pua =" A, w) + P (d, DPldu) == £ +0-0 ==
_3.4 12

4 4
paa = ¥*(w, Y, d) + " (d, )Pp(d,d) = oz +0 ==

The density matrix p of Bob:

9 12
_ |25 25
P=112 16
25 25
The probability for the combined system to be in the state |uu):

3
P(u, u) = l/)*(u, U)l/)(u, U.) = g
From the density matrices we extract the value P, (u) for the subsystem of Alice:

Py(u) = pyy =1

The value Pz (u) for the subsystem of Bob:

9
Pgp(u) = pyy =£
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We get:
P(uu) # P4(w)Pp(u)

3¢9
5 25

The systems of Alice and Bob are not independent, they are entangled.

Wave functions, ground state:
Prerequisite

The time-independent Schrodinger equation:

H|y) = E[p)

W) = o5

v <

Note: E is an energy eigenvalue.

The guantum mechanical Hamiltonian:

w?x?

ox\ ox 2

HIW()) - —h;( ’ (a‘l’(x))) +

End prerequisite

The ground state wave function:

Yoo = e

It has no zeros and is the only energy eigenstate without nodes.

Y(x)

Concentrated near the origin it approaches fast to zero, so the probability density (the integral from

—o00 to 00) exists.

We apply the Hamiltonian to this function.

R2(0 [0 _ox?
———| — | —e 2n -
2 \0x <c’)x )

h{o _wx?
) 2R
>\ 72 (wxe > -

We begin with the partial derivation:
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We add the component of the position operator X:

hw _ox*  w?x? _ox?  @?x?
—e 2 — e 2h + Y(x) -
2 2
hw _ox?  ©?x? _wx®*  @?x? _wx?
—e 2h — e 2h + e 2h >
hw _ox?
—e 2h
2

Result:

h
H(()) = - $@)

The Hamiltonian applied to the ground state wave function gives back the wave function, multiplied

with a factor hTw
This is the ground state energy E,.

Wave functions, locality and wave functions:

There exists the paradigmatic example of an entangled system of Alice and Bob, y)(ab). Alice may
reside on Alpha Centauri, Bob in Palo Alto. What happens to the subsystem of Alice if Bob
manipulates his part in Palo Alto?

Whatever Bob does to his system can be described by a unitary matrix Uy, (Bob’s subsystem
changing from the state b to the state b').

Upp, acts on the wave function and produces a new modified wave function:

Ynew(@b) = ) Uy (ab’)
bl

The complex conjugated of Yy, is:

Vo (@B) = D 97 @BV

brr

Note: the primes added to avoid mixing the variables up.
We calculate the density matrix of Alice for the system after Bob acted on it.

Before the density matrix of Alice was:
Oaar = Z Y*(a'b)y(ab)
b
After Bob’s action the density matrix of Alice is:

Qaar = Z lp*(a,b”)UTbe Uppp(ab’)
b,b',brr

The unitarian matrices combines to the unit matrix again:

UerHb Ubbr = Spirps
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In the sum all indices are collapsing to b:
Gaar = ) ¥"(@b)p(ab)
b
The action of Bob on his subsystem does not change the density matrix of Alice, her subsystem
remains exactly as it was.

Wave functions, momentum and wave functions:
We have the differentiation operator D:

The momentum operator P:

P = —ihD = 'hd
= —inD = —ih——

Note: the factor —i is necessary to make the operator P Hermitian.

In terms of wave functions:

dip(x)
dx

PY(x) = —ih

In vector notation we have eigenvalues p and eigenvectors |):

Ply) = ply)

In terms of wave functions we use the momentum operator:

P =—ih d
- dx
We get the eigen equation:
dip(x)
—ih =
th—r —=pP(x)
This is a differential equation:
dip(x) _ip
P ?ll)(x)

The solution to this differential equation:

1 in,
Yp(x) = \/ﬁeh

Note: the subscript p is a reminder that 1, (x) is the eigenfunction (eigenvector) of P with the
specific eigenvalue p. It is a function of x, labeled by an eigenvalue of P.

Note: 1, (x) is a momentum eigenfunction in the position basis. It is a function of x, representing a
momentum eigenstate.

Note: measurable quantities in physics are real values. The real part of 1/)p(x) is a periodic function:

Cos (%x)
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The wavelength of this function:
h
A=2n—
14

This is one aspect why wave functions are called wave functions.

Wave functions, momentum or position representation:
Prerequisite

Resolving the identity is a method to write the identity operator I:

I :Z|i><i|

Note: |i) and (i| are orthonormal basis vectors.

This method works in the case of integration too, either with the position representation

I= f|x)(x|dx

or with the momentum representation:

1= [ Inpldp
The inner product of a position eigenvector |x) and a momentum eigenvector |p) is symmetric:

1
(x|p) = Eeh

ip
(plx) = e r*

Nl
3

End prerequisite

The wave function ¥ (x) of a particle moving in the x-direction is the projection of a state vector |)
onto the eigenvectors of position:

X)) = p(x)
Y (x) is the wave function in position representation.
The probability to find a particle at position x:
P(x) =" (x)p(x)

The wave function 1) (p) of a particle moving with momentum p is the projection of a state vector
|1) onto the eigenvectors of momentum:

(PIY) = P(p)
gﬁ(p) is the wave function in momentum representation.
The probability to find a particle with momentum p:

P(p) =P )P (p)

Note: both wave functions 1(x) and 1) (p) represent the same state vector |i)).
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If (x) and Y (p) represent the same state vector [} there must be a possibility to transform them
into each other — the Fourier transformation.

We begin with the wave function of the abstract state vector |y) in position representation:
Y(x) = (X|p)
We use the definition of the wave function in momentum representation:
(p) = (PlY) = (ply)
Note: p is an eigenvalue of P.

We insert the unit operator (position representation):

J(p) = f (plx)xlp)dx

(x|y) is the wave function Y (x).

The inner product {p|x):

ip

(plx) = ——e K"
xX) = —
NG 7
We get the wave function of momentum J)(p):
P() = j P = _ [ Frycoax
This works the other way around too:
Y(x) —\/_jeh P(p)dp

Momentum and position representation are reciprocal Fourier transforms of each other.

Wave function of near singlet state:
The near singlet state is a partially entangled state. The state-vector:

J0,6lud) — /0,4|du)

or in the extended form:

|[nearsing) = Oluu) + /0,6|ud) — /0,4|du) + 0|dd)

The wave function:

Yuu =0 lpud=\/ﬁ lpdu=_m Yaa =0
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Wave function, operator method and wave function:
Prerequisite

The lowering (annihilating) operator:

i

a” = NerT (P —iwX)
The raising operator:
at = —— (P +iwX)
V2nh
Note: P is the momentum operator, X is the position operator:
P=—in
dx
X=x

The ground state of the harmonic oscillator (a state vector):
|0)

. h
Note: this is not the zero vector. The ground state has the Energy E, = %

End prerequisite

The annihilation (lowering) operator applied to the ground state “destroys” it:
a”|0)=0

Note: |0) is the ground state, O is zero.

Written in terms of momentum operator P and position operator X:

[ ) _
\/ﬁ(P - l(JJX)ll)O(X) =0

Note: Y, (x) is the ground state wave function we are searching for.
We divide by the constant factor:
(P —iwX)poy(x) =0

Po(x) — iwXpo(x) =0

d
—ihalpo(x) = lwxo(x)

2 o) = = ipo0)
dx Polx) = 7 Polx
This is a first order differential equation with the solution:

Po(x) = 2

By applying the raising operator to the ground state wave function we get the wave function of the
first excited state:

P1(x) = a*]0)
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Written in terms of momentum operator P and position operator X:

J% (P + iwX ) (x) = 1 (x)

Note: for better readability we omit the constant factor — and work with:
V2mh

(P +iwX)o(x) = Y1 (x)

We work with the left side of the equation and replace the operators:

d _ﬂxz
i(—h—+wx)e 2" =
0x

L WX @2 . _w .2
lh—h e 2h" 4+ iwxe 2h =

W2 _W,2
iwxe 20" +iwxe 2p° =

_w .2
2iwxe 2r° =

2iwxpy(x)
. . —i
We multiply with the constant T
—i by 2w 2w?
iwx = xX= |—x
V2nh 2mh mh

Result:

2w?
Pi(x) = ﬁxd)o(x)

Applying the raising operator to the ground state we get the next excited state.

Note: an important difference between 1, (x) and 14 (x) is the presence of the factor x. The wave
function of the first excited state has a zero, a node, at x = 0.

This continues going up the energy ladder, any successive excited state has on more node.

Po(x) h1(x)

/
/

S i

P2 (x) 3 (x)
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Wave function of product state:

The product state is a not entangled state, its two constituting states are independent, classical
behavior.

The state-vector:
ayPuluu) + ayfalud) + agfyldu) + agfqldd)
Note: the parameter a standing for Alice’s subsystem, the parameter 8 for Bob’s subsystem.

We have two normalization conditions:

Il
[N

o, +aga,
BuBu + BaPa =1
The wave function is factorized:

Yuu = @By Yua = @uPa Yau = @aPu Yaa = @aba

Wave function representing particles:
Let X be the position operator. The outcomes of measuring X must give the position of a particle.

X is an operator, we search for its eigenvalues and eigenvectors.
The eigen-equation for X:
XY = xol)

Note: x, is eigenvalue to the eigenvector |).
In terms of wave function this becomes:

xP(x) = x09h(x)
We rewrite this:

(x —x)p(x) =0

What we need is a function that is zero for every x # x; and nonzero at a single point, the Dirac
delta function § (x — xg).

2
Note: the Dirac delta function can be thought of as lim ne~(n(x=x0))", of
n—-oo
5
The wave function ¥ (x) = §(x — x,) represent the state in which the 4
particle is located exactly at the point x; on the x-axis. 3

This fits into the intuitive picture that the wave function representing a
particle at position xy must be zero everywhere except at x.
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Wave function of singlet state:
In case of a two-spin system the maximum entangled state, the singlet state can be written as:

1

|sing) = ﬁ(lud> = |du))

or in the extended form:

) = 1oL
|sing) = O|uu) + 7z lud) 7z |du) + 0|dd)

The singlet state is a completely entangled state.

The wave function:

1

Yau = ——7= Paa =0

1
wuu—owud—_ \/z

V2
Wave function, state vector and wave function:
a) A wave function is the collection of coefficients (components) that multiply the basis vectors

in an eigenfunction expansion:
)= alwy)

j
Note: |1,bj) are orthonormal eigenvectors of a Hermitian operator.

Note: for every index j (for every eigenvector) exists a coefficient a;.
Note: the collection of coefficients «; is the wave function.
Note: the relationship between the components often is cryptic (normalization constraints
etc.)

b) In situations where the state vector is expressed as an integral, the wave function is a
continuous function and needs to be properly defined.

Wavelength, momentum and wavelength:
Light of a given wavelength A is composed of photons with momentum:

2rh
A=—
p
Photons with momentum p have wavelength:
_ 2mh
P=7

The product of wavelength and momentum:

Ap = 2mh = const.
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Wave packets:

. ¥
Wave packets, bimodal wave packets:

Quantum equation of motion looks classical if the wave s
packets are unimodal (nice, centered single bump) or 4
coherent and well localized. 3

If wave packets are bimodal (two-humped), it is not always
true that the time rate of change of the momentum is the

¥

force evaluated at the expectation value of x:

(F(x)) # F({x))

This kind of wave packet tends to shatter more easily even if the potentials in question are smooth.

Wave packets, Gaussian or minimum uncertainty wave packets:

. - . . h
Gaussian wave packets are minimum uncertainty wave packets with AxAp = >
These wave packets have the form of a Gaussian curve. Over time, they spread out and flatten.

Note: the gaussian packet describes the probability distribution of the particle. The packet to spread
out does not mean the particle itself in some sense is spreading out. The probability of finding the
particle is spreading out.

Wave packets, moving at fixed speed:
We start with a simple Hamiltonian, a fixed constant times the momentum operator P:

H = cP

We insert this Hamiltonian into the time-dependent Schrodinger equation:

., 0lP) ., 0
lhT = —Clhall/ﬁ
In terms of wave-functions:
op(x,t oP(x,t
TGO NNICR>
ot 0x

Note: 1 (x, t) is a function of both x and t.

We cancel the term ih:

0P(x,t) e oP(x,t)
at ox
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Any function of (x — ct) is a solution.

We look at the time evolution of ¥ (x — ct). How does a wave
function Y (x — ct) evolve with time?

We start at time t = 0.
Our wave-function is a wave-packet localized on the x —axis.

As t increases the wave-packet is shifting to the right with uniform
velocity c.

This description is pretty close to the correct description of a
neutrino that moves immeasurably slower than the speed of light.

Wave packets for a nonrelativistic free particle:
The time dependent Schrodinger equation for a nonrelativistic free
particle:

haw@)_ h? 0%(t)
at  2m ox2?

In contrast to the wave particle of the simple Hamiltonian above,
H = cP, waves of different wavelength move with different
velocities, the wave function does not maintain its shape.

Wheeler, John:

John Archibald Wheeler (1911 — 2008) was an American theoretical
physicist. He was largely responsible for reviving interest in general
relativity in the United States after World War Il. Wheeler also

¥(x)

initial wave packet

ix)

-~ moving to the right ...

wix)

initial wave packet

wix)

moving to the right ...

MWWWWMWWMMM’W

worked with Niels Bohr in explaining the basic principles behind nuclear fission. Together with
Gregory Breit, Wheeler developed the concept of the Breit—-Wheeler process. (courtesy Wikipedia)
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Xx-axis, spins along the x-axis:
We have a single spin system. We can represent the states right, |r) and left, |l) as a linear
combination of the orthonormal basis vectors up, |u) and down, |d):

Ir) = \/—Iu)+T|d)
D = =0 - —=1d)
V2 V2
The corresponding bras:
1 1
(rl = \/i(ul +ﬁ(dl
(Ul = = (ul =]
V2 V2

Basis vectors must be orthogonal. We check:

() = (5l + =l (G - 1)) =

1
o (ufu) = Culd) +(dfu) — (d]d)) =

1
S1-0+0-1)=0
Note: |u), |d) are orthonormal basis vectors.

The same holds for (I|r).

X-operator:

The position operator or X-operator (the matrix) has eigenvalues and eigenvectors, the observables.
The eigen-equation for the operator X:

X[Y) = xol¥)
Note: |)) is eigenvector to the operator X with eigenvalue x.

Note: x is a real number, an observable or measurable.

y-axis, spins along the y-axis:
We have a single spin system. We can represent the states in, |i) and out, |o) along the y-axis as a
linear combination of the orthonormal basis vectors up, |u) and down, |d):

i) = Iu)+—|d)

7 V2

o) = \/—Iu) \/—

Note: i is the imaginary unit, |i) the state vector along the y-axis.
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The corresponding bras:

. 1 i

(ll—ﬁ(ul \/E(dl
i

(o] = ﬁ(u|+\/§(dl

Basis vectors must be orthogonal. We check:

(o) = (Ftul == (a1 (G5 o = 1) =

1
5 (ufu) — i(uld) — i{dfu) - (d]d)) =

1
S1-0+0-1)=0

Note: |u), |d) are orthonormal basis vectors.

The same holds for {(o|i).

Zero function:
This is number 4 of the mathematical axioms defining a vector space:

The sum of any two functions is a function.

The addition of functions is commutative.

The addition of functions is associative.

There exists a zero function for addition.

There exists an inverse function for addition.

Multiplying a function by a complex number gives a new function and is linear.

ok wWwN R

There must be a function g(x) such as:

fG)+g9() =fx)

g(x) is the zero function.

Zero operator:
A zero operator (a matrix) Z acting on any vector IV of a space of states:

Z|v) = 0)

Example:
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