
Simons Problem

D. Kriesell Page 1 of 10

Simons Problem

Simon's problem was the first example of a problem that could be solved faster by quantum

computers than by classical computers, since classical computers take exponentially longer

to solve. This problem was one of the first to demonstrate the potential advantage of

quantum computers over classical computers.

Description

Simon's problem is to analyze an unknown binary function 𝑓: {0,1}𝑛 → {0,1}𝑛. The function

has the special property that there is an unknown bit pattern 𝑠 ∈ {0,1}𝑛 such that for all 𝑥 and

𝑦 in the definition range of the function:

𝑓(𝑥) = 𝑓(𝑦) ⇔ 𝑥⨁𝑦 = 𝑠

⨁ represents the addition modulo 2 or the 𝑋𝑂𝑅.

The function 𝑓 delivers the same output value for exactly two different input values. These

input values differ by exactly the bit pattern 𝑠.

Task

Find the secret bit pattern 𝑠.

Classical solution

In order to find the bit pattern s, classical algorithms in the deterministic case require an

exponential number of queries of the function f. Note that there exist stochastic approaches

that speed up this calculation.

If we consider the function 𝑓: {0,1}𝑛 → {0,1}𝑛, we need 2𝑛−1 + 1 queries that guarantees us to

be able to distinguish between the two cases.

Quantum solution

A quantum computer can solve Simon's problem more efficiently by using the principles of

quantum parallelism and quantum interference. The quantum algorithm for Simon's problem

works like this:

• Superposition: The quantum computer initializes a register of n qubits in a

superposition state. To do this, it uses Hadamard gates.

• Entanglement: The quantum computer brings the register of n qubits into an

entangled state.

• Queries: A quantum Fourier transformation is applied to the state. This Fourier

transformation incorporates the secret bit pattern s into the entangled qubits.

• Resolution of the superposition: The superposition is resolved by applying the

Hadamard gates. The results of the entanglement are transferred to the individual

qubits.

• Measurement: At this point, the qubits "know" the secret bit pattern s, but this

detailed information is lost during the measurement process. Measurement gives one

bit of the solution. The partial results resulting from multiple measurements must

therefore be combined using classical post-processing.

The quantum algorithm itself only requires a single query of the function 𝑓 to find the bit

pattern 𝑠.

Simons Problem

D. Kriesell Page 2 of 10

In the subsequent classical post-processing, a further 𝑛 − 1 calculations are required to

extract the information from the n qubits, a total of 𝑂(𝑛) calculations. This represents an

exponential improvement over the classical deterministic method.

Significance

Simon's problem was one of the first examples to show that quantum computers can solve

certain problems exponentially faster than classical computers. It paved the way for further

developments in quantum computing, including Shor's algorithm and Grover's algorithm.

These demonstrate, using other examples, that quantum computers are significantly more

efficient at certain tasks.

Example 1

Given is a circuit with the secret string 𝑐 = 10. We use Visual Studio Code to find possible

candidates for the secret string.

The results of the simulation are the options 00 and 10. Since 00 is not a valid candidate for

𝑐, one can see from the graph that the secret string 𝑐 = 10.

superposition

entanglement oracle

resolving

superposition

measurement

Simons Problem

D. Kriesell Page 3 of 10

Example 2

A 2: 1 function is given with secret string 𝑐 = 0101.

The function explicit:

𝑓(𝑥): {0 1}4 → {0 1}4

𝑥 → 𝑓(𝑥) 𝑥 → 𝑓(𝑥)

{0000} {1101} {1000} {1000}
{0001} {0110} {1001} {1011}
{0010} {0101} {1010} {1001}
{0011} {1111} {1011} {0001}
{0100} {0110} {1100} {1011}
{0101} {1101} {1101} {1000}
{0110} {1111} {1110} {0001}
{0111} {0101} {1111} {1001}

The function is 2: 1, the constant 𝑐 = 0101. 𝑐 is often referred as “secret string”.

Circuit:

The circuit is constructed using the secret string 𝑐 = 0101.

Like above holds: After the second row of Hadamards the qubits “know” the solution, but

each measurement delivers only one bit of it. What we can use is:

The solution is orthogonal to the bit strings 𝑏𝑥 delivered by each measurement.

We remember that |𝑏⟩|𝑓(𝑥)⟩ comes from two different sources: 𝑥0 and 𝑥0⨁𝑐 because the

function is 2: 1.

Simons Problem

D. Kriesell Page 4 of 10

We calculate the coefficient of |𝑏⟩|𝑓(𝑥)⟩:

|
1

2𝑛 ((−1)𝑥0∙𝑏 + (−1)(𝑥0⨁𝑐)∙𝑏)|
2

= |
1

2𝑛 ((−1)𝑥0∙𝑏 + (−1)𝑥0∙𝑏⨁𝑐∙𝑏)|
2

=

|
1

2𝑛 ((−1)𝑥0∙𝑏 + (−1)𝑥0∙𝑏(−1)𝑐∙𝑏)|
2

= |
1

2𝑛
((−1)𝑥0∙𝑏(1 + (−1)𝑐∙𝑏))|

2

=;

We note that |((−1)𝑥0∙𝑏)|
2
 always gives 1 and proceed:

|
1

2𝑛 (1 + (−1)𝑐∙𝑏)|
2

If the inner product 𝑐 ∙ 𝑏 = 0 we get the probability (
2

2𝑛)
2

= 41−𝑛, in our case
1

64
.

If the inner product 𝑐 ∙ 𝑏 = 1 we get 0.

Via Visual Studio we simulate the circuit to find possible bit strings 𝑏𝑥.

We get the candidates: 0000, 0001, 0100, 0101, 1010, 1011, 1110 and 1111.

0000 is no valid option for the secret string because this would state that the function is 1: 1.

Procedure

• We build the scalar products between the bit strings 𝑏𝑥 and all possible four-vectors

except the vector 0000.

• We look for perpendiculars between the bit strings and the four-vectors. We calculate

them via the scalar product 𝑚𝑜𝑑2 giving the result zero.

• We only use bit strings 𝑏𝑥 that are linearly independent. Each such bit string reduces

the number of possible vectors for the secret string 𝑐 by half.

Simons Problem

D. Kriesell Page 5 of 10

We check this explicit with the example above.

Candidate 1: 0001

(0001) (

0
0
0
1

) = 1 (0001) (

0
0
1
0

) = 0 (0001) (

0
0
1
1

) = 1 (0001) (

0
1
0
0

) = 0

(0001) (

0
1
0
1

) = 1 (0001) (

0
1
1
0

) = 0 (0001) (

0
1
1
1

) = 1 (0001) (

1
0
0
0

) = 0

(0001) (

1
0
0
1

) = 1 (0001) (

1
0
1
0

) = 0 (0001) (

1
0
1
1

) = 1 (0001) (

1
1
0
0

) = 0

(0001) (

1
1
0
1

) = 1 (0001) (

1
1
1
0

) = 0 (0001) (

1
1
1
1

) = 1

Candidate 2: 0100

(0100) (

0
0
1
0

) = 0 (0100) (

0
1
0
0

) = 1

(0100) (

0
1
1
0

) = 1 (0100) (

1
0
0
0

) = 0

(0100) (

1
0
1
0

) = 0 (0100) (

1
1
0
0

) = 1

(0100) (

1
1
1
0

) = 1

Candidate 3: 0101

(0101) (

0
0
1
0

) = 0 (0101) (

1
0
0
0

) = 0

(0101) (

1
0
1
0

) = 0

We see that candidate 3 doesn’t reduce the number of possibilities, because candidate 3 is

not linearly independent of candidates 1 and 2. In fact, it is the sum of both.

Simons Problem

D. Kriesell Page 6 of 10

We try candidate 4: 1010

(1010) (

0
0
1
0

) = 1 (1010) (

1
0
0
0

) = 1

(1010) (

1
0
1
0

) = 0

Candidate 4 gives the solution. We note that visual studio gives the bits in reversed order, so

1010 → 0101 and this is our secret string.

For your convenience the code used:

SECRET_WORD = "0101"

REGISTER_SIZE = len(SECRET_WORD)

firstBitPosition = 99

================================

INIT

================================

q1 = QuantumRegister(REGISTER_SIZE,'q1')

q2 = QuantumRegister(REGISTER_SIZE,'q2')

c = ClassicalRegister (REGISTER_SIZE)

circuit = QuantumCircuit (q1,q2, c)

circuit.h(q1)

circuit.barrier()

================================

ORACLE GATE

================================

circuit.cx(q1,q2)

circuit.barrier()

The circuit with the secret word c=0101

for i in range(len(SECRET_WORD)):

 if (SECRET_WORD[i] == "1") and (firstBitPosition == 99):

 firstBitPosition = i

 circuit.cx(q1[firstBitPosition], q2[i])

 elif (SECRET_WORD[i] == "1") and (firstBitPosition != 99):

 circuit.cx(q1[firstBitPosition], q2[i])

circuit.barrier()

================================

END OF CIRCUIT

================================

circuit.h(q1)

circuit.barrier()

circuit.measure(q1,c)

Calculating the circuit and printout of bx

qasm_sim = Aer.get_backend("qasm_simulator")

job = assemble(circuit,qasm_sim,shots=10)

result = qasm_sim.run(job).result()

counts = result.get_counts()

print(result)

for i in counts:

 print(i)

Simons Problem

D. Kriesell Page 7 of 10

Histogram of measurement results

all_states = [''.join(REGISTER_SIZE) for REGISTER_SIZE in product('01',

repeat=REGISTER_SIZE)]

for state in all_states:

 if state not in counts:

 counts[state] = 0

total_counts = sum(counts.values())

probabilites = {state: count / total_counts for state, count in

counts.items()}

plot_histogram(probabilites)

prepare arrays for inner product with numpy

state_b = [list(element) for element in counts.keys()]

for i in range(len(state_b)):

 for j in range(len(state_b[i])):

 state_b[i][j] = int(state_b[i][j])

state = [list(element) for element in all_states]

for i in range(len(state)):

 for j in range(len(state[i])):

 state[i][j] = int(state[i][j])

def scalar(x,y_list):

 res_list = []

 print('scalar '+str(x)+' mit liste')

 for y in y_list:

 if (dot(x,y)%2 == 0):

 res_list.append(y)

 return res_list

Remove vector [0,0,..,0] from state array

because not possible for the secret string c

for el in state:

 if 1 not in el:

 state.remove(el)

for el in state_b:

 if 1 not in el:

 state_b.remove(el)

for i in state_b:

 if (len(state) <= 1):

 break

 newstate = scalar(i,state)

 print(newstate)

 print('\n')

 state = newstate

Simons Problem

D. Kriesell Page 8 of 10

Example 3

c = 1111

Simons Problem

D. Kriesell Page 9 of 10

Example 4

c = 10101010

Simons Problem

D. Kriesell Page 10 of 10

Comparison quantum-classic

Classical computing

1. Assumptions and preparatory work:
o Suppose we have a function 𝑓(𝑥): {0 1}n → {0 1}n with property

𝑓(𝑥) = 𝑓(𝑦) ⟺ 𝑥⨁𝑦 = 𝑠.

o Goal: Find the secret bit pattern s.

2. Proceeding:
o The classical algorithm hast to find pairs of input values 𝑥 and 𝑦 that produce

the same output: 𝑓(𝑥) = 𝑓(𝑦).

o This requires testing 2𝑛−1 + 1 pairs in the worst case.

3. Complexity:
o This leads to an exponential time complexity, since the number of necessary

comparisons grows exponentially with the number of bits n.

Comparison

Quantum run gives how many 𝑏𝑥 are needed to form the scalar products.

Regular passes give the maximum number of bit strings needed to be checked for

coherence.

n bits Quantum run Regular passes

 𝑛 − 1 2𝑛−1 + 1

2 1 3

4 3 9

8 7 129

16 15 32.769

32 31 2.147.483.649

64 64 9.223.372.036.854.775.809

128 127 1.7 ∙ 1038

256 255 5.8 ∙ 1076

512 511 6.7 ∙ 10153

The number of atoms in the universe is estimated to be between 1084 and 1089.

I would like to thank my students Tobias Baumann, Niklas Birkler and Robin Faigle

that made this paper possible.

