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Simons Problem 

Simon's problem was the first example of a problem that could be solved faster by quantum 

computers than by classical computers, since classical computers take exponentially longer 

to solve. This problem was one of the first to demonstrate the potential advantage of 

quantum computers over classical computers. 

Description 

Simon's problem is to analyze an unknown binary function 𝑓: {0,1}𝑛 → {0,1}𝑛. The function 

has the special property that there is an unknown bit pattern 𝑠 ∈ {0,1}𝑛 such that for all 𝑥 and 

𝑦 in the definition range of the function: 

𝑓(𝑥) = 𝑓(𝑦) ⇔ 𝑥⨁𝑦 = 𝑠  

⨁ represents the addition modulo 2 or the 𝑋𝑂𝑅. 

The function 𝑓 delivers the same output value for exactly two different input values. These 

input values differ by exactly the bit pattern 𝑠. 

Task 

Find the secret bit pattern 𝑠. 

Classical solution  

In order to find the bit pattern s, classical algorithms in the deterministic case require an 

exponential number of queries of the function f. Note that there exist stochastic approaches 

that speed up this calculation. 

If we consider the function 𝑓: {0,1}𝑛 → {0,1}𝑛, we need 2𝑛−1 + 1 queries that guarantees us to 

be able to distinguish between the two cases. 

Quantum solution  

A quantum computer can solve Simon's problem more efficiently by using the principles of 

quantum parallelism and quantum interference. The quantum algorithm for Simon's problem 

works like this: 

• Superposition: The quantum computer initializes a register of n qubits in a 

superposition state. To do this, it uses Hadamard gates.  

• Entanglement: The quantum computer brings the register of n qubits into an 

entangled state.  

• Queries: A quantum Fourier transformation is applied to the state. This Fourier 

transformation incorporates the secret bit pattern s into the entangled qubits.  

• Resolution of the superposition: The superposition is resolved by applying the 

Hadamard gates. The results of the entanglement are transferred to the individual 

qubits.  

• Measurement: At this point, the qubits "know" the secret bit pattern s, but this 

detailed information is lost during the measurement process. Measurement gives one 

bit of the solution. The partial results resulting from multiple measurements must 

therefore be combined using classical post-processing. 

 

The quantum algorithm itself only requires a single query of the function 𝑓 to find the bit 

pattern 𝑠. 
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In the subsequent classical post-processing, a further 𝑛 − 1 calculations are required to 

extract the information from the n qubits, a total of 𝑂(𝑛) calculations. This represents an 

exponential improvement over the classical deterministic method. 

Significance 

Simon's problem was one of the first examples to show that quantum computers can solve 

certain problems exponentially faster than classical computers. It paved the way for further 

developments in quantum computing, including Shor's algorithm and Grover's algorithm. 

These demonstrate, using other examples, that quantum computers are significantly more 

efficient at certain tasks. 

 

Example 1  

Given is a circuit with the secret string 𝑐 = 10. We use Visual Studio Code to find possible 

candidates for the secret string. 

 

 

 

 

The results of the simulation are the options 00 and 10. Since 00 is not a valid candidate for 

𝑐, one can see from the graph that the secret string 𝑐 = 10. 
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Example 2 

A 2: 1 function is given with secret string 𝑐 =  0101. 

The function explicit: 

𝑓(𝑥): {0 1}4 → {0 1}4 

𝑥            →               𝑓(𝑥) 𝑥           →                𝑓(𝑥) 

{0000} {1101} {1000} {1000} 
{0001} {0110} {1001} {1011} 
{0010} {0101} {1010} {1001} 
{0011} {1111} {1011} {0001} 
{0100} {0110} {1100} {1011} 
{0101} {1101} {1101} {1000} 
{0110} {1111} {1110} {0001} 
{0111} {0101} {1111} {1001} 

 

The function is 2: 1, the constant 𝑐 = 0101. 𝑐 is often referred as “secret string”. 

Circuit: 

The circuit is constructed using the secret string 𝑐 = 0101. 

 

Like above holds: After the second row of Hadamards the qubits “know” the solution, but 

each measurement delivers only one bit of it. What we can use is:  

The solution is orthogonal to the bit strings 𝑏𝑥 delivered by each measurement.  

We remember that |𝑏⟩|𝑓(𝑥)⟩ comes from two different sources: 𝑥0 and 𝑥0⨁𝑐 because the 

function is 2: 1. 
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We calculate the coefficient of |𝑏⟩|𝑓(𝑥)⟩: 

|
1

2𝑛 ((−1)𝑥0∙𝑏 + (−1)(𝑥0⨁𝑐)∙𝑏)|
2

= |
1

2𝑛 ((−1)𝑥0∙𝑏 + (−1)𝑥0∙𝑏⨁𝑐∙𝑏)|
2

= 

|
1

2𝑛 ((−1)𝑥0∙𝑏 + (−1)𝑥0∙𝑏(−1)𝑐∙𝑏)|
2

= |
1

2𝑛
((−1)𝑥0∙𝑏(1 + (−1)𝑐∙𝑏))|

2

=; 

We note that |((−1)𝑥0∙𝑏)|
2
 always gives 1 and proceed: 

|
1

2𝑛 (1 + (−1)𝑐∙𝑏)|
2

 

If the inner product 𝑐 ∙ 𝑏 = 0 we get the probability (
2

2𝑛)
2

= 41−𝑛, in our case 
1

64
. 

If the inner product 𝑐 ∙ 𝑏 = 1 we get 0. 

Via Visual Studio we simulate the circuit to find possible bit strings 𝑏𝑥. 

 

We get the candidates: 0000, 0001, 0100, 0101, 1010, 1011, 1110 and 1111. 

0000 is no valid option for the secret string because this would state that the function is 1: 1. 

Procedure 

• We build the scalar products between the bit strings 𝑏𝑥 and all possible four-vectors 

except the vector 0000. 

• We look for perpendiculars between the bit strings and the four-vectors. We calculate 

them via the scalar product 𝑚𝑜𝑑2 giving the result zero. 

• We only use bit strings 𝑏𝑥 that are linearly independent. Each such bit string reduces 

the number of possible vectors for the secret string 𝑐 by half.  
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We check this explicit with the example above. 

Candidate 1: 0001 

(0001) (

0
0
0
1

) = 1 (0001) (

0
0
1
0

) = 0 (0001) (

0
0
1
1

) = 1 (0001) (

0
1
0
0

) = 0 

(0001) (

0
1
0
1

) = 1 (0001) (

0
1
1
0

) = 0 (0001) (

0
1
1
1

) = 1 (0001) (

1
0
0
0

) = 0 

(0001) (

1
0
0
1

) = 1 (0001) (

1
0
1
0

) = 0 (0001) (

1
0
1
1

) = 1 (0001) (

1
1
0
0

) = 0 

(0001) (

1
1
0
1

) = 1 (0001) (

1
1
1
0

) = 0 (0001) (

1
1
1
1

) = 1 

 

Candidate 2: 0100 

(0100) (

0
0
1
0

) = 0 (0100) (

0
1
0
0

) = 1 

(0100) (

0
1
1
0

) = 1 (0100) (

1
0
0
0

) = 0 

(0100) (

1
0
1
0

) = 0 (0100) (

1
1
0
0

) = 1 

(0100) (

1
1
1
0

) = 1 

 

 

Candidate 3: 0101 

(0101) (

0
0
1
0

) = 0 (0101) (

1
0
0
0

) = 0 

(0101) (

1
0
1
0

) = 0 

 

 

We see that candidate 3 doesn’t reduce the number of possibilities, because candidate 3 is 

not linearly independent of candidates 1 and 2. In fact, it is the sum of both.  
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We try candidate 4: 1010 

(1010) (

0
0
1
0

) = 1 (1010) (

1
0
0
0

) = 1 

(1010) (

1
0
1
0

) = 0 

 

 

Candidate 4 gives the solution. We note that visual studio gives the bits in reversed order, so 

1010 → 0101 and this is our secret string. 

For your convenience the code used: 

SECRET_WORD = "0101" 

REGISTER_SIZE = len(SECRET_WORD) 

firstBitPosition = 99 

 

# ================================ 

# INIT 

# ================================ 

q1 = QuantumRegister(REGISTER_SIZE,'q1') 

q2 = QuantumRegister(REGISTER_SIZE,'q2') 

c = ClassicalRegister (REGISTER_SIZE) 

circuit = QuantumCircuit (q1,q2, c) 

 

circuit.h(q1) 

circuit.barrier()  

 

# ================================ 

# ORACLE GATE 

# ================================    

circuit.cx(q1,q2)   

circuit.barrier() 

 

The circuit with the secret word c=0101 

for i in range(len(SECRET_WORD)): 

    if (SECRET_WORD[i] == "1") and (firstBitPosition == 99): 

        firstBitPosition = i 

        circuit.cx(q1[firstBitPosition], q2[i]) 

 

    elif (SECRET_WORD[i] == "1") and (firstBitPosition != 99): 

        circuit.cx(q1[firstBitPosition], q2[i]) 

circuit.barrier()  

# ================================ 

# END OF CIRCUIT 

# ================================   

circuit.h(q1) 

circuit.barrier()  

circuit.measure(q1,c) 

 

# Calculating the circuit and printout of bx 

qasm_sim = Aer.get_backend("qasm_simulator") 

job = assemble(circuit,qasm_sim,shots=10) 

result = qasm_sim.run(job).result() 

counts = result.get_counts() 

print(result) 

for i in counts: 

    print(i) 
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# Histogram of measurement results 

all_states = [''.join(REGISTER_SIZE) for REGISTER_SIZE in product('01', 

repeat=REGISTER_SIZE)] 

for state in all_states: 

    if state not in counts: 

        counts[state] = 0 

total_counts = sum(counts.values()) 

probabilites = {state: count / total_counts for state, count in 

counts.items()} 

plot_histogram(probabilites) 

 

# prepare arrays for inner product with numpy 

state_b = [list(element) for element in counts.keys()] 

for i in range(len(state_b)): 

    for j in range(len(state_b[i])): 

        state_b[i][j] = int(state_b[i][j]) 

state = [list(element) for element in all_states] 

for i in range(len(state)): 

    for j in range(len(state[i])): 

        state[i][j] = int(state[i][j]) 

 

def scalar(x,y_list): 

    res_list = [] 

    print('scalar '+str(x)+' mit liste') 

    for y in y_list: 

        if (dot(x,y)%2 == 0):  

            res_list.append(y) 

    return res_list 

 

# Remove vector [0,0,..,0] from state array  

# because not possible for the secret string c 

for el in state: 

    if 1 not in el: 

        state.remove(el) 

 

for el in state_b: 

    if 1 not in el: 

        state_b.remove(el) 

 

for i in state_b: 

    if (len(state) <= 1): 

        break 

 

    newstate = scalar(i,state) 

    print(newstate) 

    print('\n') 

    state = newstate 
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Example 3 

c = 1111 
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Example 4 

c = 10101010 
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Comparison quantum-classic 

Classical computing 

1. Assumptions and preparatory work: 
o Suppose we have a function 𝑓(𝑥): {0 1}n → {0 1}n with property  

𝑓(𝑥) = 𝑓(𝑦) ⟺ 𝑥⨁𝑦 = 𝑠. 

o Goal: Find the secret bit pattern s. 

2. Proceeding: 
o The classical algorithm hast to find pairs of input values 𝑥 and 𝑦 that produce 

the same output: 𝑓(𝑥) = 𝑓(𝑦). 

o This requires testing 2𝑛−1 + 1 pairs in the worst case. 

3. Complexity: 
o This leads to an exponential time complexity, since the number of necessary 

comparisons grows exponentially with the number of bits n.  

Comparison 

Quantum run gives how many 𝑏𝑥 are needed to form the scalar products. 

Regular passes give the maximum number of bit strings needed to be checked for 

coherence. 

n bits Quantum run Regular passes 

 𝑛 − 1 2𝑛−1 + 1 

2 1 3 

4 3 9 

8 7 129 

16 15 32.769 

32 31 2.147.483.649 

64 64 9.223.372.036.854.775.809 

128 127 1.7 ∙ 1038 

256 255 5.8 ∙ 1076 

512 511 6.7 ∙ 10153 

 

The number of atoms in the universe is estimated to be between 1084 and 1089. 

I would like to thank my students Tobias Baumann, Niklas Birkler and Robin Faigle 

that made this paper possible.  


