The four Bell states are:

$$
\begin{aligned}
& \left|\theta^{+}\right\rangle=\frac{1}{\sqrt{2}} \cdot(|00\rangle+|11\rangle) \\
& \left|\theta^{-}\right\rangle=\frac{1}{\sqrt{2}} \cdot(|00\rangle-|11\rangle) \\
& \left|\psi^{+}\right\rangle=\frac{1}{\sqrt{2}} \cdot(|01\rangle+|10\rangle) \\
& \left|\psi^{-}\right\rangle=\frac{1}{\sqrt{2}} \cdot(|01\rangle-|10\rangle)
\end{aligned}
$$

The Hadamard

- acts on the one qubit only
- changes $|0\rangle$ to $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ resp. to $|+\rangle$
- changes $|1\rangle$ to $\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$ resp. to $|-\rangle$.

We use the following circuit:

Note: $|a\rangle$ and $|b\rangle$ represent the input bits of the Bell states. The desired result is:

$$
\left|\theta^{+}\right\rangle \rightarrow|00\rangle, \quad\left|\theta^{-}\right\rangle \rightarrow|01\rangle, \quad\left|\psi^{+}\right\rangle \rightarrow|10\rangle, \quad\left|\psi^{-}\right\rangle \rightarrow|11\rangle
$$

Conceptual level

Bell state one:

$$
\left|\theta^{+}\right\rangle=\frac{1}{\sqrt{2}} \cdot(|00\rangle+|11\rangle)
$$

Step 1: We apply the Hadamard:

$$
\begin{gathered}
H\left|\theta^{+}\right\rangle=\frac{1}{2 \sqrt{2}} \cdot((|0\rangle+|1\rangle)(|0\rangle+|1\rangle)+(|0\rangle-|1\rangle)(|0\rangle-|1\rangle))= \\
\frac{1}{2 \sqrt{2}} \cdot(|00\rangle+|01\rangle+|10\rangle+|11\rangle+|00\rangle-|01\rangle-|10\rangle+|11\rangle)= \\
\frac{1}{\sqrt{2}} \cdot(|00\rangle+|11\rangle)
\end{gathered}
$$

Step 2: We apply the topdown-CNOT. The CNOT reverses qubit one if qubit two equals one.

$$
\operatorname{CNOT} \frac{1}{\sqrt{2}} \cdot(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}} \cdot(|00\rangle+|01\rangle)
$$

Step 3: We apply the Hadamard to qubit two.

$$
H \frac{1}{\sqrt{2}} \cdot(|00\rangle+|01\rangle)=\frac{1}{2} \cdot(|0\rangle(|0\rangle+|1\rangle)+|0\rangle(|0\rangle-|1\rangle))=|00\rangle
$$

Bell state 2:

Step 1: We apply the Hadamard:

$$
\begin{gathered}
H\left|\theta^{-}\right\rangle=\frac{1}{2 \sqrt{2}} \cdot((|0\rangle+|1\rangle)(|0\rangle+|1\rangle)-(|0\rangle-|1\rangle)(|0\rangle-|1\rangle))= \\
\frac{1}{2 \sqrt{2}} \cdot(|00\rangle+|01\rangle+|10\rangle+|11\rangle-|00\rangle+|01\rangle+|10\rangle-|11\rangle)= \\
\frac{1}{\sqrt{2}} \cdot(|01\rangle+|10\rangle)
\end{gathered}
$$

Step 2: We apply the topdown-CNOT. The CNOT reverses qubit one if qubit two equals one.

$$
\operatorname{CNOT} \frac{1}{\sqrt{2}} \cdot(|01\rangle+|10\rangle)=\frac{1}{\sqrt{2}} \cdot(|11\rangle+|10\rangle)
$$

Step 3: We apply the Hadamard to qubit two.

$$
H \frac{1}{\sqrt{2}} \cdot(|11\rangle+|10\rangle)=\frac{1}{2} \cdot(|1\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle+|1\rangle))=|10\rangle
$$

Bell state 3:

$$
\left|\psi^{+}\right\rangle=\frac{1}{\sqrt{2}} \cdot(|01\rangle+|10\rangle)
$$

Step 1: We apply the Hadamard:

$$
\begin{gathered}
H\left|\psi^{+}\right\rangle=\frac{1}{2 \sqrt{2}} \cdot((|0\rangle+|1\rangle)(|0\rangle-|1\rangle)+(|0\rangle-|1\rangle)(|0\rangle+|1\rangle))= \\
\frac{1}{2 \sqrt{2}} \cdot(|00\rangle-|01\rangle+|10\rangle-|11\rangle+|00\rangle+|01\rangle-|10\rangle-|11\rangle)= \\
\frac{1}{\sqrt{2}} \cdot(|00\rangle-|11\rangle)
\end{gathered}
$$

Step 2: We apply the topdown-CNOT. The CNOT reverses qubit one if qubit two equals one.

$$
\operatorname{CNOT} \frac{1}{\sqrt{2}} \cdot(|00\rangle-|11\rangle)=\frac{1}{\sqrt{2}} \cdot(|00\rangle-|01\rangle)
$$

Step 3: We apply the Hadamard to qubit two.

$$
\mathrm{H} \frac{1}{\sqrt{2}} \cdot(|00\rangle-|01\rangle)=\frac{1}{2} \cdot(|0\rangle(|0\rangle+|1\rangle)-|0\rangle(|0\rangle-|1\rangle))=|01\rangle
$$

Bell state 4:

$$
\left|\psi^{-}\right\rangle=\frac{1}{\sqrt{2}} \cdot(|01\rangle-|10\rangle)
$$

Step 1: We apply the Hadamard:

$$
\begin{aligned}
& H\left|\psi^{-}\right\rangle=\frac{1}{2 \sqrt{2}} \cdot((|0\rangle+|1\rangle)(|0\rangle-|1\rangle)-(|0\rangle-|1\rangle)(|0\rangle+|1\rangle))= \\
& \frac{1}{2 \sqrt{2}} \cdot(|00\rangle-|01\rangle+|10\rangle-|11\rangle-|00\rangle-|01\rangle+|10\rangle+|11\rangle)=
\end{aligned}
$$

$$
\frac{1}{\sqrt{2}} \cdot(|10\rangle-|01\rangle)
$$

Step 2: We apply the topdown-CNOT. The CNOT reverses qubit one if qubit two equals one.

$$
\operatorname{CNOT} \frac{1}{\sqrt{2}} \cdot(|10\rangle-|01\rangle)=\frac{1}{\sqrt{2}} \cdot(|10\rangle-|11\rangle)
$$

Step 3: We apply the Hadamard to qubit two.

$$
H \frac{1}{\sqrt{2}} \cdot(|10\rangle-|11\rangle)=\frac{1}{2} \cdot(|1\rangle(|0\rangle+|1\rangle)-|1\rangle(|0\rangle-|1\rangle))=|11\rangle
$$

Basic level

We can do the same calculation on the basic level.

Bell state one:

$$
\left|\theta^{+}\right\rangle=\frac{1}{\sqrt{2}} \cdot(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)
$$

The complete Hadamard:

$$
H \otimes H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \otimes \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

Step 1: We apply the Hadamard:

$$
\begin{aligned}
& H \otimes H\left|\theta^{+}\right\rangle= \\
& \frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)=\frac{1}{2 \sqrt{2}}\left(\begin{array}{l}
2 \\
0 \\
0 \\
2
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

The topdown CNOT:

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Step 2: We apply the topdown-CNOT.

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)
$$

The Hadamard:

$$
I \otimes H=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \otimes \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

Step 3: We apply the Hadamard to qubit two.

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

Bell state 2:

$$
\left|\theta^{-}\right\rangle=\frac{1}{\sqrt{2}} \cdot(|00\rangle-|11\rangle)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)
$$

Step 1: We apply the Hadamard:

$$
\begin{aligned}
& H \otimes H\left|\theta^{-}\right\rangle= \\
& \frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)=\frac{1}{2 \sqrt{2}}\left(\begin{array}{l}
0 \\
2 \\
2 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

Step 2: We apply the topdown-CNOT.

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)
$$

Step 3: We apply the Hadamard to qubit two.

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}
0 \\
0 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

Bell state 3:

$$
\begin{gathered}
\left|\psi^{+}\right\rangle=\frac{1}{\sqrt{2}} \cdot(|01\rangle+|10\rangle)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right) \\
H \otimes H\left|\psi^{+}\right\rangle= \\
\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)=\frac{1}{2 \sqrt{2}}\left(\begin{array}{c}
2 \\
0 \\
0 \\
-2
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)
\end{gathered}
$$

Step 2: We apply the topdown-CNOT.

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right)
$$

Step 3: We apply the Hadamard to qubit two.

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}
0 \\
2 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

Bell state 4:

$$
\left|\psi^{-}\right\rangle=\frac{1}{\sqrt{2}} \cdot(|01\rangle-|10\rangle)
$$

Step 1: We apply the Hadamard:

$$
\begin{gathered}
H \otimes H\left|\psi^{-}\right\rangle= \\
\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)=\frac{1}{2 \sqrt{2}}\left(\begin{array}{c}
0 \\
-2 \\
2 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right)
\end{gathered}
$$

Step 2: We apply the topdown-CNOT.

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right)
$$

Step 3: We apply the Hadamard to qubit two.

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

We compare high-level solution with low-level solution.

	high-level	low-level
$\left\|\theta^{+}\right\rangle=\frac{1}{\sqrt{2}} \cdot(\|00\rangle+\|11\rangle)$	$\|00\rangle=\|0\rangle \otimes\|0\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$	$\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$
$\left\|\theta^{-}\right\rangle=\frac{1}{\sqrt{2}} \cdot(\|00\rangle-\|11\rangle)$	$\|10\rangle=\|1\rangle \otimes\|0\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$	$\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$
$\left\|\psi^{+}\right\rangle=\frac{1}{\sqrt{2}} \cdot(\|01\rangle+\|10\rangle)$	$\|01\rangle=\|0\rangle \otimes\|1\rangle=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$	$\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$
$\left\|\psi^{-}\right\rangle=\frac{1}{\sqrt{2}} \cdot(\|01\rangle-\|10\rangle)$	$\|11\rangle=\|1\rangle \otimes\|1\rangle=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$	$\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$

