The following is a rewrite of an answer
https://quantumcomputing.stackexchange.com/users/1837/daftwullie
gave to the question how to construct the CNOT gate and its reverse version:
https://quantumcomputing.stackexchange.com/questions/5179/how-to-construct-matrix-of-regular-and-flipped-2-qubit-cnot

We use projectors

$$
\begin{aligned}
& P_{0}=|0\rangle\langle 0|=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& P_{1}=|1\rangle\langle 1|=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

We construct the CNOT as a sum of Kronecker products:

$$
C N O T=P_{0} \otimes I d+P_{1} \otimes X
$$

Note: X is the Pauli X-gate.

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)= \\
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)= \\
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

The same way we can construct the reverse CNOT:

$$
\begin{gathered}
C N O T_{\text {reverse }}=I d \otimes P_{0}+X \otimes P_{1} \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)= \\
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)= \\
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Below you find an alternative method.
We play with this constructing method and use the other two projectors:

$$
\begin{aligned}
& P_{2}=|0\rangle\langle 1|=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
& P_{3}=|1\rangle\langle 0|=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

We build:

$$
\begin{gathered}
S W A P^{2}=P_{2} \otimes I d+P_{3} \otimes X= \\
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)= \\
\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)= \\
\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

$$
\begin{gathered}
\text { ROTATE }=\text { Id } \otimes P_{2}+X \otimes P_{3}= \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)= \\
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)=
\end{gathered}
$$

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

We apply $S W A P^{2}$ to a 4 -vector:

$$
\begin{aligned}
& \left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
c \\
d \\
b \\
a
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
c \\
d \\
b \\
a
\end{array}\right)=\left(\begin{array}{l}
b \\
a \\
d \\
c
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
b \\
a \\
d \\
c
\end{array}\right)=\left(\begin{array}{l}
d \\
c \\
a \\
b
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
d \\
c \\
a \\
b
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)
\end{aligned}
$$

$S W A P^{2}$ applied several times allows different ways of swapping.

We apply ROTATE to a 4 -vector:

$$
\begin{aligned}
& \left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
b \\
c \\
d \\
a
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
b \\
c \\
d \\
a
\end{array}\right)=\left(\begin{array}{l}
c \\
d \\
a \\
b
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
c \\
d \\
a \\
b
\end{array}\right)=\left(\begin{array}{l}
d \\
a \\
b \\
c
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
d \\
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)
\end{aligned}
$$

ROTATE rotates the input qubits.

Alternative method

Alternatively, we can construct the CNOT via a look at input and output:

input \rightarrow\begin{tabular}{c}

$|00\rangle$

$|01\rangle$

$|10\rangle$

$|11\rangle$

\quad

$|00\rangle$ \& $|01\rangle$ \& $|10\rangle$ \& $|11\rangle$

\hline
\end{tabular}\(\quad\left(\begin{array}{cccc}0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0\end{array}\right)\)

If the input qubit is $|0\rangle$, nothing changes.
If the input qubit is $|1\rangle$, the output qubit changes.
We get:

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

If the CNOT is acting from line two to line one, we reverse input and output. The "zeros" in the output doesn't change qubit one, the "ones" in the output reverse qubit one:

input \rightarrow\begin{tabular}{c}

$|00\rangle$

$|01\rangle$

$|10\rangle$

$|11\rangle$

\quad

$|00\rangle$ \& $|01\rangle$ \& $|10\rangle$ \& $|11\rangle$

0
\end{tabular}\(\quad\left(\begin{array}{cccc}1 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 1

0 \& 0 \& 1 \& 0

0 \& 1 \& 0 \& 0\end{array}\right)\)

