
Constructing CNOT

D. Kriesell page 1of 3

The following is a rewrite of an answer

https://quantumcomputing.stackexchange.com/users/1837/daftwullie

gave to the question how to construct the CNOT gate and its reverse version:

https://quantumcomputing.stackexchange.com/questions/5179/how-to-construct-matrix-of-regular-

and-flipped-2-qubit-cnot

We use projectors

𝑃0 = |0⟩⟨0| = (
1 0
0 0

)

𝑃1 = |1⟩⟨1| = (
0 0
0 1

)

We construct the CNOT as a sum of Kronecker products:

𝐶𝑁𝑂𝑇 = 𝑃0 ⊗ 𝐼𝑑 + 𝑃1 ⊗ 𝑋

Note: 𝑋 is the Pauli 𝑋-gate.

(
1 0
0 0

) ⊗ (
1 0
0 1

) + (
0 0
0 1

) ⊗ (
0 1
1 0

) =

(

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

) + (

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

) =

(

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)

The same way we can construct the reverse CNOT:

𝐶𝑁𝑂𝑇𝑟𝑒𝑣𝑒𝑟𝑠𝑒 = 𝐼𝑑 ⊗ 𝑃0 + 𝑋 ⊗ 𝑃1

(
1 0
0 1

) ⊗ (
1 0
0 0

) + (
0 1
1 0

) ⊗ (
0 0
0 1

) =

(

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

) + (

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

) =

(

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

)

Below you find an alternative method.

We play with this constructing method and use the other two projectors:

𝑃2 = |0⟩⟨1| = (
0 1
0 0

)

𝑃3 = |1⟩⟨0| = (
0 0
1 0

)

https://quantumcomputing.stackexchange.com/users/1837/daftwullie
https://quantumcomputing.stackexchange.com/questions/5179/how-to-construct-matrix-of-regular-and-flipped-2-qubit-cnot
https://quantumcomputing.stackexchange.com/questions/5179/how-to-construct-matrix-of-regular-and-flipped-2-qubit-cnot

Constructing CNOT

D. Kriesell page 2of 3

We build:

𝑆𝑊𝐴𝑃2 = 𝑃2 ⊗ 𝐼𝑑 + 𝑃3 ⊗ 𝑋 =

(
0 1
0 0

) ⊗ (
1 0
0 1

) + (
0 0
1 0

) ⊗ (
0 1
1 0

) =

(

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

) + (

0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0

) =

(

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

)

𝑅𝑂𝑇𝐴𝑇𝐸 = 𝐼𝑑 ⊗ 𝑃2 + 𝑋 ⊗ 𝑃3 =

(
1 0
0 1

) ⊗ (
0 1
0 0

) + (
0 1
1 0

) ⊗ (
0 0
1 0

) =

(

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

) + (

0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0

) =

(

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)

We apply 𝑆𝑊𝐴𝑃2 to a 4-vector:

(

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

) (

𝑎
𝑏
𝑐
𝑑

) = (

𝑐
𝑑
𝑏
𝑎

)

(

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

) (

𝑐
𝑑
𝑏
𝑎

) = (

𝑏
𝑎
𝑑
𝑐

)

(

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

) (

𝑏
𝑎
𝑑
𝑐

) = (

𝑑
𝑐
𝑎
𝑏

)

(

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

) (

𝑑
𝑐
𝑎
𝑏

) = (

𝑎
𝑏
𝑐
𝑑

)

𝑆𝑊𝐴𝑃2 applied several times allows different ways of swapping.

Constructing CNOT

D. Kriesell page 3of 3

We apply 𝑅𝑂𝑇𝐴𝑇𝐸 to a 4-vector:

(

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) (

𝑎
𝑏
𝑐
𝑑

) = (

𝑏
𝑐
𝑑
𝑎

)

(

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) (

𝑏
𝑐
𝑑
𝑎

) = (

𝑐
𝑑
𝑎
𝑏

)

(

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) (

𝑐
𝑑
𝑎
𝑏

) = (

𝑑
𝑎
𝑏
𝑐

)

(

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) (

𝑑
𝑎
𝑏
𝑐

) = (

𝑎
𝑏
𝑐
𝑑

)

𝑅𝑂𝑇𝐴𝑇𝐸 rotates the input qubits.

Alternative method
Alternatively, we can construct the CNOT via a look at input and output:

|00⟩ |01⟩ |10⟩ |11⟩

(

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)

If the input qubit is |0⟩, nothing changes.

If the input qubit is |1⟩, the output qubit changes.

We get:

(

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)

If the CNOT is acting from line two to line one, we reverse input and output. The “zeros” in the

output doesn’t change qubit one, the “ones” in the output reverse qubit one:

|00⟩ |01⟩ |10⟩ |11⟩

(

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

)

|00⟩

|01⟩

|10⟩

|11⟩

input

output

|00⟩

|01⟩

|10⟩

|11⟩

input

output

