This is an extended version of https://en.wikipedia.org/wiki/Deutsch-Jozsa algorithm

We interpret the quantum circuit.

Note: $|a\rangle$, $|b\rangle$, $|c\rangle$, $|d\rangle$ are 4D state vectors.

After the two Hadamard H we have x and y in superposition.

In superposition the action of $y \oplus f(x)$ does not affect the y-branch only but affects the x-branch too.

With this it makes sense to evaluate $x \rightarrow H \rightarrow x$ in the upper x-branch.

In detail

We have a function $f: \{0,1\} \rightarrow \{0,1\}$.

The function given, is it constant f(0) = f(1) or variable: $f(0) \neq f(1)$? We know the result of f, not the explicit definition. A classical computer needs two runs to decide. It must calculate f(0) as well as f(1).

What we have is:

$$U_f: |x\rangle \otimes |y\rangle \rightarrow |x\rangle \otimes |f(x) \oplus y\rangle$$

⊕: addition modulo 2

$$0 \oplus 0 = 0$$
, $0 \oplus 1 = 1$, $1 \oplus 0 = 1$, $1 \oplus 1 = 0$

H: Hadamard operator:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• measuring, ⊗ tensor product

Steps

Step 1 initializing:

$$|x\rangle = |0\rangle = {1 \choose 0}, |y\rangle = |1\rangle = {0 \choose 1} \rightarrow |x\rangle \otimes |y\rangle = |0\rangle \otimes |1\rangle = {0 \choose 1 \choose 0} =: |a\rangle$$

D. Kriesell page 1 of 4

Step 2 applying the Hadamard transformation to both qubits:

$$|x\rangle \to H|x\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$|y\rangle \to H|y\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$|x\rangle |y\rangle \to H|x\rangle \otimes H|y\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} = :|b\rangle$$

Alternatively, we could write:

$$|x\rangle|y\rangle \to (H\otimes H)(|x\rangle\otimes|y\rangle)$$

$$H\otimes H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix}$$

$$|x\rangle\otimes|y\rangle = |0\rangle\otimes|1\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(H\otimes H)(|x\rangle\otimes|y\rangle) = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} =: |b\rangle$$

Step 3 evaluating the function $U_f := |y\rangle \oplus f(|x\rangle)$:

$$|x\rangle \otimes |y\rangle \to |x\rangle \otimes U_f(|y\rangle) =$$

$$\frac{1}{2}(|0\rangle\otimes|0\oplus f(0)\rangle-|0\rangle\otimes|1\oplus f(0)\rangle+|1\rangle\otimes|0\oplus f(1)\rangle-|1\rangle\otimes|1\oplus f(1)\rangle)=;$$

Note: $0 \oplus f(0) = f(0)$ and $0 \oplus f(1) = f(1)$ due to \oplus : addition modulo 2.

$$\begin{split} &\frac{1}{2}(|0\rangle\otimes|f(0)\rangle-|0\rangle\otimes|1\oplus f(0)\rangle+|1\rangle\otimes|f(1)\rangle-|1\rangle\otimes|1\oplus f(1)\rangle)=\\ &\frac{1}{2}(|0\rangle\otimes[0\oplus|f(0)\rangle-1\oplus|f(0)\rangle]+|1\rangle\otimes[|f(1)\rangle-1\oplus f(1)\rangle])=\\ &\frac{1}{2}\Big((-1)^{f(0)}|0\rangle\otimes(|0\rangle-|1\rangle)+(-1)^{f(1)}|1\rangle\otimes(|0\rangle-|1\rangle)\Big)= \end{split}$$

Note: $|f(0)\rangle$ is a vector, f(0) a number, 0 or 1.

We have four possibilities for f(x):

f(0) = 0	f(0) = 1	f(0) = 0	f(0) = 1
f	1) = 0	f(1) = 1	f(1) = 1	f(1) = 0
1 /(1) – 0	$\int (1) - 1$	$\int (1) - 1$) (1) — U

D. Kriesell page 2 of 4

We check all possibilities:

$$f(0) = 0 \text{ and } f(1) = 0 : \\ \frac{1}{2} \Big((-1)^{f(0)} | 0 \rangle \otimes (|0\rangle - |1\rangle) \\ + (-1)^{f(1)} | 1 \rangle \otimes (|0\rangle - |1\rangle) \Big) = \\ \frac{1}{2} \Big(| 0 \rangle \otimes (|0\rangle - |1\rangle) + | 1 \rangle \otimes (|0\rangle - |1\rangle) \Big) = \\ \frac{1}{2} \Big(| 0 \rangle \otimes (|0\rangle - |1\rangle) + | 1 \rangle \otimes (|0\rangle - |1\rangle) \Big) \\ f(0) = 0 \text{ and } f(1) = 1 : \\ \frac{1}{2} \Big((-1)^{f(0)} | 0 \rangle \otimes (|0\rangle - |1\rangle) \\ + (-1)^{f(1)} | 1 \rangle \otimes (|0\rangle - |1\rangle) \Big) = \\ + (-1)^{f(1)} | 1 \rangle \otimes (|0\rangle - |1\rangle) \Big) = \\ \frac{1}{2} \Big(| 0 \rangle \otimes (|0\rangle - |1\rangle) - | 1 \rangle \otimes (|0\rangle - |1\rangle) \Big) \\ = \\ \frac{1}{2} \Big(| 0 \rangle \otimes (|0\rangle - |1\rangle) - | 1 \rangle \otimes (|0\rangle - |1\rangle) \Big)$$

We compare with:

$$\frac{1}{2}(|0\rangle\otimes[0\oplus|f(0)\rangle-1\oplus|f(0)\rangle]+|1\rangle\otimes[|f(1)\rangle-1\oplus f(1)\rangle])$$

The last case f(0) = 1 and f(1) = 0 gives an overall phase of -1 that is not measurable in quantum mechanics.

The step from

$$\frac{1}{2}(|0\rangle\otimes[0\oplus|f(0)\rangle-1\oplus|f(0)\rangle]+|1\rangle\otimes[|f(1)\rangle-1\oplus f(1)\rangle])$$

to

$$\frac{1}{2}\Big((-1)^{f(0)}|0\rangle\otimes(|0\rangle-|1\rangle)+(-1)^{f(1)}|1\rangle\otimes(|0\rangle-|1\rangle)\Big)$$

is correct.

We rewrite:

$$\frac{1}{2}\Big((-1)^{f(0)}|0\rangle\otimes(|0\rangle-|1\rangle)+(-1)^{f(1)}|1\rangle\otimes(|0\rangle-|1\rangle)\Big)=$$

$$\frac{1}{2}\Big((-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle\Big)\otimes(|0\rangle-1\rangle)\coloneqq|c\rangle$$

If f is constant, $f(0) = f(1)$ we get:	If f is variable, $f(0) \neq f(1)$ we get:
$\frac{1}{2} ((-1)^{f(0)} 0\rangle + (-1)^{f(1)} 1\rangle) \otimes (0\rangle - 1\rangle) =$	$\frac{1}{2} \left((-1)^{f(0)} 0\rangle + (-1)^{f(1)} 1\rangle \right) \otimes (0\rangle - 1\rangle) =$
$\frac{(-1)^{f(0)}}{2} ((0\rangle + 1\rangle)) \otimes (0\rangle - 1\rangle) =$	$\pm \frac{1}{2} ((0\rangle - 1\rangle)) \otimes (0\rangle - 1\rangle)$
$\pm \frac{1}{2} ((0\rangle + 1\rangle)) \otimes (0\rangle - 1\rangle) =$	$\pm \left(\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)\right) \otimes \frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$
$\pm \left(\frac{1}{\sqrt{2}}(0\rangle + 1\rangle)\right) \otimes \frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	(

Note: for f variable we get alternative signs from $(-1)^{f(0)}$ resp. $(-1)^{f(1)}$.

D. Kriesell page 3 of 4

In terms of superposition, we get:

$$\pm \left(\frac{1}{\sqrt{2}} \binom{1}{1}\right) \otimes \frac{1}{\sqrt{2}} \binom{1}{-1} = \pm \frac{1}{2} \binom{1}{-1} \\ \frac{1}{-1} = \pm \frac{1}{2} \binom{1}{-1} = \pm \frac{1}{2} \binom{1}{-1}$$

Step 4 applying the Hadamard transformation to the first qubit $|x\rangle \rightarrow H|x\rangle$:

Case f constant:	Case <i>f</i> variable:	
$ x\rangle \to H x\rangle$ $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} ((0\rangle + 1\rangle)) =$ $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) =$ $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} =$ $\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} =$ $\frac{1}{2} \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0\rangle := d\rangle$	$ x\rangle \to H x\rangle$ $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} ((0\rangle - 1\rangle)) =$ $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) =$ $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} =$ $\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} =$ $\frac{1}{2} \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1\rangle := d\rangle$	

In terms of superposition applying the Hadamard transformation to the first qubit $|x\rangle \to H|x\rangle$:

$$H \otimes Id = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$

$\pm \frac{1}{2\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} = \pm \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$	$\pm \frac{1}{2\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} = \pm \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}$	
We disassemble the 4D vector	We disassemble the 4D vector	
$\begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \\ 0 \\ 0 \end{pmatrix} = 00\rangle - 01\rangle =$ $ 0\rangle(0\rangle - 1\rangle)$	$\begin{pmatrix} 0\\0\\1\\-1 \end{pmatrix} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} + \begin{pmatrix} 0\\0\\0\\-1 \end{pmatrix} = 10\rangle - 11\rangle = 1\rangle\langle 0\rangle - 1\rangle\rangle$	
Measuring the first qubit will always give zero.	Measuring the first qubit will always give one.	

Result

If f is constant we get the qubit $|0\rangle$ as result when measuring the first qubit.

If f is variable we get the qubit $|1\rangle$ as result when measuring the first qubit.

With one run we can distinguish whether f is constant or variable.

D. Kriesell page 4 of 4