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This is an extended version of https://en.wikipedia.org/wiki/Deutsch-Jozsa_algorithm 

We interpret the quantum circuit. 

 

 

 

 

Note: |𝑎⟩, |𝑏⟩, |𝑐⟩, |𝑑⟩ are 4D state vectors. 

 

After the two Hadamard we have 𝑥 and 𝑦 in superposition. 

 

 

In superposition the action of 𝑦⨁𝑓(𝑥) does not affect the 𝑦-branch only but affects the 𝑥-branch 

too.  

With this it makes sense to evaluate in the upper 𝑥-branch. 

In detail 
We have a function 𝑓: {0,1} → {0,1} .  

The function given, is it constant 𝑓(0) = 𝑓(1) or variable: 𝑓(0) ≠ 𝑓(1)? We know the result of 𝑓, 

not the explicit definition. A classical computer needs two runs to decide. It must calculate 𝑓(0) as 

well as 𝑓(1). 

What we have is: 

𝑈𝑓: |𝑥⟩⨂|𝑦⟩ → |𝑥⟩⨂|𝑓(𝑥)⨁𝑦⟩  

⨁: addition modulo 2 

0⨁0 = 0, 0⨁1 = 1, 1⨁0 = 1, 1⨁1 = 0 

         : Hadamard operator: 

𝐻 =
1

√2
(

1 1
1 −1

) 

|0⟩ = (
1
0

), |1⟩ = (
0
1

)  

measuring, ⨂ tensor product 

 

Steps 
Step 1 initializing: 

|𝑥⟩ = |0⟩ = (
1
0

), |𝑦⟩ = |1⟩ = (
0
1

) → |𝑥⟩⨂|𝑦⟩ = |0⟩⨂|1⟩ = (

0
1
0
0

) =: |𝑎⟩ 

|0⟩ 

|1⟩ 𝑦⨁𝑓(𝑥) 

|𝑎⟩ 

𝑥 

𝑦 

|𝑏⟩ 

𝑈𝑓  

|𝑐⟩ |𝑑⟩ 

𝐻 

𝐻 

𝑥 𝐻 

𝐻 
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Step 2 applying the Hadamard transformation to both qubits: 

|𝑥⟩ → 𝐻|𝑥⟩ =
1

√2
(

1 1
1 −1

) (
1
0

) =
1

√2
(

1
1

) =
1

√2
(

1
0

) +
1

√2
(

0
1

) 

|𝑦⟩ → 𝐻|𝑦⟩ =
1

√2
(

1 1
1 −1

) (
0
1

) =
1

√2
(

1
−1

) =
1

√2
(

1
0

) −
1

√2
(

0
1

) 

|𝑥⟩ |𝑦⟩ → 𝐻|𝑥⟩⨂𝐻|𝑦⟩ =
1

√2
(

1
1

) ⨂
1

√2
(

1
−1

) =
1

2
(

1
−1
1

−1

) =: |𝑏⟩ 

Alternatively, we could write: 

|𝑥⟩|𝑦⟩ → (𝐻⨂𝐻)(|𝑥⟩⨂|𝑦⟩) 

𝐻⨂𝐻 =
1

√2
(

1 1
1 −1

) ⨂
1

√2
(

1 1
1 −1

) =
1

2
(

1 1 1 1
1 −1 1 −1
1 1 1 1
1 −1 1 −1

) 

|𝑥⟩⨂|𝑦⟩ = |0⟩⨂|1⟩ = (

0
1
0
0

) 

(𝐻⨂𝐻)(|𝑥⟩⨂|𝑦⟩) =
1

2
(

1 1 1 1
1 −1 1 −1
1 1 1 1
1 −1 1 −1

) (

0
1
0
0

) =
1

2
(

1
−1
1

−1

) =: |𝑏⟩ 

Step 3 evaluating the function 𝑈𝑓 ≔ |𝑦⟩⨁𝑓(|𝑥⟩): 

|𝑥⟩⨂|𝑦⟩ → |𝑥⟩⨂𝑈𝑓(|𝑦⟩) = 

1

2
(|0⟩⨂|0⨁𝑓(0)⟩ − |0⟩⨂|1⨁𝑓(0)⟩ + |1⟩⨂|0⨁𝑓(1)⟩ − |1⟩⨂|1⨁𝑓(1)⟩) =; 

Note: 0⨁𝑓(0) =  𝑓(0) and 0⨁𝑓(1) = 𝑓(1) due to ⨁: addition modulo 2. 

1

2
(|0⟩⨂|𝑓(0)⟩ − |0⟩⨂|1⨁𝑓(0)⟩ + |1⟩⨂|𝑓(1)⟩ − |1⟩⨂|1⨁𝑓(1)⟩) = 

1

2
(|0⟩⨂[0⨁|𝑓(0)⟩ − 1⨁|𝑓(0)⟩] + |1⟩⨂[|𝑓(1)⟩ − 1⨁𝑓(1)⟩]) = 

1

2
((−1)𝑓(0)|0⟩⨂(|0⟩ − |1⟩) + (−1)𝑓(1)|1⟩⨂(|0⟩ − |1⟩)) = 

Note: |𝑓(0)⟩ is a vector, 𝑓(0) a number, 0 or 1. 

We have four possibilities for 𝑓(𝑥): 

𝑓(0) = 0 
𝑓(1) = 0 

𝑓(0) = 1 
𝑓(1) = 1 

𝑓(0) = 0 
𝑓(1) = 1 

𝑓(0) = 1 
𝑓(1) = 0 
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We check all possibilities: 

𝑓(0) = 0 and 𝑓(1) = 0: 
1

2
((−1)𝑓(0)|0⟩⨂(|0⟩ − |1⟩)

+ (−1)𝑓(1)|1⟩⨂(|0⟩ − |1⟩)) = 

1

2
(|0⟩⨂(|0⟩ − |1⟩) + |1⟩⨂(|0⟩ − |1⟩)) 

𝑓(0) = 1 and 𝑓(1) = 1: 
1

2
((−1)𝑓(0)|0⟩⨂(|0⟩ − |1⟩)

+ (−1)𝑓(1)|1⟩⨂(|0⟩ − |1⟩)) = 

1

2
(−|0⟩⨂(|0⟩ − |1⟩) − |1⟩⨂(|0⟩ − |1⟩)) 

𝑓(0) = 0 and 𝑓(1) = 1: 
1

2
((−1)𝑓(0)|0⟩⨂(|0⟩ − |1⟩)

+ (−1)𝑓(1)|1⟩⨂(|0⟩ − |1⟩)) = 

1

2
(|0⟩⨂(|0⟩ − |1⟩) − |1⟩⨂(|0⟩ − |1⟩)) 

𝑓(0) = 1 and 𝑓(1) = 0: 
1

2
((−1)𝑓(0)|0⟩⨂(|0⟩ − |1⟩)

+ (−1)𝑓(1)|1⟩⨂(|0⟩ − |1⟩)) = 

−
1

2
(|0⟩⨂(|0⟩ − |1⟩) − |1⟩⨂(|0⟩ − |1⟩)) 

 

We compare with: 

1

2
(|0⟩⨂[0⨁|𝑓(0)⟩ − 1⨁|𝑓(0)⟩] + |1⟩⨂[|𝑓(1)⟩ − 1⨁𝑓(1)⟩]) 

The last case 𝑓(0) = 1 and 𝑓(1) = 0 gives an overall phase of −1 that is not measurable in quantum 

mechanics.  

The step from  
1

2
(|0⟩⨂[0⨁|𝑓(0)⟩ − 1⨁|𝑓(0)⟩] + |1⟩⨂[|𝑓(1)⟩ − 1⨁𝑓(1)⟩]) 

to 
1

2
((−1)𝑓(0)|0⟩⨂(|0⟩ − |1⟩) + (−1)𝑓(1)|1⟩⨂(|0⟩ − |1⟩)) 

is correct. 

We rewrite: 

1

2
((−1)𝑓(0)|0⟩⨂(|0⟩ − |1⟩) + (−1)𝑓(1)|1⟩⨂(|0⟩ − |1⟩)) = 

1

2
((−1)𝑓(0)|0⟩ + (−1)𝑓(1)|1⟩)⨂(|0⟩ − 1⟩) ≔ |𝑐⟩ 

If 𝑓 is constant, 𝑓(0) = 𝑓(1) we get: If 𝑓 is variable, 𝑓(0) ≠ 𝑓(1) we get: 
1

2
((−1)𝑓(0)|0⟩ + (−1)𝑓(1)|1⟩)⨂(|0⟩ − 1⟩) = 

(−1)𝑓(0)

2
((|0⟩ + |1⟩))⨂(|0⟩ − 1⟩) = 

±
1

2
((|0⟩ + |1⟩))⨂(|0⟩ − 1⟩) = 

± (
1

√2
(|0⟩ + |1⟩)) ⨂

1

√2
(|0⟩ − 1⟩) 

1

2
((−1)𝑓(0)|0⟩ + (−1)𝑓(1)|1⟩)⨂(|0⟩ − 1⟩) = 

±
1

2
((|0⟩ − |1⟩))⨂(|0⟩ − 1⟩) 

± (
1

√2
(|0⟩ − |1⟩)) ⨂

1

√2
(|0⟩ − 1⟩) 

 

Note: for 𝑓 variable we get alternative signs from (−1)𝑓(0) resp. (−1)𝑓(1). 
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In terms of superposition, we get: 

± (
1

√2
(

1
1

)) ⨂
1

√2
(

1
−1

) = ±
1

2
(

1
−1
1

−1

) ± (
1

√2
(

1
−1

)) ⨂
1

√2
(

1
−1

) = ±
1

2
(

1
−1
−1
1

) 

 

Step 4 applying the Hadamard transformation to the first qubit |𝑥⟩ → 𝐻|𝑥⟩: 

Case 𝑓 constant: Case 𝑓 variable: 

|𝑥⟩ → 𝐻|𝑥⟩ 
1

√2
(

1 1
1 −1

)
1

√2
((|0⟩ + |1⟩)) = 

1

√2
(

1 1
1 −1

)
1

√2
(((

1
0

) + (
0
1

))) = 

1

√2
(

1 1
1 −1

)
1

√2
(

1
1

) = 

1

2
(

1 1
1 −1

) (
1
1

) = 

1

2
(

2
0

) = (
1
0

) = |0⟩ ≔ |𝑑⟩ 

 
|𝑥⟩ → 𝐻|𝑥⟩ 

1

√2
(

1 1
1 −1

)
1

√2
((|0⟩ − |1⟩)) = 

1

√2
(

1 1
1 −1

)
1

√2
(((

1
0

) − (
0
1

))) = 

1

√2
(

1 1
1 −1

)
1

√2
(

1
−1

) = 

1

2
(

1 1
1 −1

) (
1

−1
) = 

1

2
(

0
2

) = (
0
1

) = |1⟩ ≔ |𝑑⟩ 

 

In terms of superposition applying the Hadamard transformation to the first qubit |𝑥⟩ → 𝐻|𝑥⟩: 

𝐻⨂𝐼𝑑 =
1

√2
(

1 1
1 −1

) ⨂ (
1 0
0 1

) =
1

√2
(

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

) 

±
1

2√2
(

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

) (

1
−1
1

−1

) = ±
1

√2
(

1
−1
0
0

) ±
1

2√2
(

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

) (

1
−1
−1
1

) = ±
1

√2
(

0
0
1

−1

) 

We disassemble the 4D vector 

(

1
−1
0
0

) = (

1
0
0
0

) + (

0
−1
0
0

) = |00⟩ − |01⟩ = 

|0⟩(|0⟩ − |1⟩) 
 

We disassemble the 4D vector 

(

0
0
1

−1

) = (

0
0
1
0

) + (

0
0
0

−1

) = |10⟩ − |11⟩ = 

|1⟩(|0⟩ − |1⟩) 

Measuring the first qubit will always give zero. Measuring the first qubit will always give one. 

 

Result 
If  𝑓 is constant we get the qubit |0⟩ as result when measuring the first qubit. 

If  𝑓 is variable we get the qubit |1⟩ as result when measuring the first qubit. 

With one run we can distinguish whether 𝑓 is constant or variable. 


