
 Deutsch-Jozsa Algorithm for 3 qubits

D. Kriesell page 1 of 11

This paper follows a lecture Peter Shor has given at

https://openlearninglibrary.mit.edu/courses/course-

v1:MITx+8.370.2x+1T2018/courseware/Week2/lectures_U2_2_dj_qcirc/6?activate_block_id=block-

v1%3AMITx%2B8.370.2x%2B1T2018%2Btype%40vertical%2Bblock%40Classical_algorithm_solving_Deutschs_problem

We use a function 𝑓(𝑥): {0,1} → {0,1}.

𝑓(𝑥) is either “constant” or “balanced”.

𝑓(𝑥) is constant: 𝑓(𝑥) = 0 ∀𝑥 ∈ {0,1} or 𝑓(𝑥) = 1 ∀𝑥 ∈ {0,1}

𝑓(𝑥) is balanced: 𝑓(𝑥1) ≠ 𝑓(𝑥2).

We use a three-bit quantum computer starting in the state | + + +⟩.

⨁ denotes addition modulo 2.

⨂ denotes the Kronecker product or tensor product.

We call the unitary transformation matrix 𝑈𝑓 the phase-oracle.

The oracle acts on qubits:

(−1)𝑓(𝑥)|0⟩ resp. (−1)𝑓(𝑥)|1⟩

From this definition of the oracle we see that:

- If the function is constant, the input remains unchanged because all qubits are multiplied by

either +1 or −1 which gives a constant additional phase that doesn’t change measurements.

- If the function is balanced, there is at least one qubit that changes sign, the input function is

different to the output function.

Note: |+⟩ =
1

√2
(|0⟩ + |1⟩)

Input:

|+ + +⟩ = |+⟩⨂|+⟩⨂|+⟩ =

1

√2
(|0⟩ + |1⟩)

1

√2
(|0⟩ + |1⟩)

1

√2
(|0⟩ + |1⟩) =

1

√8
(|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩) =

1

√8
(|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩)

|+⟩

|+⟩

𝑈𝑓

|+⟩

Phase

oracle

F is constant F is balanced

|+⟩

|+⟩

|+⟩

|? ⟩

|? ⟩

|? ⟩

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+8.370.2x+1T2018/courseware/Week2/lectures_U2_2_dj_qcirc/6?activate_block_id=block-v1%3AMITx%2B8.370.2x%2B1T2018%2Btype%40vertical%2Bblock%40Classical_algorithm_solving_Deutschs_problem
https://openlearninglibrary.mit.edu/courses/course-v1:MITx+8.370.2x+1T2018/courseware/Week2/lectures_U2_2_dj_qcirc/6?activate_block_id=block-v1%3AMITx%2B8.370.2x%2B1T2018%2Btype%40vertical%2Bblock%40Classical_algorithm_solving_Deutschs_problem
https://openlearninglibrary.mit.edu/courses/course-v1:MITx+8.370.2x+1T2018/courseware/Week2/lectures_U2_2_dj_qcirc/6?activate_block_id=block-v1%3AMITx%2B8.370.2x%2B1T2018%2Btype%40vertical%2Bblock%40Classical_algorithm_solving_Deutschs_problem

 Deutsch-Jozsa Algorithm for 3 qubits

D. Kriesell page 2 of 11

Output:

(−1)𝑓(𝑥)|+⟩(−1)𝑓(𝑥)|+⟩(−1)𝑓(𝑥)|+⟩ =

1

√2
(−1)𝑓(𝑥)(|0⟩ + |1⟩)

1

√2
(−1)𝑓(𝑥)(|0⟩ + |1⟩)(−1)𝑓(𝑥)

1

√2
(|0⟩ + |1⟩) =

1

√8
((−1)𝑓(𝑥)|0⟩ + (−1)𝑓(𝑥)|1⟩)((−1)𝑓(𝑥)|0⟩ + (−1)𝑓(𝑥)|1⟩)((−1)𝑓(𝑥)|0⟩ + (−1)𝑓(𝑥)|1⟩) =

1

√8
((−1)3∙𝑓(0)|000⟩ + (−1)2∙𝑓(0)+𝑓(1)|001⟩ + (−1)2∙𝑓(0)+𝑓(1)|010⟩ + (−1)𝑓(0)+2∙𝑓(1)|011⟩

+ (−1)2∙𝑓(0)+𝑓(1)|100⟩ + (−1)𝑓(0)+2∙𝑓(1)|101⟩ + (−1)𝑓(0)+2∙𝑓(1)|110⟩

+ (−1)3∙𝑓(1)|111⟩)

The possibility to get output |+ + +⟩ is the inner product of input and output:

𝑝(|+ + +⟩) = |⟨+ ++|𝑈𝑓|+ + +⟩|
2

This is too cumbersome to write out. We use that the vectors (|000⟩, |001⟩,… , |111⟩) are

orthonormal, meaning that ⟨000|000⟩ = 1, ⟨000|001⟩ = 0 etc. for all other combinations.

The scalar product ⟨+ + +|𝑈𝑓|+ + +⟩ then gives:

1

8
((−1)3∙𝑓(0) + (−1)2∙𝑓(0)+𝑓(1) + (−1)2∙𝑓(0)+𝑓(1) + (−1)𝑓(0)+2∙𝑓(1) + (−1)2∙𝑓(0)+𝑓(1)

+ (−1)𝑓(0)+2∙𝑓(1) + (−1)𝑓(0)+2∙𝑓(1) + (−1)𝑓(0)+2∙𝑓(1)) =

1

8
((−1)3∙𝑓(0) + 3 ∙ (−1)2∙𝑓(0)+𝑓(1) + 3 ∙ (−1)𝑓(0)+2∙𝑓(1) + (−1)3∙𝑓(1))

Constant case (all modulo 2):

𝑓(0) = 0, 𝑓(1) = 0

𝑓(0) = 1, 𝑓(1) = 1

𝑓(0) + 𝑓(0) = 0 + 0 = 0
𝑓(1) + 𝑓(1) = 0 + 0 = 0

𝑓(0) + 𝑓(0) = 1 + 1 = 0
𝑓(1) + 𝑓(1) = 0 + 0 = 0

𝑓(0) + 𝑓(0) + 𝑓(0) = 0 + 0 + 0 = 0
𝑓(1) + 𝑓(1) + 𝑓(1) = 0 + 0 + 0 = 0

𝑓(0) + 𝑓(0) + 𝑓(0) = 1 + 1 + 1 = 1
𝑓(1) + 𝑓(1) + 𝑓(1) = 1 + 1 + 1 = 1

Balanced case (all modulo 2):

𝑓(0) = 0, 𝑓(1) = 1

𝑓(0) = 1, 𝑓(1) = 0

𝑓(0) + 𝑓(0) = 0 + 0 = 0
𝑓(1) + 𝑓(1) = 1 + 1 = 0

𝑓(0) + 𝑓(0) = 1 + 1 = 0
𝑓(1) + 𝑓(1) = 0 + 0 = 0

𝑓(0) + 𝑓(0) + 𝑓(0) = 0 + 0 + 0 = 0
𝑓(1) + 𝑓(1) + 𝑓(1) = 1 + 1 + 1 = 1

𝑓(0) + 𝑓(0) + 𝑓(0) = 1 + 1 + 1 = 1
𝑓(1) + 𝑓(1) + 𝑓(1) = 0 + 0 + 0 = 0

 Deutsch-Jozsa Algorithm for 3 qubits

D. Kriesell page 3 of 11

We check the constant case
𝑓(0) = 0, 𝑓(1) = 0:

We check the constant case
𝑓(0) = 1, 𝑓(1) = 1:

1

8
((−1)3∙𝑓(0) + 3 ∙ (−1)2∙𝑓(0)+𝑓(1) + 3 ∙ (−1)𝑓(0)+2∙𝑓(1)

+ (−1)3∙𝑓(1)) =

1

8
((−1)0 + 3 ∙ (−1)0 + 3 ∙ (−1)0 + (−1)0) =

1

8
(1 + 3 + 3 + 1) = 1

1

8
((−1)3∙𝑓(0) + 3 ∙ (−1)2∙𝑓(0)+𝑓(1) + 3 ∙ (−1)𝑓(0)+2∙𝑓(1)

+ (−1)3∙𝑓(1)) =

1

8
((−1)1 + 3 ∙ (−1)1 + 3 ∙ (−1)1 + (−1)1) =

1

8
(−1 − 3 − 3 − 1) = −1

We check the balanced case
𝑓(0) = 0, 𝑓(1) = 1:

We check the balanced case
𝑓(0) = 1, 𝑓(1) = 0:

1

8
((−1)3∙𝑓(0) + 3 ∙ (−1)2∙𝑓(0)+𝑓(1) + 3 ∙ (−1)𝑓(0)+2∙𝑓(1)

+ (−1)3∙𝑓(1)) =

1

8
((−1)0 + 3 ∙ (−1)1 + 3 ∙ (−1)0 + (−1)1) =

1

8
(1 − 3 + 3 − 1) = 0

1

8
((−1)3∙𝑓(0) + 3 ∙ (−1)2∙𝑓(0)+𝑓(1) + 3 ∙ (−1)𝑓(0)+2∙𝑓(1)

+ (−1)3∙𝑓(1)) =

1

8
((−1)1 + 3 ∙ (−1)0 + 3 ∙ (−1)1 + (−1)0) =

1

8
(−1 + 3 − 3 + 1) = 0

The probability to get output |+ + +⟩ is the square of the expectation value, |⟨+ + +|𝑈𝑓|+ + +⟩|
2

and is one if the function is constant, zero if the function is balanced.

We can decide with one application of the oracle whether the function is constant or balanced by

measuring the result in the |+⟩ / |−⟩ basis.

Usually we work in the |0⟩ / |1⟩ basis. We modify the circuit:

The measurement will give 0,0,0 only if the function is constant.

|0⟩

|0⟩

𝑈𝑓

|0⟩

H

H

H

H

H

H

𝑈𝑓

Phase

oracle

 Deutsch-Jozsa Algorithm for 3 qubits

D. Kriesell page 4 of 11

Basic level

We use the input |000⟩ = |000⟩ = |0⟩⨂|0⟩⨂|0⟩ =

(

1
0
0
0
0
0
0
0)

We apply the Hadamard on each line:

𝐻⨂𝐻⨂𝐻 =

1

√2
((
1 1
1 −1

))⨂
1

√2
((
1 1
1 −1

))⨂
1

√2
((
1 1
1 −1

)) =

1

√2
((
1 1
1 −1

))⨂
1

√22
(

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

) =

1

√8

(

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1)

 Deutsch-Jozsa Algorithm for 3 qubits

D. Kriesell page 5 of 11

We use parallel a balanced and a constant function.

Balanced Constant

In both cases we get as entrance to the oracle:

1

√8

(

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1)

(

1
0
0
0
0
0
0
0)

=
1

√8

(

1
1
1
1
1
1
1
1)

The phase oracle applies phase +1 or −1, e. g.:

The phase oracle applies constant phase +1:

Note: zeros omitted for better readability.

We apply the balanced oracle:

We apply the constant oracle:

We apply the Hadamard after the oracle:

1

√8

(

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1)

1

√8

(

1
1
−1
1
−1
−1
−1
1)

=

1

8

(

0
−4
0
4
4
0
4
0)

=
1

2

(

0
−1
0
1
1
0
1
0)

We apply the Hadamard after the oracle:

1

√8

(

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1)

1

√8

(

1
1
1
1
1
1
1
1)

=

1

8

(

8
0
0
0
0
0
0
0)

=

(

1
0
0
0
0
0
0
0)

This obviously is not |000⟩.
Comparing with the table “Kronecker_product”
on this website we see that it is even not a
Kronecker product of basis states.
Measuring the output in the |0⟩ / |1⟩ basis does
not give 000.

This obviously is |000⟩.
Measuring the output in the |0⟩ / |1⟩ basis gives
000.

 Deutsch-Jozsa Algorithm for 3 qubits

D. Kriesell page 6 of 11

We can easily expand this for any number of qubits:

Given any number of input qubits the circuit answers the question “balanced/constant” with one

pass.

Remarks
The story behind this algorithm starts with Alice that uses a function 𝑓(𝑥):

𝑓(𝑥): {0,1} × {0,1} × …× {0,1} → {0,1}

The domain of 𝑓(𝑥) are n-digit binary vectors, the range is 0 and 1.

There are 2𝑛 elements in the domain, 2 elements in the range.

We distinguish two possibilities.

Possibility one, part of the
elements of the domain maps
to the element 0 of the range,
part of the elements maps to
the element 1 of the range.
The function is surjective.

Possibility two, 2𝑛 − 1
elements of the domain maps
to the element 0 of the range,
one element maps to the
element 1 of the range.
The function is neither
injective nor surjective.

Possibility two*, 2𝑛 − 1
elements of the domain maps
to the element 1 of the range,
one element maps to the
element 0 of the range.
The function is neither injective
nor surjective.

Now Bob enters the scene. He is supposed to find out (via a program) what kind of function Alice

uses. He has the following possibilities:

|0⟩

|0⟩

|0⟩

H

H

H

H

H

H

𝑈𝑓

|0⟩

|0⟩

H

H

H

H

.

.

.

.

.

.

.

.

.

Phase

oracle

 Deutsch-Jozsa Algorithm for 3 qubits

D. Kriesell page 7 of 11

a) His program queries the function values of one vector after the other. Possibility two needs

2𝑛 queries, possibility one less depending of the kind of function.

b) He uses 2𝑛 parallel CPU’s and queries all function values in one run.

c) He uses a quantum computer with n qubits and queries all function values in one run.

The function must be available in the program as a black box.

Method a) and b) are classic. We pay in time or hardware currencies.

Method c) is quantum. We pay in the currency qubits. Superposition reduces the cost from 2𝑛 to 𝑛.

Example
Let us check our understanding with an example.

We use the circuit:

Note: |−⟩ =
1

√2
(|0⟩ − |1⟩)

Note: represent classical bits.

We use 𝑓(𝑥):

𝑓(𝑥): {0 1} × {0 1} → {0 1}

First case: 𝑓(𝑥) is constant with 𝑓(𝑥) = 0 ∀𝑥.

Conceptual level
The input:

|0⟩|0⟩|−⟩ = |0⟩|0⟩ (
1

√2
(|0⟩ − |1⟩))

We apply the Hadamards:

𝐻|0⟩𝐻|0⟩(
1

√2
(|0⟩ − |1⟩)) =

(
1

√2
(|0⟩ + |1⟩))(

1

√2
(|0⟩ + |1⟩))(

1

√2
(|0⟩ − |1⟩)) =

1

√23
(|000⟩ − |001⟩ + |010⟩ − |011⟩ + |100⟩ − |101⟩ + |110⟩ − |111⟩)

We apply the oracle 𝑈. As the function is constant, 𝑓(𝑥) = 0, there is no change in the last qubit:

1

√23
(|000⟩ − |001⟩ + |010⟩ − |011⟩ + |100⟩ − |101⟩ + |110⟩ − |111⟩)

|0⟩

|0⟩ H

H

|−⟩ |? ⟩

|? ⟩

|? ⟩ H

H
𝑈|𝑥⟩|𝑦⟩ =

|𝑥⟩|𝑦⨁𝑓(𝑥)⟩
data qubits 𝑥

work qubit 𝑦

 Deutsch-Jozsa Algorithm for 3 qubits

D. Kriesell page 8 of 11

We get the state of the data qubits after the application of the oracle in basis {00⟩, |01⟩, |10⟩, |11⟩}:

1

2
|00⟩ (

1

√2
(|0⟩ − |1⟩)) +

1

2
|01⟩ (

1

√2
(|0⟩ − |1⟩)) +

1

2
|10⟩ (

1

√2
(|0⟩ − |1⟩)) +

1

2
|11⟩ (

1

√2
(|0⟩ − |1⟩)) =

1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩) (

1

√2
(|0⟩ − |1⟩))

We apply the Hadamards. The oracle did no change to the data qubits, so applying twice the

Hadamards lead to identity. We get back the original state:

|0⟩|0⟩ (
1

√2
(|0⟩ − |1⟩))

The probability for measuring 00 is 1.

Basic level
We refer to “Kronecker_product” on this website and get the input state:

|0⟩|0⟩|−⟩ =
1

√2

(

1
−1
0
0
0
0
0
0)

We calculate the Hadamards:

𝐻⊗𝐻⊗ 𝐼 =

1

√2
(
1 1
1 −1

)⊗
1

√2
(
1 1
1 −1

)⊗ (
1 0
0 1

) =
1

2
(
1 1
1 −1

)⊗(

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

) =

1

2

(

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 −1 0 1 0 −1 0
0 1 0 −1 0 1 0 −1
1 0 1 0 −1 0 −1 0
0 1 0 1 0 −1 0 −1
1 0 −1 0 −1 0 1 0
0 1 0 −1 0 −1 0 1)

We apply:

1

2

(

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 −1 0 1 0 −1 0
0 1 0 −1 0 1 0 −1
1 0 1 0 −1 0 −1 0
0 1 0 1 0 −1 0 −1
1 0 −1 0 −1 0 1 0
0 1 0 −1 0 −1 0 1)

1

√2

(

1
−1
0
0
0
0
0
0)

=
1

2√2

(

1
−1
1
−1
1
−1
1
−1)

 Deutsch-Jozsa Algorithm for 3 qubits

D. Kriesell page 9 of 11

The oracle changes nothing, the corresponding matrix is the identity.

We apply the Hadamards again:

1

2

(

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 −1 0 1 0 −1 0
0 1 0 −1 0 1 0 −1
1 0 1 0 −1 0 −1 0
0 1 0 1 0 −1 0 −1
1 0 −1 0 −1 0 1 0
0 1 0 −1 0 −1 0 1)

1

2√2

(

1
−1
1
−1
1
−1
1
−1)

=
1

4√2

(

4
−4
0
0
0
0
0
0)

=
1

√2

(

1
−1
0
0
0
0
0
0)

Obviously, this is the input state we can decompose into |0⟩|0⟩|−⟩. The probability to measure |0⟩|0⟩

is one.

Second case: 𝑓(00) = 0, 𝑓(01) = 1, 𝑓(10) = 0, 𝑓(11) = 1, the function is balanced.

Conceptual level
The input:

|0⟩|0⟩|−⟩ = |0⟩|0⟩ (
1

√2
(|0⟩ − |1⟩))

We apply the Hadamards:

𝐻|0⟩𝐻|0⟩(
1

√2
(|0⟩ − |1⟩)) =

(
1

√2
(|0⟩ + |1⟩))(

1

√2
(|0⟩ + |1⟩))(

1

√2
(|0⟩ − |1⟩)) =

1

√23
(|000⟩ − |001⟩ + |010⟩ − |011⟩ + |100⟩ − |101⟩ + |110⟩ − |111⟩)

We apply the oracle 𝑈. The function is balanced, 𝑓(00) = 0, 𝑓(01) = 1, 𝑓(10) = 0, 𝑓(11) = 1, the

working qubit changes for |01⟩ and |11⟩:

1

√23
(|000⟩ − |001⟩ + |011⟩ − |010⟩ + |100⟩ − |101⟩ + |111⟩ − |111⟩)

We get the state of the data qubits after the application of the oracle in basis {00⟩, |01⟩, |10⟩, |11⟩}:

1

2
|00⟩ (

1

√2
(|0⟩ − |1⟩)) −

1

2
|01⟩ (

1

√2
(|0⟩ − |1⟩)) +

1

2
|10⟩ (

1

√2
(|0⟩ − |1⟩)) −

1

2
|11⟩ (

1

√2
(|0⟩ − |1⟩)) =

1

2
(|00⟩ − |01⟩ + |10⟩ − |11⟩) (

1

√2
(|0⟩ − |1⟩)) =

(
1

√2
|0⟩(|0⟩ − |1⟩) +

1

√2
|1⟩(|0⟩ − |1⟩))(

1

√2
(|0⟩ − |1⟩)) =

(
1

√2
(|0⟩ + |1⟩))(

1

√2
(|0⟩ − |1⟩))(

1

√2
(|0⟩ − |1⟩)) =;

 Deutsch-Jozsa Algorithm for 3 qubits

D. Kriesell page 10 of 11

We note: |−⟩ =
1

√2
(|0⟩ − |1⟩), |+⟩ =

1

√2
(|0⟩ + |1⟩)

We get:

|+⟩|−⟩|−⟩

We note: 𝐻|−⟩ = |1⟩, 𝐻|+⟩ = |0⟩

We apply the Hadamards:

𝐻|+⟩𝐻|−⟩|−⟩ = |0⟩|1⟩|−⟩

The probability for measuring 00 then is zero.

Basic level
We refer to “Kronecker_product” on this website and get the input state:

|0⟩|0⟩|−⟩ =
1

√2

(

1
−1
0
0
0
0
0
0)

We calculate the Hadamards:

𝐻⊗𝐻⊗ 𝐼 =

1

2

(

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 −1 0 1 0 −1 0
0 1 0 −1 0 1 0 −1
1 0 1 0 −1 0 −1 0
0 1 0 1 0 −1 0 −1
1 0 −1 0 −1 0 1 0
0 1 0 −1 0 −1 0 1)

We apply:

1

2

(

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 −1 0 1 0 −1 0
0 1 0 −1 0 1 0 −1
1 0 1 0 −1 0 −1 0
0 1 0 1 0 −1 0 −1
1 0 −1 0 −1 0 1 0
0 1 0 −1 0 −1 0 1)

1

√2

(

1
−1
0
0
0
0
0
0)

=

1

2√2

(

1
−1
1
−1
1
−1
1
−1)

 Deutsch-Jozsa Algorithm for 3 qubits

D. Kriesell page 11 of 11

We construct the matrix for the oracle using the conceptual level:

 𝑓(00) = 0, 𝑓(01) = 1, 𝑓(10) = 0, 𝑓(11) = 1

|000⟩ |001⟩ |010⟩ |011⟩ |100⟩ |101⟩ |110⟩ |111⟩

(

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0)

We apply the oracle:

(

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0)

1

2√2

(

1

−1

1

−1

1

−1

1

−1)

=
1

2√2

(

1

−1

−1

1

1

−1

−1

1)

We apply the Hadamards again:

1

2

(

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 −1 0 1 0 −1 0
0 1 0 −1 0 1 0 −1
1 0 1 0 −1 0 −1 0
0 1 0 1 0 −1 0 −1
1 0 −1 0 −1 0 1 0
0 1 0 −1 0 −1 0 1)

1

2√2

(

1
−1
−1
1
1
−1
−1
1)

=
1

4√2

(

0
0
4
−4
0
0
0
0)

=
1

√2

(

0
0
1
−1
0
0
0
0)

We refer to “Kronecker_product” on this website and get the state:

|0⟩|1⟩|−⟩

Remark:

The functions used are different. In the beginning we used function 𝑓(𝑥): {0,1} → {0,1}. Therefore,

we worked with a phase modification, (−1)𝑓(𝑥)|0⟩ resp. (−1)𝑓(𝑥)|1⟩.

The example uses function 𝑓(𝑥): {0 1} × {0 1} → {0 1} that directly can be applied to the qubits.

|000⟩

|001⟩

|010⟩

|011⟩

|100⟩

|101⟩

|110⟩

|111⟩

input

output

