Sometimes we need to do some arithmetic with bras and kets of different dimension.
On the conceptual level we have the following rules:

$$
\begin{gathered}
\langle 0 \mid 00\rangle=\langle 0 \mid 0\rangle|0\rangle=1 \cdot|0\rangle=|0\rangle \\
\langle 0 \mid 01\rangle=\langle 0 \mid 0\rangle|1\rangle=1 \cdot|1\rangle=|1\rangle \\
\langle 0 \mid 10\rangle=\langle 0 \mid 1\rangle|0\rangle=0 \cdot|0\rangle=0 \\
\langle 0 \mid 11\rangle=\langle 0 \mid 1\rangle|1\rangle=0 \cdot|1\rangle=0 \\
\langle 1 \mid 00\rangle=\langle 1 \mid 0\rangle|0\rangle=0 \cdot|0\rangle=0 \\
\langle 1 \mid 01\rangle=\langle 1 \mid 0\rangle|1\rangle=0 \cdot|1\rangle=0 \\
\langle 1 \mid 10\rangle=\langle 1 \mid 1\rangle|0\rangle=1 \cdot|0\rangle=|0\rangle \\
\langle 1 \mid 11\rangle=\langle 1 \mid 1\rangle|1\rangle=1 \cdot|1\rangle=|1\rangle
\end{gathered}
$$

Note: similar we have:

$$
\langle 00 \mid 0\rangle=\langle 0|\langle 0 \mid 0\rangle=\langle 0| \cdot 1=\langle 0|
$$

... etc.
On the basic level we resolve the Kronecker product. We remember:

$\begin{aligned} & \langle 0\|=\left(\begin{array}{ll} 1 & 0 \end{array}\right) \\ & \langle 1\|=\left(\begin{array}{ll} 0 & 1 \end{array}\right) \end{aligned}$	$\begin{aligned} \|0\rangle & =\binom{1}{0} \\ \|1\rangle & =\binom{0}{1} \end{aligned}$
$\langle 00\|=\left(\begin{array}{ll}1 & 0\end{array}\right) \otimes\left(\begin{array}{ll}1 & 0\end{array}\right)=\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)$	$\|00\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$
$\langle 01\|=\left(\begin{array}{ll} 1 & 0 \end{array}\right) \otimes\left(\begin{array}{ll} 0 & 1 \end{array}\right)=\left(\begin{array}{llll} 0 & 1 & 0 & 0 \end{array}\right)$	$\|01\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l} 0 \\ 1 \\ 0 \\ 0 \end{array}\right)$
$\langle 10\|=\left(\begin{array}{ll} 0 & 1 \end{array}\right) \otimes\left(\begin{array}{ll} 1 & 0 \end{array}\right)=\left(\begin{array}{llll} 0 & 0 & 1 & 0 \end{array}\right)$	$\|10\rangle=\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$
$\langle 11\|=\left(\begin{array}{ll}0 & 1\end{array}\right) \otimes\left(\begin{array}{lll}0 & 1\end{array}\right)=\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)$	$\|11\rangle=\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$

We calculate:

$$
\langle 0 \mid 00\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=?
$$

This scalar product can't be calculated because the dimensions do not fit. We note that $|00\rangle$ is not a fully 4-dimensional vector but instead the Kronecker product of two 2-dimensional vectors so we can replace it.

$$
\left.\begin{array}{l}
\langle 0 \mid 00\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \cdot\binom{1}{0} \otimes\binom{1}{0}=1 \otimes\binom{1}{0}=\binom{1}{0} \\
\langle 0 \mid 01\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \cdot\binom{1}{0} \otimes\binom{0}{1}=1 \otimes\binom{0}{1}=\binom{0}{1} \\
\langle 0 \mid 10\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \cdot\binom{0}{1} \otimes\binom{1}{0}=0 \otimes\binom{1}{0}=0 \\
\langle 0 \mid 11\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \cdot\binom{0}{1} \otimes\binom{0}{1}=0 \otimes\binom{0}{1}=0 \\
\langle 1 \mid 00\rangle=\left(\begin{array}{ll}
0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1
\end{array}\right) \cdot\binom{1}{0} \otimes\binom{1}{0}=0 \otimes\binom{1}{0}=0 \\
\langle 1 \mid 01\rangle=\left(\begin{array}{ll}
0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1
\end{array}\right) \cdot\binom{1}{0} \otimes\binom{0}{1}=0 \otimes\binom{0}{1}=0 \\
\langle 1 \mid\rangle=\left(\begin{array}{ll}
0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1
\end{array}\right) \cdot\binom{0}{1} \otimes\binom{0}{1}=1 \otimes\binom{0}{1}=\binom{0}{1} \\
\langle 1 \mid 10\rangle=\left(\begin{array}{ll}
0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1
\end{array}\right) \cdot\binom{0}{1} \otimes\binom{1}{0}=1 \otimes\binom{1}{0}=\binom{1}{0} \\
\langle 10
\end{array}\right)=0
$$

Note: similar we have:

$$
\langle 00 \mid 0\rangle=\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right) \cdot\binom{1}{0}=\binom{1}{0} \otimes\binom{1}{0} \cdot\left(\begin{array}{ll}
1 & 0
\end{array}\right)=\binom{1}{0} \otimes 1=\binom{1}{0}
$$

...etc.
With this scheme we can resolve any kind of $\langle m \mid n\rangle$ partial scalar products.
Note: $a \otimes\binom{0}{1}=a \cdot\binom{0}{1}=\binom{0}{a}=\binom{0}{1} \cdot a=\binom{0}{1} \otimes a$

