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We use a function 𝑓(𝑥): {0,1} → {0,1}. 

We use a two-bit quantum computer starting in the state |𝑥, 𝑦⟩. 

All states |𝑥⟩, |𝑦⟩ are the basis states either |0⟩ or |1⟩. 

We use logic gates to transform this state into |𝑥, 𝑦⨁𝑓(𝑥)⟩.  

⨁ denotes addition modulo 2. 

⨂ denotes the Kronecker product or tensor product. 

We call the unitary transformation matrix 𝑈𝑓.  

𝑈𝑓  maps |𝑥, 𝑦⟩ → |𝑥, 𝑦⨁𝑓(𝑥)⟩. 

 

 

 

Input: |𝑥𝑦⟩ = |𝑥⟩⨂|𝑦⟩ 

Output: |𝜓0𝜓1⟩ = |𝜓0⟩⨂|𝜓1⟩ 

 input 

 |00⟩ |01⟩ |10⟩ |11⟩ 

Let 𝑓 be constant, 
𝑓(𝑥) = 0 ∀ 𝑥 ∈ {0,1} 

|00⟩ → |00⟩ |01⟩ → |00⟩ |10⟩ → |10⟩ |11⟩ → |10⟩ 

Let 𝑓 be constant, 
𝑓(𝑥) = 1 ∀ 𝑥 ∈ {0,1} 

|00⟩ → |01⟩ |01⟩ → |01⟩ |10⟩ → |11⟩ |11⟩ → |11⟩ 

Let 𝑓 be balanced, 
𝑓(0) = 0, 𝑓(1) = 1 

|00⟩ → |00⟩ |01⟩ → |01⟩ |10⟩ → |10⟩ |11⟩ → |11⟩ 

Let 𝑓 be balanced, 
𝑓(0) = 1, 𝑓(1) = 0 

|00⟩ → |01⟩ |01⟩ → |00⟩ |10⟩ → |11⟩ |11⟩ → |10⟩ 

 

For each input we get two times the same output connected. Thus, the output is not sufficient to 

decide what function 𝑓(𝑥) we used. 

We bring the input into superposition by use of the Hadamard operator: 

𝐻|0⟩ =
1

√2
(|0⟩ + |1⟩);  𝐻|1⟩ =

1

√2
(|0⟩ − |1⟩) 

We use:  

 

 

 

Input: |𝑥𝑦⟩ = 𝐻|𝑥⟩⨂|𝑦⟩. 

Output: |𝜓0𝜓1⟩ = |𝜓0⟩⨂|𝜓1⟩ 

Note: 1

√2
(|0⟩ + |1⟩)|0⟩ =

1

√2
(|00⟩ + |10⟩) etc. 

|𝑥⟩ 

|𝑦⟩ 

 𝑥 

𝑦 

𝑥 

𝑦⨁𝑓(𝑥) 

𝑈𝑓  

|𝜓0⟩ 

|𝜓1⟩ 

|𝑥⟩ 

|𝑦⟩ 

 𝑥 

𝑦 

𝑥 

𝑦⨁𝑓(𝑥) 

𝑈𝑓  

|𝜓0⟩ 

|𝜓1⟩ 

H 
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input Let 𝑓 be constant, 𝑓(𝑥) = 0 ∀ 𝑥 ∈ {0,1} 
𝑦 = 𝑦⨁𝑓(𝑥) 

𝑦 = 0 → 0, 𝑦 = 1 → 1 

Let 𝑓 be constant, 𝑓(𝑥) = 1 ∀ 𝑥 ∈ {0,1} 
𝑦 = 𝑦⨁𝑓(𝑥) 

𝑦 = 0 → 1, 𝑦 = 1 → 0 

 
|00⟩ 

 
|01⟩ 

 
|10⟩ 

 
|11⟩ 

1

√2
(|00⟩ + |10⟩) →

1

√2
(|00⟩ + |10⟩) 

1

√2
(|01⟩ + |11⟩) →

1

√2
(|01⟩ + |11⟩) 

1

√2
(|00⟩ − |10⟩) →

1

√2
(|00⟩ − |10⟩) 

1

√2
(|01⟩ − |11⟩) →

1

√2
(|01⟩ − |11⟩) 

 

1

√2
(|00⟩ + |10⟩) →

1

√2
(|01⟩ + |11⟩) 

1

√2
(|01⟩ + |11⟩) →

1

√2
(|00⟩ + |10⟩) 

1

√2
(|00⟩ − |10⟩) →

1

√2
(|01⟩ − |11⟩) 

1

√2
(|01⟩ − |11⟩) →

1

√2
(|00⟩ − |10⟩) 

 

input Let 𝑓 be balanced,  
𝑓(0) = 0, 𝑓(1) = 1 

𝑦 = 𝑦⨁𝑓(𝑥) 
𝑥 = 0, 𝑦 = 0 → 0 
𝑥 = 0, 𝑦 = 1 → 1 
𝑥 = 1, 𝑦 = 0 → 1 
𝑥 = 1, 𝑦 = 1 → 0 

 

Let 𝑓 be balanced,  
𝑓(0) = 1, 𝑓(1) = 0 

𝑦 = 𝑦⨁𝑓(𝑥) 
𝑥 = 0, 𝑦 = 0 → 1 
𝑥 = 0, 𝑦 = 1 → 0 
𝑥 = 1, 𝑦 = 0 → 0 
𝑥 = 1, 𝑦 = 1 → 1 

 
 

|00⟩ 
 

|01⟩ 
 

|10⟩ 
 

|11⟩ 

1

√2
(|00⟩ + |10⟩) →

1

√2
(|00⟩ + |11⟩) 

1

√2
(|01⟩ + |11⟩) →

1

√2
(|01⟩ + |10⟩) 

1

√2
(|00⟩ − |10⟩) →

1

√2
(|00⟩ − |11⟩) 

1

√2
(|01⟩ − |11⟩) →

1

√2
(|01⟩ − |10⟩) 

 

1

√2
(|00⟩ + |10⟩) →

1

√2
(|01⟩ + |10⟩) 

1

√2
(|01⟩ + |11⟩) →

1

√2
(|00⟩ + |11⟩) 

1

√2
(|00⟩ − |10⟩) →

1

√2
(|01⟩ − |10⟩) 

1

√2
(|01⟩ − |11⟩) →

1

√2
(|00⟩ − |11⟩) 

 

 

Now something has changed. As before we know the input, e. g. |00⟩ resp. 
1

√2
(|00⟩ + |10⟩) after the 

Hadamard, but the output is unique coupled with the kind of function we use.  

There is still one problem that we can not use the output as it is. Take e. g.  
1

√2
(|00⟩ + |10⟩) →

1

√2
(|01⟩ + |10⟩) 

1

√2
(|01⟩ + |10⟩) is not separable meaning it cannot be written as a Kronecker product |𝑥⟩⨂|𝑦⟩. 

Measuring the first qubit in this case will give random results zero or one. The same holds for all 

other possibilities. 

We modify further: 

 

 

 

We get the combined input: |𝑥𝑦⟩ = 𝐻|𝑥⟩⨂𝐻|𝑦⟩. 

We combine the two qubits |𝑥⟩ and |𝑦⟩ via the Kronecker product, expressed in the |0⟩ |1⟩ basis: 

|𝑥⟩ = 𝑎 ∙ |0⟩ + 𝑏 ∙ |1⟩, |𝑦⟩ = 𝑐 ∙ |0⟩ + 𝑑 ∙ |1⟩ 

Note: 𝑎, 𝑏, 𝑐, 𝑑 ∈ {0,1} 

|𝑥⟩ 

|𝑦⟩ 

 𝑥 

𝑦 

𝑥 

𝑦⨁𝑓(𝑥) 

𝑈𝑓  

|𝜓0⟩ 

|𝜓1⟩ 

H 

H 

H 
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The Kronecker product: 

𝐻|𝑥⟩⨂𝐻|𝑦⟩ = 𝐻(𝑎|0⟩ + 𝑏|1⟩)⨂𝐻(𝑐|0⟩ + 𝑑|1⟩) = 

(𝑎
1

√2
(|0⟩ + |1⟩) + 𝑏

1

√2
(|0⟩ − |1⟩)) ⨂ (𝑐

1

√2
(|0⟩ + |1⟩) + 𝑑

1

√2
(|0⟩ − |1⟩)) = 

(𝑎
1

√2
|0⟩ + 𝑎

1

√2
|1⟩ + 𝑏

1

√2
|0⟩ − 𝑏

1

√2
|1⟩) ⨂ (𝑐

1

√2
|0⟩ + 𝑐

1

√2
|1⟩ + 𝑑

1

√2
|0⟩ − 𝑑

1

√2
|1⟩) = 

(
𝑎 + 𝑏

√2
|0⟩ +

𝑎 − 𝑏

√2
|1⟩) ⨂ (

𝑐 + 𝑑

√2
|0⟩ +

𝑐 − 𝑑

√2
|1⟩) = 

(𝑎 + 𝑏)(𝑐 + 𝑑)

2
|00⟩ +

(𝑎 + 𝑏)(𝑐 − 𝑑)

2
|01⟩ +

(𝑎 − 𝑏)(𝑐 + 𝑑)

2
|10⟩ +

(𝑎 − 𝑏)(𝑐 − 𝑑)

2
|11⟩ 

We have four possible combinations for 𝑎 and 𝑏  and get after the Hadamard: 

① 𝑎 = 1, 𝑏 = 0, 𝑐 = 0, 𝑑 = 1 → 1 0 0 1 1

2
(|00⟩ − |01⟩ + |10⟩ − |11⟩) 

② 𝑎 = 1, 𝑏 = 0, 𝑐 = 1, 𝑑 = 0 → 1 0 1 0 1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩) 

③ 𝑎 = 0, 𝑏 = 1, 𝑐 = 0, 𝑑 = 1 → 0 1 0 1 1

2
(|00⟩ − |01⟩ − |10⟩ + |11⟩) 

④ 𝑎 = 0, 𝑏 = 1, 𝑐 = 1, 𝑑 = 0 → 0 1 1 0 1

2
(|00⟩ + |01⟩ − |10⟩ − |11⟩) 

 

We apply 𝑈𝑓  to the possible combinations. 

Let 𝑓 be constant,  

𝑓(𝑥) = 0 ∀ 𝑥

∈ {0,1} 

 𝑦 = 𝑦⨁𝑓(𝑥) 

𝑦 = 0 → 0,  

𝑦 = 1 → 1 

① 1

2
(|00⟩ − |01⟩ + |10⟩ − |11⟩) =

(|0⟩ + |1⟩)

√2
∙

(|0⟩ − |1⟩)

√2
 

② 1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩) =

(|0⟩ + |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
 

③ 1

2
(|00⟩ − |01⟩ − |10⟩ + |11⟩) =

(|0⟩ − |1⟩)

√2
∙

(|0⟩ − |1⟩)

√2
 

④ 1

2
(|00⟩ + |01⟩ − |10⟩ − |11⟩) =

(|0⟩ − |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
 

Let 𝑓 be constant,  

𝑓(𝑥) = 1 ∀ 𝑥

∈ {0,1} 

𝑦 = 𝑦⨁𝑓(𝑥) 

𝑦 = 0 → 1,  

𝑦 = 1 → 0 

① 1

2
(|00⟩ − |01⟩ + |10⟩ − |11⟩) →

1

2
(|01⟩ − |00⟩ + |11⟩ − |10⟩) = 

−
1

2
(|00⟩ − |01⟩ + |10⟩ − |11⟩) = −

(|0⟩ + |1⟩)

√2
∙

(|0⟩ − |1⟩)

√2
 

② 1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩) →

1

2
(|01⟩ + |00⟩ + |11⟩ + |10⟩) = 

1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩) =

(|0⟩ + |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
 

③ 1

2
(|00⟩ − |01⟩ − |10⟩ + |11⟩) →

1

2
(|01⟩ − |00⟩ − |11⟩ + |10⟩) = 

−
1

2
(|00⟩ − |01⟩ − |10⟩ + |11⟩) = −

(|0⟩ − |1⟩)

√2
∙

(|0⟩ − |1⟩)

√2
 

④ 1

2
(|00⟩ + |01⟩ − |10⟩ − |11⟩) →

1

2
(|01⟩ + |00⟩ − |11⟩ − |10⟩) = 

1

2
(|00⟩ + |01⟩ − |10⟩ − |11⟩) =

(|0⟩ − |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
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Let 𝑓 be balanced,  
𝑓(0) = 0, 𝑓(1)
= 1 
𝑦 = 𝑦⨁𝑓(𝑥) 

𝑥 = 0, 𝑦 = 0 → 0 
𝑥 = 0, 𝑦 = 1 → 1 
𝑥 = 1, 𝑦 = 0 → 1 
𝑥 = 1, 𝑦 = 1 → 0 

 

 

① 1

2
(|00⟩ − |01⟩ + |10⟩ − |11⟩) →

1

2
(|00⟩ − |01⟩ + |11⟩ − |10⟩) = 

1

2
(|00⟩ − |01⟩ − |10⟩ + |11⟩) =

(|0⟩ − |1⟩)

√2
∙

(|0⟩ − |1⟩)

√2
 

② 1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩) →

1

2
(|00⟩ + |01⟩ + |11⟩ + |10⟩) = 

1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩) =

(|0⟩ + |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
 

③ 1

2
(|00⟩ − |01⟩ − |10⟩ + |11⟩) →

1

2
(|00⟩ − |01⟩ − |11⟩ + |10⟩) = 

1

2
(|00⟩ − |01⟩ + |10⟩ − |11⟩) =

(|0⟩ + |1⟩)

√2
∙

(|0⟩ − |1⟩)

√2
 

④ 1

2
(|00⟩ + |01⟩ − |10⟩ − |11⟩) →

1

2
(|00⟩ + |01⟩ − |11⟩ − |10⟩) = 

1

2
(|00⟩ + |01⟩ − |10⟩ − |11⟩) =

(|0⟩ − |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
 

 

Let 𝑓 be balanced,  
𝑓(0) = 1, 𝑓(1)
= 0 
𝑦 = 𝑦⨁𝑓(𝑥) 

𝑥 = 0, 𝑦 = 0 → 1 
𝑥 = 0, 𝑦 = 1 → 0 
𝑥 = 1, 𝑦 = 0 → 0 
𝑥 = 1, 𝑦 = 1 → 1 

 

① 1

2
(|00⟩ − |01⟩ + |10⟩ − |11⟩) →

1

2
(|01⟩ − |00⟩ + |10⟩ − |11⟩) = 

−
1

2
(|00⟩ − |01⟩ − |10⟩ + |11⟩) = −

(|0⟩ − |1⟩)

√2
∙

(|0⟩ − |1⟩)

√2
 

② 1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩) →

1

2
(|01⟩ + |00⟩ + |10⟩ + |11⟩) = 

1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩) =

(|0⟩ + |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
 

③ 1

2
(|00⟩ − |01⟩ − |10⟩ + |11⟩) →

1

2
(|01⟩ − |00⟩ − |10⟩ + |11⟩) = 

−
1

2
(|00⟩ − |01⟩ + |10⟩ − |11⟩) = −

(|0⟩ − |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
 

④ 1

2
(|00⟩ + |01⟩ − |10⟩ − |11⟩) →

1

2
(|01⟩ + |00⟩ − |10⟩ − |11⟩) = 

1

2
(|00⟩ + |01⟩ − |10⟩ − |11⟩) =

(|0⟩ − |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
 

 

We summarize the results: 

 𝑎 𝑏 𝑐 𝑑 =; 

 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 
𝑓(𝑥) = 0 

 

(|0⟩ + |1⟩)

√2
∙

(|0⟩ − |1⟩)

√2
 

(|0⟩ + |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
 

(|0⟩ − |1⟩)

√2
∙

(|0⟩ − |1⟩)

√2
 

(|0⟩ − |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
 

𝑓(𝑥) = 1 
 
 

−
(|0⟩ + |1⟩)

√2
∙

(|0⟩ − |1⟩)

√2
 

(|0⟩ + |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
 −

(|0⟩ − |1⟩)

√2
∙

(|0⟩ − |1⟩)

√2
 

(|0⟩ − |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
 

𝑓(0) = 0  
𝑓(1) = 1 

 

(|0⟩ − |1⟩)

√2
∙

(|0⟩ − |1⟩)

√2
 

(|0⟩ + |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
 

(|0⟩ + |1⟩)

√2
∙

(|0⟩ − |1⟩)

√2
 

(|0⟩ − |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
 

𝑓(0) = 1  
𝑓(1) = 0 

 

−
(|0⟩ − |1⟩)

√2
∙

(|0⟩ − |1⟩)

√2
 

(|0⟩ + |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
 −

(|0⟩ + |1⟩)

√2
∙

(|0⟩ − |1⟩)

√2
 

(|0⟩ − |1⟩)

√2
∙

(|0⟩ + |1⟩)

√2
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We apply the final Hadamard to the first qubit. 

We notice: 

𝐻(|0⟩ + |1⟩) =
1

√2
(|0⟩ + |1⟩ + |0⟩ − |1⟩) =

2

√2
|0⟩ = √2|0⟩ 

𝐻(|0⟩ − |1⟩) =
1

√2
(|0⟩ + |1⟩ − |0⟩ + |1⟩) =

2

√2
|1⟩ = √2|1⟩ 

We get as final state: 

 𝑎 𝑏 𝑐 𝑑 =; 

 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 
𝑓(𝑥) = 0 

 |0⟩ ∙
(|0⟩ − |1⟩)

√2
 |0⟩ ∙

(|0⟩ + |1⟩)

√2
 |1⟩ ∙

(|0⟩ − |1⟩)

√2
 |1⟩ ∙

(|0⟩ + |1⟩)

√2
 

𝑓(𝑥) = 1 
 
 

−|0⟩ ∙
(|0⟩ − |1⟩)

√2
 |0⟩ ∙

(|0⟩ + |1⟩)

√2
 −|1⟩ ∙

(|0⟩ − |1⟩)

√2
 |1⟩ ∙

(|0⟩ + |1⟩)

√2
 

𝑓(0) = 0  
𝑓(1) = 1 

 

|1⟩ ∙
(|0⟩ − |1⟩)

√2
 |0⟩ ∙

(|0⟩ + |1⟩)

√2
 |0⟩ ∙

(|0⟩ − |1⟩)

√2
 |1⟩ ∙

(|0⟩ + |1⟩)

√2
 

𝑓(0) = 1  
𝑓(1) = 0 

 

−|1⟩ ∙
(|0⟩ − |1⟩)

√2
 |0⟩ ∙

(|0⟩ + |1⟩)

√2
 −|1⟩ ∙

(|0⟩ + |1⟩)

√2
 |1⟩ ∙

(|0⟩ + |1⟩)

√2
 

 

The combinations 1001 and 0101 have a special property. By measuring the first qubit we get: 

in the case 1 0 0 1: 
 

in the case 0 1 0 1: 
 

±|0⟩ if the function is constant,  
±|1⟩ if the function is balanced.  
 

±|1⟩ if the function is constant,  
±|0⟩ if the function is balanced.  
 

 

With one measurement we can decide whether the function in question is balanced or constant.  

Interpretation (with respect to case 1001): 

Noting that 𝑓(0)⨁𝑓(1) = 0 if 𝑓(𝑥) is constant, 𝑓(0)⨁𝑓(1) = 1 if 𝑓(𝑥) is balanced we can rewrite: 

Output: |𝜓0𝜓1⟩ = ±|𝑓(0)⨁𝑓(1)⟩ (
(|0⟩−|1⟩)

√2
) 

Citing Nielsen/Chuang1: “… the quantum circuit has given us the ability to determine a global 

property of 𝑓(𝑥), namely 𝑓(0)⨁𝑓(1), using only one evaluation of 𝑓(𝑥). … in a quantum computer it 

is possible for the two alternatives to interfere with one another to yield some global property of the 

function f, …” 

Please note that we never modified qubit one directly. The superposition transports effects of the 

modification of qubit two to qubit one. We are not dealing with two isolated qubits of dimension two 

each but with a four-dimensional entity after applying the Hadamards. 

We must destroy this four-dimensional entity by the process of measurement to get a two-

dimensional entity back.  

                                                           
1 Quantum Computation and Quantum Information, Nielsen/Chang, Cambridge University Press, ISBN 978-1-107-00217-3, 
page 33. 
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Basic level 
We will go to back to the function and its implementation in the quantum circuit, the unitary 

operator 𝑈𝑓. 

 

 

 

Depending on what function we use the operator looks different. 

We have four possibilities: 

 

 

 

① If 𝑓(𝑥) = 0 then 𝑦⨁𝑓(𝑥) = 𝑦. In this case 𝑈𝑓  is the identity matrix: 

𝑈𝑓 = (
1 0
0 1

) ⨂ (
1 0
0 1

) =             (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) 

② If 𝑓(𝑥) = 1 then 𝑦⨁𝑓(𝑥) = 𝑦. In this case 𝑈𝑓  is the matrix: 

𝑈𝑓 = (
1 0
0 1

) ⨂ (
0 1
1 0

) =             (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) 

Note: (
0 1
1 0

) is the Pauli 𝑋-matrix. 

This is a NOT of qubit two. 𝑈𝑓  is unitary: 

(

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) 

③ If 𝑓(0) = 0 ∧ 𝑓(1) = 1 then 

𝑥 = 0, 𝑦 = 0 → 𝑦 = 0 

𝑥 = 0, 𝑦 = 1 → 𝑦 = 1 

𝑥 = 1, 𝑦 = 0 → 𝑦 = 1 

𝑥 = 1, 𝑦 = 1 → 𝑦 = 0 

  

① 𝑓(𝑥) 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑓(𝑥) = 0 

② 𝑓(𝑥) 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑓(𝑥) = 1 

③ 𝑓(𝑥) 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑, 𝑓(0) = 0, 𝑓(1) = 1 

④ 𝑓(𝑥) 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑, 𝑓(0) = 1, 𝑓(1) = 0 

 𝑥 

𝑦 

𝑥 

𝑦⨁𝑓(𝑥) 

𝑈𝑓  

input 

00 

01 

10 

11 

00    01    10   11 output 

input 

00 

01 

10 

11 

00    01    10   11 output 
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In this case 𝑈𝑓  is the matrix: 

 

𝑈𝑓 =             (

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

) 

Note: 𝑈𝑓  cannot be decomposed into a Kronecker product of two 2 × 2 matrices. 𝑈𝑓  is a CNOT.  

The CNOT is unitary: 

(

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

) (

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

) = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) 

④ If 𝑓(0) = 1 ∧ 𝑓(1) = 0 then 

𝑥 = 0, 𝑦 = 0 → 𝑦 = 1 

𝑥 = 0, 𝑦 = 1 → 𝑦 = 0 

𝑥 = 1, 𝑦 = 0 → 𝑦 = 0 

𝑥 = 1, 𝑦 = 1 → 𝑦 = 1 

In this case 𝑈𝑓  is the matrix: 

 

𝑈𝑓 =             (

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) 

Note: 𝑈𝑓  cannot be decomposed into a Kronecker product of two 2 × 2 matrices. 𝑈𝑓  is a kind of 

inverted CNOT, 𝐶𝑁𝑂𝑇. It is unitary: 

(

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) (

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) 

We summarize: 

① 𝑓(𝑥) 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑓(𝑥) = 0 

𝑈𝑓 = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) 

② 𝑓(𝑥) 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑓(𝑥) = 1 

𝑈𝑓 = (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) 

③ 𝑓(𝑥) 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑, 𝑓(0) = 0, 𝑓(1) = 1 

𝑈𝑓 = (

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

) 

④ 𝑓(𝑥) 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑, 𝑓(0) = 1, 𝑓(1) = 0 

𝑈𝑓 = (

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) 

input 

00 

01 

10 

11 

00    01    10   11 output 

input 

00 

01 

10 

11 

00    01    10   11 output 
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We check by help of quirk: https://algassert.com/quirk 

① 

 

② 

 

③ 

 

④ 

 

We express in terms of vectors and matrices. 

|01⟩ = (
1
0

) ⨂ (
0
1

) = (

0
1
0
0

) 

The double Hadamard: 

1

√2
(

1 1
1 −1

) ⨂
1

√2
(

1 1
1 −1

) =
1

2
(

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

) 

The Hadamard on line one: 

1

√2
(

1 1
1 −1

) ⨂ (
1 0
0 1

) =
1

√2
(

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

) 

  

Note: We compose the 

𝐶𝑁𝑂𝑇 by first inverting 

qubit one and then 

applying a 𝐶𝑁𝑂𝑇. 
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The NOT on line two: 

(
1 0
0 1

) ⨂ (
0 1
1 0

) = (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) 

The CNOT from line one to line two: 

(

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

) 

The NOT on line one: 

(
0 1
1 0

) ⨂ (
1 0
0 1

) = (

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

) 

We applicate:  

① 

1

√2
(

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

)
1

2
(

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

) (

0
1
0
0

) =
1

2√2
(

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

) (

1
−1
1

−1

) = 

1

2√2
(

2
−2
0
0

) =
1

√2
(

1
−1
0
0

) 

We decompose into a Kronecker product: 

1

√2
(

1
−1
0
0

) = (
1
0

) ⨂
1

√2
(

1
−1

) 

This corresponds to the solution on the conceptual level: 

|0⟩ (
(|0⟩ − |1⟩)

√2
) 

 

② 

1

√2
(

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

) (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
1

2
(

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

) (

0
1
0
0

) = 

1

2√2
(

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

) (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) (

1
−1
1

−1

) = 

double Hadamard single Hadamard 

double Hadamard single Hadamard NOT 
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1

2√2
(

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

) (

−1
1

−1
1

) =
1

2√2
(

−2
2
0
0

) =
1

√2
(

−1
1
0
0

) 

We decompose into a Kronecker product: 

1

√2
(

−1
1
0
0

) = − (
1
0

) ⨂
1

√2
(

1
−1

) 

This corresponds to the solution on the conceptual level: 

−|0⟩ (
(|0⟩ − |1⟩)

√2
) 

 

③ 

1

√2
(

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

) (

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
1

2
(

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

) (

0
1
0
0

) = 

1

2√2
(

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

) (

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

) (

1
−1
1

−1

) = 

1

2√2
(

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

) (

1
−1
−1
1

) =
1

2√2
(

0
0
2

−2

) =
1

√2
(

0
0
1

−1

) 

We decompose into a Kronecker product: 

1

√2
(

0
0
1

−1

) = (
0
1

) ⨂
1

√2
(

1
−1

) 

This corresponds to the solution on the conceptual level: 

|1⟩ (
(|0⟩ − |1⟩)

√2
) 

 

④ 

1

√2
(

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

) (

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

) (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
1

2
(

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

) (

0
1
0
0

) = 

1

2√2
(

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

) (

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

) (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) (

1
−1
1

−1

) = 

double Hadamard single Hadamard CNOT 

double Hadamard single Hadamard                 CNOT                       NOT 



Quantum Parallelism – Deutsch Algorithm 

D. Kriesell  page 11 of 11 

1

2√2
(

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

) (

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

) (

−1
1

−1
1

) = 

1

2√2
(

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

) (

−1
1
1

−1

) = 

1

2√2
(

0
0

−2
2

) =
1

√2
(

0
0

−1
1

) 

We decompose into a Kronecker product: 

1

√2
(

0
0

−1
1

) = − (
0
1

) ⨂
1

√2
(

1
−1

) 

This corresponds to the solution on the conceptual level: 

−|1⟩ (
(|0⟩ − |1⟩)

√2
) 

 

 


