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Alice has a qubit |𝜓⟩ she wants to transmit to Bob. Alice don’t know the state of this qubit. 

Alice is unable to physically send her qubit |𝜓⟩to Bob (say, by Fed-Ex …). 

Alice is able to send classical information. 

Alice and Bob share an entangled qubit, |𝜙+⟩, one of the Bell states: 

|𝜙+⟩ =
1

√2
(|00⟩ + |11⟩) 

Alice possesses the second qubit of |𝜙+⟩, Bob the first one. 

Now the following procedure takes place: 

 

 

 

 

 

Note:  

Single lines denote qubits 

Double lines denote classical bits 

 Denote the Hadamard gate 

 Denote a bit flip (the Pauli x-gate) 

 Denote a phase flip (the Pauli z-gate) 

 

 Denote a controlled Not gate 

Note: The choice of the gates on the line |𝐵⟩ will become clear at the end of the process. 

The procedure goes as follows. 

First Alice: 

- Alice performs a 𝐶𝑁𝑂𝑇 from |𝜓⟩ to |𝐴⟩ 

- Alice performs a Hadamard on |𝜓⟩ 

- Alice measures |𝐴⟩ and |𝜓⟩ obtaining the classical bits 𝑚1 and 𝑚2 

- Alice sends classical bits 𝑚1 and 𝑚2 to Bob 

Then Bob: 

- Bob first performs a 𝐶𝑁𝑂𝑇 controlled by 𝑚2 on |𝐵⟩ 

- Bob second performs a phase flip controlled by 𝑚1 on |𝐵⟩ 

The result is the teleportation: 

|𝐵⟩ 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 |𝜓⟩ 

|𝜓⟩ 

|𝜙+⟩ 

𝐻 

𝐶𝑁𝑂𝑇 

|𝜓⟩ |𝐵⟩ 

|𝐴⟩ 

𝐻 

𝑋 

𝑍 

𝐶𝑁𝑂𝑇 

Region of Alice 

Region of Bob 
𝑍 

𝑚1 

𝑚2 

𝐶𝑁𝑂𝑇 
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Let us take a closer look at the scenario. The initial state of the three qubits |𝜓⟩ and |𝜙+⟩ we name 

|𝜋0⟩. 

In detail: 

|𝜋0⟩ = |𝐵⟩|𝐴⟩|𝜓⟩ or |𝐵𝐴𝜓⟩ 

The qubit |𝜓⟩ of Alice is in the state 𝛼|0⟩ + 𝛽|1⟩: 

We get: 

|𝜋0⟩ = |𝜙
+⟩(𝛼|0⟩ + 𝛽|1⟩) 

We expand |𝜙+⟩: 

|𝜋0⟩ = (
1

√2
(|00⟩ + |11⟩)) (𝛼|0⟩ + 𝛽|1⟩) = 

𝛼|000⟩ + 𝛼|110⟩ + 𝛽|001⟩ + 𝛽|111⟩

√2
 

We apply the 𝐶𝑁𝑂𝑇 on |𝜋0⟩ and get |𝜋1⟩.  

Note that the 𝐶𝑁𝑂𝑇 is controlled by the last qubit and acts on the second qubit.  

|𝜋1⟩ =
𝛼|000⟩ + 𝛼|110⟩ + 𝛽|011⟩ + 𝛽|101⟩

√2
 

We rewrite: 

|𝜋1⟩ =
𝛼|000⟩ + 𝛼|110⟩ + 𝛽|011⟩ + 𝛽|101⟩

√2
=
𝛼|00⟩|0⟩ + 𝛼|11⟩|0⟩ + 𝛽|01⟩|1⟩ + 𝛽|10⟩|1⟩

√2
= 

(𝛼|00⟩ + 𝛼|11⟩)|0⟩ + (𝛽|01⟩ + 𝛽|10)|1⟩

√2
 

We apply the Hadamard on |𝜓⟩: 

𝐻|𝜋1⟩ =

(𝛼|00⟩ + 𝛼|11⟩)
1

√2
(|0⟩ + |1⟩) + (𝛽|01⟩ + 𝛽|10)

1

√2
(|0⟩ − |1⟩)

√2
= 

(𝛼|00⟩ + 𝛼|11⟩)(|0⟩ + |1⟩) + (𝛽|01⟩ + 𝛽|10)(|0⟩ − |1⟩)

2
= 

𝛼|000⟩ + 𝛼|001⟩ + 𝛼|110⟩ + 𝛼|111⟩ + 𝛽|010⟩ − 𝛽|011⟩ + 𝛽|100⟩ − 𝛽|101⟩

2
= 𝜋2 

This is the state after Alice applied the 𝐶𝑁𝑂𝑇 and the Hadamard onto her two qubits, |𝜓⟩ and her 

half of |𝜙+⟩. 

We remember that constants can float freely through tensor products and regroup 𝜋2: 

(𝛼|000⟩ + 𝛼|001⟩ + 𝛼|110⟩ + 𝛼|111⟩ + 𝛽|010⟩ − 𝛽|011⟩ + 𝛽|100⟩ − 𝛽|101⟩) → 

1

2
(𝛼|000⟩ + 𝛽|100⟩ + 𝛼|001⟩ − 𝛽|101⟩ + 𝛼|110⟩ + 𝛽|010⟩ + 𝛼|111⟩ − 𝛽|011⟩) = 

1

2
((𝛼|0⟩ + 𝛽|1⟩)|00⟩ + (𝛼|0⟩ − 𝛽|1⟩)|01⟩ + (𝛼|1⟩ + 𝛽|0⟩)|10⟩ + (𝛼|1⟩ − 𝛽|0⟩)|11⟩) 
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We remember the ordering: |𝜋2⟩ = |𝐵⟩|𝐴⟩|𝜓⟩ 

The effect of the reordering: It seems as if |𝐵⟩ has changed and depends upon 𝛼 and 𝛽. 

Now Alice measures. We take a look at the possible results of 𝑚1 and 𝑚2: 

𝑝𝑟𝑜𝑏(𝑚1𝑚2 = 00) =
1

4
‖𝛼|0⟩ + 𝛽|1⟩‖2 =

1

4
 

𝑝𝑟𝑜𝑏(𝑚1𝑚2 = 01) =
1

4
‖𝛼|0⟩ − 𝛽|1⟩‖2 =

1

4
 

𝑝𝑟𝑜𝑏(𝑚1𝑚2 = 10) =
1

4
‖𝛼|1⟩ + 𝛽|0⟩‖2 =

1

4
 

𝑝𝑟𝑜𝑏(𝑚1𝑚2 = 11) =
1

4
‖𝛼|1⟩ + 𝛽|0⟩‖2 =

1

4
 

All outcomes on Alice’ side has equal probability. We have no dependency on 𝛼 and 𝛽 meaning that 

the choice of 𝛼 and 𝛽 have no impact on the result of the measurement.  

Note: After the measurement the qubit of Alice is destroyed so we will get no conflict with the no-

clone theorem. 

We build a list of all measurement outcomes Alice takes and the conditional state of |𝐵⟩|𝐴⟩|𝜓⟩: 

𝑚1𝑚2 probability Conditional state |𝐵⟩|𝐴⟩|𝜓⟩ 
 

00 1

4
 

(𝛼|0⟩ + 𝛽|1⟩)|00⟩ 

01 1

4
 

(𝛼|0⟩ − 𝛽|1⟩)|01⟩ 

10 1

4
 

(𝛼|1⟩ + 𝛽|0⟩)|10⟩ 

11 1

4
 

(𝛼|1⟩ − 𝛽|0⟩)|11⟩ 

 

Note: No information about 𝛼 and 𝛽 could be gained by measurement on Bob’s side. 

Now Bob performs his operations on qubit |𝐵⟩ according to the measurement results he got from 

Alice. We add this to our table: 

𝑚1𝑚2 probability Conditional state |𝐵⟩|𝐴⟩|𝜓⟩ Operation on |𝐵⟩ Final state of |𝐵⟩ 

00 
1

4
 (𝛼|0⟩ + 𝛽|1⟩)|00⟩ 𝐼𝑑 𝛼|0⟩ + 𝛽|1⟩ 

01 
1

4
 (𝛼|0⟩ − 𝛽|1⟩)|01⟩  𝛼|0⟩ + 𝛽|1⟩ 

10 
1

4
 (𝛼|1⟩ + 𝛽|0⟩)|10⟩  𝛼|0⟩ + 𝛽|1⟩ 

11 
1

4
 (𝛼|1⟩ − 𝛽|0⟩)|11⟩  𝛼|0⟩ + 𝛽|1⟩ 

 

We see that Bob’s qubit |𝐵⟩ now is in the state Alice’s qubit |𝜓⟩ was. The state of the qubit has been 

“teleported”, |𝜓⟩ and |𝜙+⟩ are destroyed. 

Note: You may find more information at: 

https://learning.quantum.ibm.com/course/basics-of-quantum-information/entanglement-in-action 

𝑋 𝑍 

𝑋 

𝑍 

https://learning.quantum.ibm.com/course/basics-of-quantum-information/entanglement-in-action


Quantum Teleportation 

D. Kriesell  page 4 of 5 

So far, we have worked on the conceptual level with bras and kets. 

How does this look like if we work with state vectors? Let us try this too. 

We have in total three qubits so our state vector will have 8 dimensions. 

Note: You may refer to “Teleportation_1” if you want to derive the explicit forms of the gates 𝐶𝑁𝑂𝑇, 

𝑋 and 𝑍. 

Using the same names as at the conceptual level we have: 

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ = (
𝛼
𝛽) 

|𝜙+⟩ =
1

√2
(|00⟩ + |11⟩) =

1

√2
(

1
0
0
1

) 

Note: |0⟩⨂|0⟩ = (
1
0
)⨂(

1
0
) = (

1
0
0
0

), |1⟩⨂|1⟩ = (
0
1
)⨂(

0
1
) = (

0
0
0
1

) 

|𝜋0⟩ = |𝜓⟩|𝜙
+⟩ = |𝜓⟩⨂|𝜙+⟩ = 

1

√2
(
𝛼
𝛽)⨂(

1
0
0
1

) =
1

√2

(

 
 
 
 
 

𝛼
0
0
𝛼
𝛽
0
0
𝛽)

 
 
 
 
 

 

The CNOT from line one to line two: 

(

 
 
 
 
 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0)

 
 
 
 
 

 

We apply the CNOT from line one to line two: 

(

 
 
 
 
 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0)

 
 
 
 
 

1

√2

(

 
 
 
 
 

𝛼
0
0
𝛼
𝛽
0
0
𝛽)

 
 
 
 
 

=
1

√2

(

 
 
 
 
 

𝛼
0
0
𝛼
0
𝛽
𝛽
0)
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Hadamard on line one: 

1

√2

(

 
 
 
 
 

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1)

 
 
 
 
 

 

We apply the Hadamard gate onto line one: 

1

√2

(

 
 
 
 
 

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1)

 
 
 
 
 

1

√2

(

 
 
 
 
 

𝛼
0
0
𝛼
0
𝛽
𝛽
0)

 
 
 
 
 

=
1

2

(

 
 
 
 
 

𝛼
𝛼
𝛽
−𝛽
𝛽
−𝛽
𝛼
𝛼 )

 
 
 
 
 

 

We compare this with the conceptual level, there we had: 

1

2
((𝛼|0⟩ + 𝛽|1⟩)|00⟩ + (𝛼|0⟩ − 𝛽|1⟩)|01⟩ + (𝛼|1⟩ + 𝛽|0⟩)|10⟩ + (𝛼|1⟩ − 𝛽|0⟩)|11⟩) 

We see the correspondence:  

 
1

2

(

 
 
 
 
 

𝛼
𝛼
𝛽
−𝛽
𝛽
−𝛽
𝛼
𝛼 )

 
 
 
 
 

 
1

2

(

 
 
 
 
 

𝛼
𝛼
𝛽
−𝛽
𝛽
−𝛽
𝛼
𝛼 )

 
 
 
 
 

  

1

2

(

 
 
 
 
 

𝛼
𝛼
𝛽
−𝛽
𝛽
−𝛽
𝛼
𝛼 )

 
 
 
 
 

  
1

2

(

 
 
 
 
 

𝛼
𝛼
𝛽
−𝛽
𝛽
−𝛽
𝛼
𝛼 )

 
 
 
 
 

   

 

Measuring collapses the state vector leaving different residues. They are determined so Bob can 

choose the gates he must use to restore the original vector |𝜓⟩ of Alice. 

(

𝛼
0
0
0

) 

(

𝛽
0
0
0

) 

|00⟩ → (
𝛼
𝛽) 

 

(

0
𝛼
0
0

) 

(

0
−𝛽
0
0

) 

|01⟩ → (
𝛼
−𝛽) 

(

0
0
𝛽
0

) 

(

0
0
𝛼
0

) 

|10⟩ → (
𝛽
𝛼
) 

(

0
0
0
−𝛽

) 

(

0
0
0
𝛼

) 

|11⟩ → (
−𝛽
𝛼
) 

collapse  

to 

remains remains 

remains remains 

collapse  

to 

collapse  

to 

collapse  

to 


