Most classical gates are one-way. After processing the input is not fully recoverable.
Truth-table for "and":

A	B	A and B
0	0	0
0	1	0
1	0	0
1	1	1

Only in case the output equals 1 we know that both inputs are 1 too. In case the output is 0 we cannot determine the state of inputs A or B.

The NOT-gate is reversible:

A	\bar{A}
0	1
1	0

Quantum gates need to be reversible. Each output must correspond to a specific input. The following are reversible quantum gates.

NOT

I	0
0	1
1	0

SWAP

Note: Swap only visible if $I_{1} \neq I_{2}$.
CNOT

The CNOT negates I_{2} if $I_{1}=1$.

I_{1}	I_{2}	O_{1}	O_{2}
0	0	0	0
0	1	1	0
1	0	0	1
1	1	1	1

I_{1}	I_{2}	O_{1}	O_{2}
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

TOFFOLI

The Toffoli-gate negates I_{3} if $I_{1}=I_{2}=1$.

I_{1}	I_{2}	I_{3}	O_{1}	O_{2}	O_{3}
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	1
1	1	1	1	1	0

FREDKIN

If $I_{1}=1$ the Fredkin-gate swaps I_{2} and I_{3}. The effect is visible only if $I_{2} \neq I_{3}$.

I_{1}	I_{2}	I_{3}	O_{1}	O_{2}	O_{3}
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	0	1
1	1	1	1	1	1

We can put this in other words.
The FREDKIN-gate swaps I_{2} and I_{3} if $I_{1}=1$, a controlled swap.
The TOFFOLI-gate negates I_{3} if I_{1} and I_{2} both are 1 , a double controlled not.
The CNOT-gate negates I_{2} if $I_{1}=1$, a controlled not.
The SWAP and the NOT do what they are expected to do.
Note: The gates are reversible because we have unique combinations on input-side and output-side.

Example

For easier reading we name the lines a, b, c, d and omit the distinctions between input and output.
We want a combination that

- \quad swaps lines b and d if line $a=0$ and
- \quad swaps lines c and d if line $a=1$ and
- leaves line a untouched

input				output			
a	b	c	d	a	b	c	d
0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0
0	1	0	0	0	0	0	1
1	1	0	0	1	1	0	0
0	0	1	0	0	0	1	0
1	0	1	0	1	0	0	1
0	1	1	0	0	0	1	1
1	1	1	0	1	1	0	1
0	0	0	1	0	1	0	0
1	0	0	1	1	0	1	0
0	1	0	1	0	1	0	1
1	1	0	1	1	1	1	0
0	0	1	1	0	1	1	0
1	0	1	1	1	0	1	1
0	1	1	1	0	1	1	1
1	1	1	1	1	1	1	1

Example

We want a combination that

- \quad swaps lines c and d if line $a=b=1$

We need an auxiliary line e to perform this.

input				output			
a	b	c	d	a	b	c	d
0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0
0	1	0	0	0	1	0	0
1	1	0	0	1	1	0	0
0	0	1	0	0	0	1	0
1	0	1	0	1	0	1	0
0	1	1	0	0	1	1	0
1	1	1	0	1	1	0	1
0	0	0	1	0	0	0	1
1	0	0	1	1	0	0	1
0	1	0	1	0	1	0	1
1	1	0	1	1	1	1	0
0	0	1	1	0	0	1	1
1	0	1	1	1	0	1	1
0	1	1	1	0	1	1	1
1	1	1	1	1	1	1	1

