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This paper follows a lecture Peter Shor has given at  

https://openlearninglibrary.mit.edu/courses/course-

v1:MITx+8.370.2x+1T2018/courseware/Week2/lectures_U2_3_simons_alg/?child=last 

In the first part we use a simple function 𝑓(𝑥): {0 1} × {0 1} → {0 1} × {0 1} and examine the case 

the function is 1: 1 and the case the function is 2: 1.  

1: 1 the function is bijective, 𝑓(𝑥1) ≠ 𝑓(𝑥2) for 𝑥1 ≠ 𝑥2. 

2: 1 there exists a constant 𝑐 with: 𝑓(𝑥) = 𝑓(𝑥⨁𝑐). 

Note: ⨁ = addition modulo 2. 

We work through the first part on conceptual level as well as on basic level.  

In the second part we use a more elaborated function: 

𝑓(𝑥): {0 1} × {0 1} × …× {0 1} → {0 1} × {0 1} × …× {0 1} 

We go through the process again, this time only on conceptual level and try to generalize it. 

  

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+8.370.2x+1T2018/courseware/Week2/lectures_U2_3_simons_alg/?child=last
https://openlearninglibrary.mit.edu/courses/course-v1:MITx+8.370.2x+1T2018/courseware/Week2/lectures_U2_3_simons_alg/?child=last
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Simple example, conceptual level 
For our example we use the following circuit: 

 

 

 

 

We use a function 𝒇(𝒙): {𝟎 𝟏} × {𝟎 𝟏} → {𝟎 𝟏} × {𝟎 𝟏}: 

𝑓(00) = 01 𝑓(01) = 10 𝑓(10) = 11 𝑓(11) = 00 
 

Obviously 𝑓 is 1: 1, the constant 𝑐 = 00, 𝑓(𝑥) = 𝑓(𝑥⨁𝑐). 

For information only: The matrix for this function (shortform): 

 

(

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) 

Note: This is a typical permutation matrix with a single "1" in every row/column. This matrix is 

equivalent to the identity matrix and in the end we have no oracle at all.  

Note: You find the complete matrix in the basic level. 

We start with input |0000⟩. 

We apply the Hadamards: 

1

2
((|0⟩ + |1⟩)(|0⟩ + |1⟩)|00⟩) =

1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩)|00⟩ = 

1

2
(|0000⟩ + |0100⟩ + |1000⟩ + |1100⟩) 

We apply the oracle, using our example function above: 

1

2
(|0001⟩ + |0110⟩ + |1011⟩ + |1100⟩) 

We apply the Hadamards after the oracle a second time. This results in: 

1

4
((|0⟩ + |1⟩)(|0⟩ + |1⟩)|01⟩ + (|0⟩ + |1⟩)(|0⟩ − |1⟩)|10⟩ + (|0⟩ − |1⟩)(|0⟩ + |1⟩)|11⟩

+ (|0⟩ − |1⟩)(|0⟩ − |1⟩)|00⟩) 

We expand the products and get: 

1

4
(|0000⟩ + |0001⟩ + |0010⟩ + |0011⟩ − |0100⟩ + |0101⟩ − |0110⟩ + |0111⟩ − |1000⟩ + |1001⟩

+ |1010⟩ − |1011⟩ + |1100⟩ + |1101⟩ − |1110⟩ − |1111⟩) 

 

|0⟩ 

|0⟩ 

𝑈𝑓  
|0⟩ 

H 

H 

|0⟩ 

 
Oracle 

𝑈𝑓  

H 

H 

Note: The oracle takes the 

first two qubits as input but 

modifies the second two 

qubits only. 

𝑥 

00
01
10
11

 

00 01 10 11 
𝑓(𝑥) 
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We collect the first two qubits: 

1

4
(|00⟩(|00⟩ + |01⟩ + |10⟩ + |11⟩) − |01⟩(|00⟩ − |01⟩ + |10⟩ − |11⟩)

− |10⟩(|00⟩ − |01⟩ − |10⟩ + |11⟩) + |11⟩(|00⟩ + |01⟩ − |10⟩ − |11⟩)) 

We get probabilities: 

|00⟩ > 0 |01⟩ > 0 |10⟩ > 0 |11⟩ > 0 
 

We achieved no reduction and assume the function is 1: 1. 

We change the function to: 

𝑓(00) = 00 𝑓(01) = 01 𝑓(10) = 00 𝑓(11) = 01 
 

Obviously 𝑓 is 2: 1, the constant 𝑐 = 10: 𝑓(𝑥) = 𝑓(𝑥⨁𝑐) 

For information only: The matrix for this function (shortform): 

 

(

1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0

) 

Note: The matrix is not of full rank 4 × 4. 

Note: You find the complete matrix in the basic level. 

We start with input |0000⟩. 

We apply the Hadamards: 

1

2
((|0⟩ + |1⟩)(|0⟩ + |1⟩)|00⟩) =

1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩)|00⟩ = 

1

2
(|0000⟩ + |0100⟩ + |1000⟩ + |1100⟩) 

We apply the oracle, using our example function above: 

1

2
(|0000⟩ + |0101⟩ + |1000⟩ + |1101⟩) 

We apply the Hadamards after the oracle a second time. This results in: 

1

4
((|0⟩ + |1⟩)(|0⟩ + |1⟩)|00⟩ + (|0⟩ + |1⟩)(|0⟩ − |1⟩)|01⟩ + (|0⟩ − |1⟩)(|0⟩ + |1⟩)|00⟩

+ (|0⟩ − |1⟩)(|0⟩ − |1⟩)|01⟩) 

We expand the products and get: 

1

4
(|0000⟩ + |0100⟩ + |1000⟩ + |1100⟩ + |0001⟩ − |0101⟩ + |1001⟩ − |1101⟩ + |0000⟩ + |0100⟩

− |1000⟩ − |1100⟩ + |0001⟩ − |0101⟩ − |1001⟩ + |1101⟩) = 

Note: The oracle takes the 

first two qubits as input but 

modifies the second two 

qubits only. 

𝑥 

00
01
10
11

 

00 01 10 11 
𝑓(𝑥) 
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1

2
(|0000⟩ + |0100⟩ + |0001⟩ − |0101⟩) 

We collect the first two qubits: 

1

2
(|00⟩(|00⟩ + |01⟩) + |01⟩(|00⟩ − |01⟩)) 

We get probabilities: 

|00⟩ > 0 |01⟩ > 0 |10⟩ = 0 |11⟩ = 0 
 

As 00 is no valid value for 𝑐 we got the result 𝑐 = 01. 

We achieved reduction and assume the function is 2: 1. 

Simple example, basic level 
We use the circuit above: 

 

 

 

 

We work with the 1: 1 function 
The first Hadamards applied to the input vector: 

1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1
1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0
0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0
0 0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1
1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0
0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0
0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0
0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 )

 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0)

 
 
 
 
 
 
 
 
 
 
 
 
 

=
1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

We construct the oracle. 

We use the function: 

𝑓(00) = 01 𝑓(01) = 10 𝑓(10) = 11 𝑓(11) = 00 
 

The oracle acts: 

|0000⟩ → |0001⟩ |0001⟩ → |0000⟩ |0010⟩ → |0011⟩ |0011⟩ → |0010⟩ 
|0100⟩ → |0110⟩ |0101⟩ → |0111⟩ |0110⟩ → |0100⟩ |0111⟩ → |0101⟩ 
|1000⟩ → |1011⟩ |1001⟩ → |1010⟩ |1010⟩ → |1001⟩ |1011⟩ → |1000⟩ 
|1100⟩ → |1100⟩ |1101⟩ → |1101⟩ |1110⟩ → |1110⟩ |1111⟩ → |1111⟩ 

 

|0⟩ 

|0⟩ 

𝑈𝑓  
|0⟩ 

H 

H 

|0⟩ 

 
Oracle 

𝑈𝑓  

H 

H 
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We construct the oracle from the conceptual level: 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

We apply the oracle: 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1)

 
 
 
 
 
 
 
 
 
 
 
 
 

1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0)

 
 
 
 
 
 
 
 
 
 
 
 
 

=
1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
0)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

We apply the Hadamards again: 

1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1
1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0
0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0
0 0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1
1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0
0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0
0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0
0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 )

 
 
 
 
 
 
 
 
 
 
 
 
 

1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
0)

 
 
 
 
 
 
 
 
 
 
 
 
 

=
1

4

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1
1
1
1
−1
1
−1
1
−1
1
1
−1
1
1
−1
−1)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

We compare with the result from the conceptual level. There we got: 

1

4
(|0000⟩ + |0001⟩ + |0010⟩ + |0011⟩ − |0100⟩ + |0101⟩ − |0110⟩ + |0111⟩ − |1000⟩ + |1001⟩ + |1010⟩ − |1011⟩

+ |1100⟩ + |1101⟩ − |1110⟩ − |1111⟩) 

|0000⟩ 

↓ 

 

|1111⟩ 

↓ 

 

|0000⟩ → 

|1111⟩ → 

input 

output 
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These are 16 basis vectors, we build them with the appropriate signs: 

1

4

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1
1
1
1
−1
1
−1
1
−1
1
1
−1
1
1
−1
−1)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Both results match. The probability to measure one of the basis vectors is (
1

4
)
2

, we achieved no 

reduction in probability. 

We work with the 2: 1 function.  
The first Hadamards applied to the input vector: 

1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1
1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0
0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0
0 0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1
1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0
0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0
0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0
0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 )

 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0)

 
 
 
 
 
 
 
 
 
 
 
 
 

=
1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

We construct the oracle. 

We use the function: 

𝑓(00) = 00 𝑓(01) = 01 𝑓(10) = 00 𝑓(11) = 01 
 

The constant or “secret string” 𝑠 ≔ 10 

𝑓(𝑥) = 𝑓(𝑥⨁10) 

We apply the oracle: 

 

 

 

 

 

|0⟩ 

|0⟩ 

|0⟩ 

H 

H 

|0⟩ 

 H 

H 

prepare      act 
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The logic behind the scheme: 

1. We place a CNOT on every pair of qubits – we prepare the calculation. 

2. We search for the first "1" in the secret string. This defines the control line. 

3. For every "1" in the secret string we place a CNOT between the control line and the target 

qubits – we are acting. 

The oracle acts: 

|0000⟩ → |0000⟩ |0001⟩ → |0001⟩ |0010⟩ → |0010⟩ |0011⟩ → |0011⟩ 
|0100⟩ → |0101⟩ |0101⟩ → |0100⟩ |0110⟩ → |0111⟩ |0111⟩ → |0110⟩ 
|1000⟩ → |1000⟩ |1001⟩ → |1001⟩ |1010⟩ → |1010⟩ |1011⟩ → |1011⟩ 
|1100⟩ → |1101⟩ |1101⟩ → |1100⟩ |1110⟩ → |1111⟩ |1111⟩ → |1110⟩ 

 

We construct the oracle from the conceptual level: 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note: This looks like a CNOT from qubit 2 to qubit 4. In fact, that is what remains from the three 

CNOTs, because the first CNOT and the third CNOT cancel. A CNOT applied to itself gives the identity 

matrix. 

Note: We can shift operators in the circuit from left to right as long as we do not cross “hot spots”.  

  

input 

output 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111)

 
 
 
 
 
 
 
 
 
 
 
 
 

→ 

1111 

0000 

0001 

0010 0100 

0011 0101 

0110 

0111 

1000 

1001 

1010 1100 

1011 1101 

1110 



Simon’s Algorithm 

D. Kriesell  page 8 of 17 

We construct the matrices: 

CNOT one 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

CNOT two 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

CNOT three is the same as CNOT one. 

  

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111)

 
 
 
 
 
 
 
 
 
 
 
 
 

→ 
input 

output 
1111 

0000 

0001 

0010 0100 

0011 0101 

0110 

0111 

1000 

1001 

1010 1100 

1011 1101 

1110 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111)

 
 
 
 
 
 
 
 
 
 
 
 
 

→ 
input 

output 
1111 

0000 

0001 

0010 0100 

0011 0101 

0110 

0111 

1000 

1001 

1010 1100 

1011 1101 

1110 
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We build the matrix product: (𝐶𝑁𝑂𝑇 𝑜𝑛𝑒) ∙ (𝐶𝑁𝑂𝑇 𝑡𝑤𝑜) ∙ (𝐶𝑁𝑂𝑇 𝑜𝑛𝑒): 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

This is the same matrix we constructed from the conceptual level. 

We apply the oracle: 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0)

 
 
 
 
 
 
 
 
 
 
 
 
 

1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0)

 
 
 
 
 
 
 
 
 
 
 
 
 

=
1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

We apply the Hadamards again: 

1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1
1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0
0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0
0 0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1
1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0
0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0
0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0
0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 )

 
 
 
 
 
 
 
 
 
 
 
 
 

1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1
0
0
0
0
1
0
0
1
0
0
0
0
1
0
0)

 
 
 
 
 
 
 
 
 
 
 
 
 

=
1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1
1
0
0
1
−1
0
0
0
0
0
0
0
0
0
0 )
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We compare with the result from the conceptual level. There we got: 

1

2
(|0000⟩ + |0001⟩ + |0100⟩ − |0101⟩) 

These are 4 basis vectors, we build them with the appropriate signs: 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11)

 
 
 
 
 
 
 
 
 
 
 
 
 

→
1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1
1
0
0
1
−1
0
0
0
0
0
0
0
0
0
0 )

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Both results match. We get a probability ((
1

2
)
2
+ (

1

2
)
2
=
1

2
) for vectors |00⟩ and|01⟩  

and zero probability for vectors |10⟩ and|11⟩. 

Basic level, slow motion 
We take a closer look at the action of the oracle.  

 

 

 

 

 

        (1)      (2)   (3)  (4)  (5)      (6) 

We take a look at how the input changes after each matrix: 

(1)   𝐻𝑎𝑑𝑎𝑚𝑎𝑟𝑑   (2)   𝐶𝑁𝑂𝑇1   (3)    𝐶𝑁𝑂𝑇2    (4)   𝐶𝑁𝑂𝑇3   (5)    𝐻𝑎𝑑𝑎𝑚𝑎𝑟𝑑    (6) 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0)

 
 
 
 
 
 
 
 
 
 
 
 
 

                         
1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0)

 
 
 
 
 
 
 
 
 
 
 
 
 

                
1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0)

 
 
 
 
 
 
 
 
 
 
 
 
 

                    
1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1)

 
 
 
 
 
 
 
 
 
 
 
 
 

                 
1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1
0
0
0
0
1
0
0
1
0
0
0
0
1
0
0)

 
 
 
 
 
 
 
 
 
 
 
 
 

                          
1

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1
1
0
0
1
−1
0
0
0
0
0
0
0
0
0
0 )

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

|0⟩ 

|0⟩ 

|0⟩ 

H 

H 

|0⟩ 

 H 

H 

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
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The input is a single basis vector in position 0.  

The first pair of Hadamards set the superposition, the positions 4, 8 and 12. 

The first CNOT moves position 8 to 10 and 12 to 14. 

The second CNOT moves position 4 to 5 and 14 to 15. 

The third CNOT shifts back position 10 to 8 and 15 to 13. 

The last Hadamard “goes fail” and produces another superposition by shifting position 13, 8 and 5 to 

5,4 and 3.  

Second part 
We use a function  

𝑓(𝑥): {0 1} × {0 1} × …× {0 1} → {0 1} × {0 1} × …× {0 1} 

Domain and range are bit strings of length 𝑛. 

𝑓(𝑥) is either 1: 1, bijective 𝑥 ≠ 𝑦 → 𝑓(𝑥) ≠ 𝑓(𝑦) or 𝑓(𝑥) is 2: 1 with 𝑓(𝑥) = 𝑓(𝑥⨁𝑐). 

⨁ = addition modulo 2. 

The task: 

Determine which of the two options applies to 𝑓 and, if applicable, determine the constant 𝑐. 

Example: 

𝑓(𝑥): {0 1}4 → {0 1}4 

𝑥            →               𝑓(𝑥) 𝑥           →                𝑓(𝑥) 
{0000} {1101} {1000} {1000} 
{0001} {0110} {1001} {1011} 
{0010} {0101} {1010} {1001} 
{0011} {1111} {1011} {0001} 
{0100} {0110} {1100} {1011} 
{0101} {1101} {1101} {1000} 
{0110} {1111} {1110} {0001} 
{0111} {0101} {1111} {1001} 

 

The function is 2: 1, the constant 𝑐 = 0101. 𝑐 is often referred as “secret string”. 

Solving classically 
We need to find one pair 𝑓(𝑥) = 𝑓(𝑥⨁𝑠).  

For 𝑛 bits we have 2𝑛 pairs (𝑥𝑖, 𝑓(𝑥𝑖)).  

Doing this in a deterministic way we need ≤ 2𝑛−1 + 1 queries to find 𝑐 according to the pigeonhole 

principle: Θ(2𝑛) 

Probabilistic we need Θ(2
𝑛

2) queries to get the solution with high probability. 
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Solving quantum 
For our example we use the following circuit: 

 

 

 

 

 

 

 

We start with input |𝑥⟩|0⟩ = |01010000⟩. 

We apply the Hadamards: 

1

√24
((|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)|0000⟩) = 

1

4
(|0000⟩ − |0001⟩ + |0010⟩ − |0011⟩ − |0100⟩ + |0101⟩ − |0110⟩ + |0111⟩ + |1000⟩ − |1001⟩

+ |1010⟩ − |1011⟩ − |1100⟩ + |1101⟩ − |1110⟩ + |1111⟩)|0000⟩ = 

1

4
(|00000000⟩ − |00010000⟩ + |00100000⟩ − |00110000⟩ − |01000000⟩ + |01010000⟩

− |01100000⟩ + |01110000⟩ + |10000000⟩ − |10010000⟩ + |10100000⟩

− |10110000⟩ − |11000000⟩ + |11010000⟩ − |11100000⟩ + |11110000⟩) 

We apply the oracle, using our example function above: 

1

4
(|00001101⟩ − |00010110⟩ + |00100101⟩ − |00111111⟩ − |01000110⟩ + |01011101⟩

− |01101111⟩ + |01110101⟩ + |10001000⟩ − |10011011⟩ + |10101001⟩

− |10110001⟩ − |11001011⟩ + |11011000⟩ − |11100001⟩ + |11111001⟩) 

We apply the Hadamards after the oracle a second time. This results in: 

1

16
[ 

+((|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩)|1101⟩) 

−((|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)|0110⟩) 

+((|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)|0101⟩) 

−((|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩)|1111⟩) 

−((|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩)|0110⟩) 

+((|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)|1101⟩) 

−((|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)|1111⟩) 

+((|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩)|0101⟩) 

+((|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩)|1000⟩) 

+((|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)|1011⟩) 

+((|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)|1001⟩) 

−((|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩)|0001⟩) 

−((|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩)|1011⟩) 

+((|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)|1000⟩) 

|𝑥⟩ 

|𝑥⟩ 

|𝑥⟩ 

H 

H 

|𝑥⟩ 

|0⟩ 

|0⟩ 

|0⟩ 

|0⟩ 

H 

H 

H 

H 

H 

H 

Note: double lines mean classical bits. 

Note: |𝑥⟩ are the input values, ranging 

from |0000⟩ to |1111⟩. 

Note: we need to apply this quantum 

circuit several times to compute 𝑐. 

Note: The oracle takes the first four 

qubits as input but modifies the second 

four ones. 

 

 

prepare      act 
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−((|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)|0001⟩) 

+((|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩)|1001⟩) 

] 

 

We expand the products and get: 

1

16
[ 

|00001101⟩ + |00011101⟩ + |00101101⟩ + |00111101⟩ + |01001101⟩ + |01011101⟩ + |01101101⟩
+ |01111101⟩ + |10001101⟩ + |10011101⟩ + |10101101⟩ + |10111101⟩
+ |11001101⟩ + |11011101⟩ + |11101101⟩ + |11111101⟩ 

−|00000110⟩ + |00010110⟩ − |00100110⟩ + |00110110⟩ − |01000110⟩ + |01010110⟩ − |01100110⟩
+ |01110110⟩ − |10000110⟩ + |10010110⟩ − |10100110⟩ + |10110110⟩
− |11000110⟩ + |11010110⟩ − |11100110⟩ + |11110110⟩ 

+|00000101⟩ + |00010101⟩ − |00100101⟩ − |00110101⟩ + |01000101⟩ + |01010101⟩ − |01100101⟩
− |01110101⟩ + |10000101⟩ + |10010101⟩ − |10100101⟩ − |10110101⟩
+ |11000101⟩ + |11010101⟩ − |11100101⟩ − |11110101⟩ 

−|00001111⟩ + |00011111⟩ + |00101111⟩ − |00111111⟩ − |01001111⟩ + |01011111⟩ + |01101111⟩
− |01111111⟩ − |10001111⟩ + |10011111⟩ + |10101111⟩ − |10111111⟩
− |11001111⟩ + |11011111⟩ + |11101111⟩ − |11111111⟩ 

−|00000110⟩ − |00010110⟩ − |00100110⟩ − |00110110⟩ + |01000110⟩ + |01010110⟩ + |01100110⟩
+ |01110110⟩ − |10000110⟩ − |10010110⟩ − |10100110⟩ + |10110110⟩
+ |11000110⟩ + |11010110⟩ + |11100110⟩ + |11110110⟩ 

+|00001101⟩ − |00011101⟩ + |00101101⟩ − |00111101⟩ − |01001101⟩ + |01011101⟩ − |01101101⟩
+ |01111101⟩ + |10001101⟩ − |10011101⟩ + |10101101⟩ − |10111101⟩
− |11001101⟩ + |11011101⟩ − |11101101⟩ + |11111101⟩ 

−|00001111⟩ − |00011111⟩ + |00101111⟩ + |00111111⟩ + |01001111⟩ + |01011111⟩ − |01101111⟩
− |01111111⟩ − |10001111⟩ − |10011111⟩ + |10101111⟩ + |10111111⟩
+ |11001111⟩ + |11011111⟩ − |11101111⟩ − |11111111⟩ 

+|00000101⟩ − |00010101⟩ − |00100101⟩ + |00110101⟩ − |01000101⟩ + |01010101⟩ + |01100101⟩
− |01110101⟩ + |10000101⟩ − |10010101⟩ − |10100101⟩ + |10110101⟩
− |11000101⟩ + |11010101⟩ + |11100101⟩ − |11110101⟩ 

+|00001000⟩ + |00011000⟩ + |00101000⟩ + |00111000⟩ + |01001000⟩ + |01011000⟩ + |01101000⟩
+ |01111000⟩ − |10001000⟩ − |10011000⟩ − |10101000⟩ − |10111000⟩
− |11001000⟩ − |11011000⟩ − |11101000⟩ − |11111000⟩ 

+|00001011⟩ − |00011011⟩ + |00101011⟩ − |00111011⟩ + |01001011⟩ − |01011011⟩ + |01101011⟩
− |01111011⟩ − |10001011⟩ + |10011011⟩ − |10101011⟩ + |10111011⟩
− |11001011⟩ + |11011011⟩ − |11101011⟩ + |11111011⟩ 

+|00001001⟩ + |00011001⟩ − |00101001⟩ − |00111001⟩ + |01001001⟩ + |01011001⟩ − |01101001⟩
− |01111001⟩ − |10001001⟩ − |10011001⟩ + |10101001⟩ + |10111001⟩
− |11001001⟩ − |11011001⟩ + |11101001⟩ + |11111001⟩ 

−|00000001⟩ + |00010001⟩ + |00100001⟩ − |00110001⟩ − |01000001⟩ + |01010001⟩ + |01100001⟩
− |01110001⟩ + |10000001⟩ − |10010001⟩ − |10100001⟩ + |10110001⟩
+ |11000001⟩ − |11010001⟩ − |11100001⟩ + |11110001⟩ 

+|00001011⟩ + |00011011⟩ + |00101011⟩ + |00111011⟩ − |01001011⟩ − |01011011⟩ − |01101011⟩
− |01111011⟩ − |10001011⟩ − |10011011⟩ − |10101011⟩ − |10111011⟩
+ |11001011⟩ + |11011011⟩ + |11101011⟩ + |11111011⟩ 

+|00001000⟩ − |00011000⟩ + |00101000⟩ − |00111000⟩ − |01001000⟩ + |01011000⟩ − |01101000⟩
+ |01111000⟩ − |10001000⟩ + |10011000⟩ − |10101000⟩ + |10111000⟩
+ |11001000⟩ − |11011000⟩ + |11101000⟩ − |11111000⟩ 

−|00000001⟩ − |00010001⟩ + |00100001⟩ + |00110001⟩ + |01000001⟩ + |01010001⟩ − |01100001⟩
− |01110001⟩ + |10000001⟩ + |10010001⟩ − |10100001⟩ − |10110001⟩
− |11000001⟩ − |11010001⟩ + |11100001⟩ + |11110001⟩ 

+|00001001⟩ − |00011001⟩ − |00101001⟩ + |00111001⟩ − |01001001⟩ + |01011001⟩ + |01101001⟩
− |01111001⟩ − |10001001⟩ + |10011001⟩ + |10101001⟩ − |10111001⟩
+ |11001001⟩ − |11011001⟩ − |11101001⟩ + |11111001⟩ 

] 
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Note: This is the sum: 

1

2𝑛
∑ (−1)𝑥∙𝑏

𝑥∈{0,1}𝑛

𝑏∈{0,1}𝑛

|𝑏⟩|𝑓(𝑥)⟩ 

We collect the first four qubits: 

|0000⟩(|1101⟩ − |0110⟩ + |0101⟩ − |1111⟩ − |0110⟩ + |1101⟩ − |1111⟩ + |0101⟩ + |1000⟩

+ |1011⟩ + |1001⟩ − |0001⟩ + |1011⟩ + |1000⟩ − |0001⟩ + |1001⟩) = 

2|0000⟩(|1101⟩ − |0110⟩ + |0101⟩ − |1111⟩ + |1101⟩ + |1000⟩ + |1001⟩ − |0001⟩) 

The possibility for measuring |0000⟩ is > 0. 

|0001⟩(|1101⟩ + |0110⟩ + |0101⟩ + |1111⟩ − |0110⟩ − |1101⟩ − |1111⟩ − |0101⟩ + |1000⟩

− |1011⟩ + |1001⟩ + |0001⟩ + |1011⟩ − |1000⟩ − |0001⟩ − |1001⟩) = 0 

The possibility for measuring |0001⟩ is zero. 

We do this for the other qubits and get probabilities: 

|0000⟩ > 0 |0001⟩ → 0 |0010⟩ > 0 |0011⟩ → 0 
|0100⟩ → 0 |0101⟩ > 0 |0110⟩ → 0 |0111⟩ > 0 
|1000⟩ > 0 |1001⟩ → 0 |1010⟩ > 0 |1011⟩ → 0 
|1100⟩ → 0 |1101⟩ > 0 |1110⟩ → 0 |1111⟩ > 0 

 

The first run reduces the candidates for 𝑐 from 15 to 7. Remember that |0000⟩ is not a valid 

candidate because the function then would be 1: 1. 

We generalize.  
We apply the Hadamards 𝐻⨂𝑛|𝑥⟩: 

𝐻⨂𝑛|𝑥⟩ =
1

√2𝑛
∑(−1)∑ 𝑥𝑖𝑏𝑖

𝑛
𝑖=1

𝑛

𝑖=1

|𝑏⟩ = 

1

√2𝑛
∑ (−1)𝑥∙𝑏

𝑏∈{0,1}𝑛

|𝑏⟩ 

Note: |𝑥⟩ are the first four qubits, |𝑏⟩ are all qubits from |0000⟩ to |1111⟩. 

Note: 𝑥 is the input vector we chose randomly. 

Note: 𝑥 ∙ 𝑏 is the inner product of the string |𝑥⟩ and all possible values of a bit string |𝑏⟩ of length 𝑛. 

Then the oracle is acting. It modifies the second half of the input. As we chose |0000⟩ for input we 

get |0000⨁𝑓(𝑥)⟩ = |𝑓(𝑥)⟩. 

We apply the Hadamards to the upper qubits |𝑏⟩: 

𝐻(
1

√2𝑛
∑ (−1)𝑥∙𝑏

𝑏∈{0,1}𝑛

|𝑏⟩|𝑓(𝑥)⟩) 

  

This is the inner product 

of 𝑥 and 𝑏 modulo 2. 
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We get: 

1

2𝑛
∑ (−1)𝑥∙𝑏

𝑥∈{0,1}𝑛

𝑏∈{0,1}𝑛

|𝑏⟩|𝑓(𝑥)⟩ 

We are measuring the upper part |𝑏⟩ of |𝑏⟩|𝑓(𝑥)⟩. This gives an information about the type of 

function. We must repeat this with different qubits |𝑥⟩ to determine the type of function. 

We group the terms giving the same |𝑏⟩ in the |0⟩/|1⟩ basis and square the coefficients of the basis 

elements. This way we get the probability of seeing |𝑏⟩|𝑓(𝑥)⟩. 

We remember that |𝑏⟩|𝑓(𝑥)⟩ comes from two different sources: 𝑥0 and 𝑥0⨁𝑐. 

We calculate the coefficient of |𝑏⟩|𝑓(𝑥)⟩: 

|
1

2𝑛
((−1)𝑥0∙𝑏 + (−1)(𝑥0⨁𝑐)∙𝑏)|

2

= |
1

2𝑛
((−1)𝑥0∙𝑏 + (−1)𝑥0∙𝑏⨁𝑐∙𝑏)|

2

= 

|
1

2𝑛
((−1)𝑥0∙𝑏 + (−1)𝑥0∙𝑏(−1)𝑐∙𝑏)|

2

= |
1

2𝑛
((−1)𝑥0∙𝑏(1 + (−1)𝑐∙𝑏))|

2

=; 

We note that |((−1)𝑥0∙𝑏)|
2

 always gives 1 and proceed: 

|
1

2𝑛
(1 + (−1)𝑐∙𝑏)|

2

 

If the inner product 𝑐 ∙ 𝑏 = 0 we get the probability 
22

22𝑛
= 41−𝑛,  

if the inner product 𝑐 ∙ 𝑏 = 1 we get 0.  

Note that we calculate all by using ⨁. 

Note: In our example we have 16 vectors 𝑏, we have 8 possibilities for 𝑓(𝑥) and half of the scalar 

products is zero. The total probability thus gives 41−4 ∙ 16 ∙ 4 = 1. 

This gives one bit of information about 𝑐. We need 𝑛 bit, so we need to repeat this 𝑛 times. 

We go back to the example and run the function three times. 

We have 15 possible 𝑐′𝑠 because 𝑐 = 0000 is not a valid value. 

We might get: 

𝑏1 = 0010, 𝑏2 = 0111, 𝑏3 = 1000 

After each run the number of possible 𝑐′𝑠 reduces. 
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We build the scalar product of 𝑏1 and all possible 𝑐-vectors. Note that all calculations are made 

modulo 2: 

(0010)(

0
0
0
1

) = 0 (0010)(

0
0
1
0

) = 1 (0010)(

0
0
1
1

) = 1 (0010)(

0
1
0
0

) = 0 

(0010)(

0
1
0
1

) = 0 (0010)(

0
1
1
0

) = 1 (0010)(

0
1
1
1

) = 1 (0010)(

1
0
0
0

) = 0 

(0010)(

1
0
0
1

) = 0 (0010)(

1
0
1
0

) = 1 (0010)(

1
0
1
1

) = 1 (0010)(

1
1
0
0

) = 0 

(0010)(

1
1
0
1

) = 0 (0010)(

1
1
1
0

) = 1 (0010)(

1
1
1
1

) = 1 

 

We have 7 possible solutions for 𝑐. 

We build the scalar product of 𝑏2 and all possible 𝑐-vectors we got from the first pass. Note that all 

calculations are made modulo 2: 

(0111)(

0
0
0
1

) = 1 

  

(0111)(

0
1
0
0

) = 1 

(0111)(

0
1
0
1

) = 0 

  

(0111)(

1
0
0
0

) = 0 

(0111)(

1
0
0
1

) = 1 

  

(0111)(

1
1
0
0

) = 1 

(0111)(

1
1
0
1

) = 0 

   

The number of possible solutions reduces to 3. 

We build the scalar product of 𝑏3 and all possible 𝑐-vectors we got from the second pass. Note that 

all calculations are made modulo 2: 

    

(1000)(

0
1
0
1

) = 0 

  

(1000)(

1
0
0
0

) = 1 

    

(1000)(

1
1
0
1

) = 1 

   

We get 𝑐 = 0101. 

Note: if the vectors 𝑏𝑖 are not linear independent, we might get no reduction and use more trials so 

this is not a deterministic access. 
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We generalize this to an input of 𝑛 bit. 

In our example we had the reduction chain: 

15

16
 after the first trial, 

7

8
 after the second trial, 

3

4
 after the third trial. The fourth trial then brought the 

result. 

For the 𝑛-bit case we get the converging chain: 

2𝑛 − 1

2𝑛
∙ … ∙

15

16
∙
7

8
∙
3

4
= (1 −

1

2𝑛
)…(1 −

1

16
) (1 −

1

8
) (1 −

1

4
)~ 

𝑒
−
1
2𝑛 ∙ … ∙ 𝑒−

1
16 ∙ 𝑒−

1
8 ∙ 𝑒−

1
4 = 𝑒

−(
1
2𝑛
+
1
22
)
= 𝑒−

1
4~78% 

This is the probability to get the correct solution after 𝑛-1 trials for large 𝑛. 

Notebooks 
You find a jupyter notebook, dealing with simon’s algorithm, at: 

https://github.com/amazon-braket/amazon-braket-

examples/blob/main/examples/advanced_circuits_algorithms/Simons_Algorithm/Simons_Algorithm.ipynb 

Note: You need simons_utils.py to run this notebook. 

Note: You need to install the amazon-plugin via “pip install amazon-braket-sdk”. 

Note: You find a copy of Simons_Algorithm.ipynb and simons_utils.py on this website too. 

I would like to thank my students Alex Heinz, Luca Kölsch, Matthias Hospach and Simon Schaal who 

made this paper possible.  
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