
Simon’s Algorithm

D. Kriesell page 1 of 17

This paper follows a lecture Peter Shor has given at

https://openlearninglibrary.mit.edu/courses/course-

v1:MITx+8.370.2x+1T2018/courseware/Week2/lectures_U2_3_simons_alg/?child=last

In the first part we use a simple function 𝑓(𝑥): {0 1} × {0 1} → {0 1} × {0 1} and examine the case

the function is 1: 1 and the case the function is 2: 1.

1: 1 the function is bijective, 𝑓(𝑥1) ≠ 𝑓(𝑥2) for 𝑥1 ≠ 𝑥2.

2: 1 there exists a constant 𝑐 with: 𝑓(𝑥) = 𝑓(𝑥⨁𝑐).

Note: ⨁ = addition modulo 2.

We work through the first part on conceptual level as well as on basic level.

In the second part we use a more elaborated function:

𝑓(𝑥): {0 1} × {0 1} × …× {0 1} → {0 1} × {0 1} × …× {0 1}

We go through the process again, this time only on conceptual level and try to generalize it.

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+8.370.2x+1T2018/courseware/Week2/lectures_U2_3_simons_alg/?child=last
https://openlearninglibrary.mit.edu/courses/course-v1:MITx+8.370.2x+1T2018/courseware/Week2/lectures_U2_3_simons_alg/?child=last

Simon’s Algorithm

D. Kriesell page 2 of 17

Simple example, conceptual level
For our example we use the following circuit:

We use a function 𝒇(𝒙): {𝟎 𝟏} × {𝟎 𝟏} → {𝟎 𝟏} × {𝟎 𝟏}:

𝑓(00) = 01 𝑓(01) = 10 𝑓(10) = 11 𝑓(11) = 00

Obviously 𝑓 is 1: 1, the constant 𝑐 = 00, 𝑓(𝑥) = 𝑓(𝑥⨁𝑐).

For information only: The matrix for this function (shortform):

(

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)

Note: This is a typical permutation matrix with a single "1" in every row/column. This matrix is

equivalent to the identity matrix and in the end we have no oracle at all.

Note: You find the complete matrix in the basic level.

We start with input |0000⟩.

We apply the Hadamards:

1

2
((|0⟩ + |1⟩)(|0⟩ + |1⟩)|00⟩) =

1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩)|00⟩ =

1

2
(|0000⟩ + |0100⟩ + |1000⟩ + |1100⟩)

We apply the oracle, using our example function above:

1

2
(|0001⟩ + |0110⟩ + |1011⟩ + |1100⟩)

We apply the Hadamards after the oracle a second time. This results in:

1

4
((|0⟩ + |1⟩)(|0⟩ + |1⟩)|01⟩ + (|0⟩ + |1⟩)(|0⟩ − |1⟩)|10⟩ + (|0⟩ − |1⟩)(|0⟩ + |1⟩)|11⟩

+ (|0⟩ − |1⟩)(|0⟩ − |1⟩)|00⟩)

We expand the products and get:

1

4
(|0000⟩ + |0001⟩ + |0010⟩ + |0011⟩ − |0100⟩ + |0101⟩ − |0110⟩ + |0111⟩ − |1000⟩ + |1001⟩

+ |1010⟩ − |1011⟩ + |1100⟩ + |1101⟩ − |1110⟩ − |1111⟩)

|0⟩

|0⟩

𝑈𝑓
|0⟩

H

H

|0⟩

Oracle

𝑈𝑓

H

H

Note: The oracle takes the

first two qubits as input but

modifies the second two

qubits only.

𝑥

00
01
10
11

00 01 10 11
𝑓(𝑥)

Simon’s Algorithm

D. Kriesell page 3 of 17

We collect the first two qubits:

1

4
(|00⟩(|00⟩ + |01⟩ + |10⟩ + |11⟩) − |01⟩(|00⟩ − |01⟩ + |10⟩ − |11⟩)

− |10⟩(|00⟩ − |01⟩ − |10⟩ + |11⟩) + |11⟩(|00⟩ + |01⟩ − |10⟩ − |11⟩))

We get probabilities:

|00⟩ > 0 |01⟩ > 0 |10⟩ > 0 |11⟩ > 0

We achieved no reduction and assume the function is 1: 1.

We change the function to:

𝑓(00) = 00 𝑓(01) = 01 𝑓(10) = 00 𝑓(11) = 01

Obviously 𝑓 is 2: 1, the constant 𝑐 = 10: 𝑓(𝑥) = 𝑓(𝑥⨁𝑐)

For information only: The matrix for this function (shortform):

(

1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0

)

Note: The matrix is not of full rank 4 × 4.

Note: You find the complete matrix in the basic level.

We start with input |0000⟩.

We apply the Hadamards:

1

2
((|0⟩ + |1⟩)(|0⟩ + |1⟩)|00⟩) =

1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩)|00⟩ =

1

2
(|0000⟩ + |0100⟩ + |1000⟩ + |1100⟩)

We apply the oracle, using our example function above:

1

2
(|0000⟩ + |0101⟩ + |1000⟩ + |1101⟩)

We apply the Hadamards after the oracle a second time. This results in:

1

4
((|0⟩ + |1⟩)(|0⟩ + |1⟩)|00⟩ + (|0⟩ + |1⟩)(|0⟩ − |1⟩)|01⟩ + (|0⟩ − |1⟩)(|0⟩ + |1⟩)|00⟩

+ (|0⟩ − |1⟩)(|0⟩ − |1⟩)|01⟩)

We expand the products and get:

1

4
(|0000⟩ + |0100⟩ + |1000⟩ + |1100⟩ + |0001⟩ − |0101⟩ + |1001⟩ − |1101⟩ + |0000⟩ + |0100⟩

− |1000⟩ − |1100⟩ + |0001⟩ − |0101⟩ − |1001⟩ + |1101⟩) =

Note: The oracle takes the

first two qubits as input but

modifies the second two

qubits only.

𝑥

00
01
10
11

00 01 10 11
𝑓(𝑥)

Simon’s Algorithm

D. Kriesell page 4 of 17

1

2
(|0000⟩ + |0100⟩ + |0001⟩ − |0101⟩)

We collect the first two qubits:

1

2
(|00⟩(|00⟩ + |01⟩) + |01⟩(|00⟩ − |01⟩))

We get probabilities:

|00⟩ > 0 |01⟩ > 0 |10⟩ = 0 |11⟩ = 0

As 00 is no valid value for 𝑐 we got the result 𝑐 = 01.

We achieved reduction and assume the function is 2: 1.

Simple example, basic level
We use the circuit above:

We work with the 1: 1 function
The first Hadamards applied to the input vector:

1

2

(

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1
1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0
0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0
0 0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1
1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0
0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0
0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0
0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1)

(

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0)

=
1

2

(

1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0)

We construct the oracle.

We use the function:

𝑓(00) = 01 𝑓(01) = 10 𝑓(10) = 11 𝑓(11) = 00

The oracle acts:

|0000⟩ → |0001⟩ |0001⟩ → |0000⟩ |0010⟩ → |0011⟩ |0011⟩ → |0010⟩
|0100⟩ → |0110⟩ |0101⟩ → |0111⟩ |0110⟩ → |0100⟩ |0111⟩ → |0101⟩
|1000⟩ → |1011⟩ |1001⟩ → |1010⟩ |1010⟩ → |1001⟩ |1011⟩ → |1000⟩
|1100⟩ → |1100⟩ |1101⟩ → |1101⟩ |1110⟩ → |1110⟩ |1111⟩ → |1111⟩

|0⟩

|0⟩

𝑈𝑓
|0⟩

H

H

|0⟩

Oracle

𝑈𝑓

H

H

Simon’s Algorithm

D. Kriesell page 5 of 17

We construct the oracle from the conceptual level:

(

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1)

We apply the oracle:

(

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1)

1

2

(

1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0)

=
1

2

(

0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
0)

We apply the Hadamards again:

1

2

(

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1
1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0
0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0
0 0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1
1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0
0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0
0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0
0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1)

1

2

(

0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
0)

=
1

4

(

1
1
1
1
−1
1
−1
1
−1
1
1
−1
1
1
−1
−1)

We compare with the result from the conceptual level. There we got:

1

4
(|0000⟩ + |0001⟩ + |0010⟩ + |0011⟩ − |0100⟩ + |0101⟩ − |0110⟩ + |0111⟩ − |1000⟩ + |1001⟩ + |1010⟩ − |1011⟩

+ |1100⟩ + |1101⟩ − |1110⟩ − |1111⟩)

|0000⟩

↓

|1111⟩

↓

|0000⟩ →

|1111⟩ →

input

output

Simon’s Algorithm

D. Kriesell page 6 of 17

These are 16 basis vectors, we build them with the appropriate signs:

1

4

(

1
1
1
1
−1
1
−1
1
−1
1
1
−1
1
1
−1
−1)

Both results match. The probability to measure one of the basis vectors is (
1

4
)
2

, we achieved no

reduction in probability.

We work with the 2: 1 function.
The first Hadamards applied to the input vector:

1

2

(

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1
1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0
0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0
0 0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1
1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0
0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0
0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0
0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1)

(

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0)

=
1

2

(

1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0)

We construct the oracle.

We use the function:

𝑓(00) = 00 𝑓(01) = 01 𝑓(10) = 00 𝑓(11) = 01

The constant or “secret string” 𝑠 ≔ 10

𝑓(𝑥) = 𝑓(𝑥⨁10)

We apply the oracle:

|0⟩

|0⟩

|0⟩

H

H

|0⟩

 H

H

prepare act

Simon’s Algorithm

D. Kriesell page 7 of 17

The logic behind the scheme:

1. We place a CNOT on every pair of qubits – we prepare the calculation.

2. We search for the first "1" in the secret string. This defines the control line.

3. For every "1" in the secret string we place a CNOT between the control line and the target

qubits – we are acting.

The oracle acts:

|0000⟩ → |0000⟩ |0001⟩ → |0001⟩ |0010⟩ → |0010⟩ |0011⟩ → |0011⟩
|0100⟩ → |0101⟩ |0101⟩ → |0100⟩ |0110⟩ → |0111⟩ |0111⟩ → |0110⟩
|1000⟩ → |1000⟩ |1001⟩ → |1001⟩ |1010⟩ → |1010⟩ |1011⟩ → |1011⟩
|1100⟩ → |1101⟩ |1101⟩ → |1100⟩ |1110⟩ → |1111⟩ |1111⟩ → |1110⟩

We construct the oracle from the conceptual level:

(

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0)

Note: This looks like a CNOT from qubit 2 to qubit 4. In fact, that is what remains from the three

CNOTs, because the first CNOT and the third CNOT cancel. A CNOT applied to itself gives the identity

matrix.

Note: We can shift operators in the circuit from left to right as long as we do not cross “hot spots”.

input

output

(

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111)

→

1111

0000

0001

0010 0100

0011 0101

0110

0111

1000

1001

1010 1100

1011 1101

1110

Simon’s Algorithm

D. Kriesell page 8 of 17

We construct the matrices:

CNOT one

(

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0)

CNOT two

(

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0)

CNOT three is the same as CNOT one.

(

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111)

→
input

output
1111

0000

0001

0010 0100

0011 0101

0110

0111

1000

1001

1010 1100

1011 1101

1110

(

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111)

→
input

output
1111

0000

0001

0010 0100

0011 0101

0110

0111

1000

1001

1010 1100

1011 1101

1110

Simon’s Algorithm

D. Kriesell page 9 of 17

We build the matrix product: (𝐶𝑁𝑂𝑇 𝑜𝑛𝑒) ∙ (𝐶𝑁𝑂𝑇 𝑡𝑤𝑜) ∙ (𝐶𝑁𝑂𝑇 𝑜𝑛𝑒):

(

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0)

This is the same matrix we constructed from the conceptual level.

We apply the oracle:

(

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0)

1

2

(

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0)

=
1

2

(

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0)

We apply the Hadamards again:

1

2

(

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1
1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0
0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0
0 0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1
1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0
0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0
0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0
0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1)

1

2

(

1
0
0
0
0
1
0
0
1
0
0
0
0
1
0
0)

=
1

2

(

1
1
0
0
1
−1
0
0
0
0
0
0
0
0
0
0)

Simon’s Algorithm

D. Kriesell page 10 of 17

We compare with the result from the conceptual level. There we got:

1

2
(|0000⟩ + |0001⟩ + |0100⟩ − |0101⟩)

These are 4 basis vectors, we build them with the appropriate signs:

(

00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11)

→
1

2

(

1
1
0
0
1
−1
0
0
0
0
0
0
0
0
0
0)

Both results match. We get a probability ((
1

2
)
2
+ (

1

2
)
2
=
1

2
) for vectors |00⟩ and|01⟩

and zero probability for vectors |10⟩ and|11⟩.

Basic level, slow motion
We take a closer look at the action of the oracle.

 (1) (2) (3) (4) (5) (6)

We take a look at how the input changes after each matrix:

(1) 𝐻𝑎𝑑𝑎𝑚𝑎𝑟𝑑 (2) 𝐶𝑁𝑂𝑇1 (3) 𝐶𝑁𝑂𝑇2 (4) 𝐶𝑁𝑂𝑇3 (5) 𝐻𝑎𝑑𝑎𝑚𝑎𝑟𝑑 (6)

(

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0)

1

2

(

1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0)

1

2

(

1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0)

1

2

(

1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1)

1

2

(

1
0
0
0
0
1
0
0
1
0
0
0
0
1
0
0)

1

2

(

1
1
0
0
1
−1
0
0
0
0
0
0
0
0
0
0)

|0⟩

|0⟩

|0⟩

H

H

|0⟩

 H

H

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Simon’s Algorithm

D. Kriesell page 11 of 17

The input is a single basis vector in position 0.

The first pair of Hadamards set the superposition, the positions 4, 8 and 12.

The first CNOT moves position 8 to 10 and 12 to 14.

The second CNOT moves position 4 to 5 and 14 to 15.

The third CNOT shifts back position 10 to 8 and 15 to 13.

The last Hadamard “goes fail” and produces another superposition by shifting position 13, 8 and 5 to

5,4 and 3.

Second part
We use a function

𝑓(𝑥): {0 1} × {0 1} × …× {0 1} → {0 1} × {0 1} × …× {0 1}

Domain and range are bit strings of length 𝑛.

𝑓(𝑥) is either 1: 1, bijective 𝑥 ≠ 𝑦 → 𝑓(𝑥) ≠ 𝑓(𝑦) or 𝑓(𝑥) is 2: 1 with 𝑓(𝑥) = 𝑓(𝑥⨁𝑐).

⨁ = addition modulo 2.

The task:

Determine which of the two options applies to 𝑓 and, if applicable, determine the constant 𝑐.

Example:

𝑓(𝑥): {0 1}4 → {0 1}4

𝑥 → 𝑓(𝑥) 𝑥 → 𝑓(𝑥)
{0000} {1101} {1000} {1000}
{0001} {0110} {1001} {1011}
{0010} {0101} {1010} {1001}
{0011} {1111} {1011} {0001}
{0100} {0110} {1100} {1011}
{0101} {1101} {1101} {1000}
{0110} {1111} {1110} {0001}
{0111} {0101} {1111} {1001}

The function is 2: 1, the constant 𝑐 = 0101. 𝑐 is often referred as “secret string”.

Solving classically
We need to find one pair 𝑓(𝑥) = 𝑓(𝑥⨁𝑠).

For 𝑛 bits we have 2𝑛 pairs (𝑥𝑖, 𝑓(𝑥𝑖)).

Doing this in a deterministic way we need ≤ 2𝑛−1 + 1 queries to find 𝑐 according to the pigeonhole

principle: Θ(2𝑛)

Probabilistic we need Θ(2
𝑛

2) queries to get the solution with high probability.

Simon’s Algorithm

D. Kriesell page 12 of 17

Solving quantum
For our example we use the following circuit:

We start with input |𝑥⟩|0⟩ = |01010000⟩.

We apply the Hadamards:

1

√24
((|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)|0000⟩) =

1

4
(|0000⟩ − |0001⟩ + |0010⟩ − |0011⟩ − |0100⟩ + |0101⟩ − |0110⟩ + |0111⟩ + |1000⟩ − |1001⟩

+ |1010⟩ − |1011⟩ − |1100⟩ + |1101⟩ − |1110⟩ + |1111⟩)|0000⟩ =

1

4
(|00000000⟩ − |00010000⟩ + |00100000⟩ − |00110000⟩ − |01000000⟩ + |01010000⟩

− |01100000⟩ + |01110000⟩ + |10000000⟩ − |10010000⟩ + |10100000⟩

− |10110000⟩ − |11000000⟩ + |11010000⟩ − |11100000⟩ + |11110000⟩)

We apply the oracle, using our example function above:

1

4
(|00001101⟩ − |00010110⟩ + |00100101⟩ − |00111111⟩ − |01000110⟩ + |01011101⟩

− |01101111⟩ + |01110101⟩ + |10001000⟩ − |10011011⟩ + |10101001⟩

− |10110001⟩ − |11001011⟩ + |11011000⟩ − |11100001⟩ + |11111001⟩)

We apply the Hadamards after the oracle a second time. This results in:

1

16
[

+((|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩)|1101⟩)

−((|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)|0110⟩)

+((|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)|0101⟩)

−((|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩)|1111⟩)

−((|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩)|0110⟩)

+((|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)|1101⟩)

−((|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)|1111⟩)

+((|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩)|0101⟩)

+((|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩)|1000⟩)

+((|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)|1011⟩)

+((|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)|1001⟩)

−((|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩)|0001⟩)

−((|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ + |1⟩)|1011⟩)

+((|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)(|0⟩ − |1⟩)|1000⟩)

|𝑥⟩

|𝑥⟩

|𝑥⟩

H

H

|𝑥⟩

|0⟩

|0⟩

|0⟩

|0⟩

H

H

H

H

H

H

Note: double lines mean classical bits.

Note: |𝑥⟩ are the input values, ranging

from |0000⟩ to |1111⟩.

Note: we need to apply this quantum

circuit several times to compute 𝑐.

Note: The oracle takes the first four

qubits as input but modifies the second

four ones.

prepare act

Simon’s Algorithm

D. Kriesell page 13 of 17

−((|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ + |1⟩)|0001⟩)

+((|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩)(|0⟩ − |1⟩)|1001⟩)

]

We expand the products and get:

1

16
[

|00001101⟩ + |00011101⟩ + |00101101⟩ + |00111101⟩ + |01001101⟩ + |01011101⟩ + |01101101⟩
+ |01111101⟩ + |10001101⟩ + |10011101⟩ + |10101101⟩ + |10111101⟩
+ |11001101⟩ + |11011101⟩ + |11101101⟩ + |11111101⟩

−|00000110⟩ + |00010110⟩ − |00100110⟩ + |00110110⟩ − |01000110⟩ + |01010110⟩ − |01100110⟩
+ |01110110⟩ − |10000110⟩ + |10010110⟩ − |10100110⟩ + |10110110⟩
− |11000110⟩ + |11010110⟩ − |11100110⟩ + |11110110⟩

+|00000101⟩ + |00010101⟩ − |00100101⟩ − |00110101⟩ + |01000101⟩ + |01010101⟩ − |01100101⟩
− |01110101⟩ + |10000101⟩ + |10010101⟩ − |10100101⟩ − |10110101⟩
+ |11000101⟩ + |11010101⟩ − |11100101⟩ − |11110101⟩

−|00001111⟩ + |00011111⟩ + |00101111⟩ − |00111111⟩ − |01001111⟩ + |01011111⟩ + |01101111⟩
− |01111111⟩ − |10001111⟩ + |10011111⟩ + |10101111⟩ − |10111111⟩
− |11001111⟩ + |11011111⟩ + |11101111⟩ − |11111111⟩

−|00000110⟩ − |00010110⟩ − |00100110⟩ − |00110110⟩ + |01000110⟩ + |01010110⟩ + |01100110⟩
+ |01110110⟩ − |10000110⟩ − |10010110⟩ − |10100110⟩ + |10110110⟩
+ |11000110⟩ + |11010110⟩ + |11100110⟩ + |11110110⟩

+|00001101⟩ − |00011101⟩ + |00101101⟩ − |00111101⟩ − |01001101⟩ + |01011101⟩ − |01101101⟩
+ |01111101⟩ + |10001101⟩ − |10011101⟩ + |10101101⟩ − |10111101⟩
− |11001101⟩ + |11011101⟩ − |11101101⟩ + |11111101⟩

−|00001111⟩ − |00011111⟩ + |00101111⟩ + |00111111⟩ + |01001111⟩ + |01011111⟩ − |01101111⟩
− |01111111⟩ − |10001111⟩ − |10011111⟩ + |10101111⟩ + |10111111⟩
+ |11001111⟩ + |11011111⟩ − |11101111⟩ − |11111111⟩

+|00000101⟩ − |00010101⟩ − |00100101⟩ + |00110101⟩ − |01000101⟩ + |01010101⟩ + |01100101⟩
− |01110101⟩ + |10000101⟩ − |10010101⟩ − |10100101⟩ + |10110101⟩
− |11000101⟩ + |11010101⟩ + |11100101⟩ − |11110101⟩

+|00001000⟩ + |00011000⟩ + |00101000⟩ + |00111000⟩ + |01001000⟩ + |01011000⟩ + |01101000⟩
+ |01111000⟩ − |10001000⟩ − |10011000⟩ − |10101000⟩ − |10111000⟩
− |11001000⟩ − |11011000⟩ − |11101000⟩ − |11111000⟩

+|00001011⟩ − |00011011⟩ + |00101011⟩ − |00111011⟩ + |01001011⟩ − |01011011⟩ + |01101011⟩
− |01111011⟩ − |10001011⟩ + |10011011⟩ − |10101011⟩ + |10111011⟩
− |11001011⟩ + |11011011⟩ − |11101011⟩ + |11111011⟩

+|00001001⟩ + |00011001⟩ − |00101001⟩ − |00111001⟩ + |01001001⟩ + |01011001⟩ − |01101001⟩
− |01111001⟩ − |10001001⟩ − |10011001⟩ + |10101001⟩ + |10111001⟩
− |11001001⟩ − |11011001⟩ + |11101001⟩ + |11111001⟩

−|00000001⟩ + |00010001⟩ + |00100001⟩ − |00110001⟩ − |01000001⟩ + |01010001⟩ + |01100001⟩
− |01110001⟩ + |10000001⟩ − |10010001⟩ − |10100001⟩ + |10110001⟩
+ |11000001⟩ − |11010001⟩ − |11100001⟩ + |11110001⟩

+|00001011⟩ + |00011011⟩ + |00101011⟩ + |00111011⟩ − |01001011⟩ − |01011011⟩ − |01101011⟩
− |01111011⟩ − |10001011⟩ − |10011011⟩ − |10101011⟩ − |10111011⟩
+ |11001011⟩ + |11011011⟩ + |11101011⟩ + |11111011⟩

+|00001000⟩ − |00011000⟩ + |00101000⟩ − |00111000⟩ − |01001000⟩ + |01011000⟩ − |01101000⟩
+ |01111000⟩ − |10001000⟩ + |10011000⟩ − |10101000⟩ + |10111000⟩
+ |11001000⟩ − |11011000⟩ + |11101000⟩ − |11111000⟩

−|00000001⟩ − |00010001⟩ + |00100001⟩ + |00110001⟩ + |01000001⟩ + |01010001⟩ − |01100001⟩
− |01110001⟩ + |10000001⟩ + |10010001⟩ − |10100001⟩ − |10110001⟩
− |11000001⟩ − |11010001⟩ + |11100001⟩ + |11110001⟩

+|00001001⟩ − |00011001⟩ − |00101001⟩ + |00111001⟩ − |01001001⟩ + |01011001⟩ + |01101001⟩
− |01111001⟩ − |10001001⟩ + |10011001⟩ + |10101001⟩ − |10111001⟩
+ |11001001⟩ − |11011001⟩ − |11101001⟩ + |11111001⟩

]

Simon’s Algorithm

D. Kriesell page 14 of 17

Note: This is the sum:

1

2𝑛
∑ (−1)𝑥∙𝑏

𝑥∈{0,1}𝑛

𝑏∈{0,1}𝑛

|𝑏⟩|𝑓(𝑥)⟩

We collect the first four qubits:

|0000⟩(|1101⟩ − |0110⟩ + |0101⟩ − |1111⟩ − |0110⟩ + |1101⟩ − |1111⟩ + |0101⟩ + |1000⟩

+ |1011⟩ + |1001⟩ − |0001⟩ + |1011⟩ + |1000⟩ − |0001⟩ + |1001⟩) =

2|0000⟩(|1101⟩ − |0110⟩ + |0101⟩ − |1111⟩ + |1101⟩ + |1000⟩ + |1001⟩ − |0001⟩)

The possibility for measuring |0000⟩ is > 0.

|0001⟩(|1101⟩ + |0110⟩ + |0101⟩ + |1111⟩ − |0110⟩ − |1101⟩ − |1111⟩ − |0101⟩ + |1000⟩

− |1011⟩ + |1001⟩ + |0001⟩ + |1011⟩ − |1000⟩ − |0001⟩ − |1001⟩) = 0

The possibility for measuring |0001⟩ is zero.

We do this for the other qubits and get probabilities:

|0000⟩ > 0 |0001⟩ → 0 |0010⟩ > 0 |0011⟩ → 0
|0100⟩ → 0 |0101⟩ > 0 |0110⟩ → 0 |0111⟩ > 0
|1000⟩ > 0 |1001⟩ → 0 |1010⟩ > 0 |1011⟩ → 0
|1100⟩ → 0 |1101⟩ > 0 |1110⟩ → 0 |1111⟩ > 0

The first run reduces the candidates for 𝑐 from 15 to 7. Remember that |0000⟩ is not a valid

candidate because the function then would be 1: 1.

We generalize.
We apply the Hadamards 𝐻⨂𝑛|𝑥⟩:

𝐻⨂𝑛|𝑥⟩ =
1

√2𝑛
∑(−1)∑ 𝑥𝑖𝑏𝑖

𝑛
𝑖=1

𝑛

𝑖=1

|𝑏⟩ =

1

√2𝑛
∑ (−1)𝑥∙𝑏

𝑏∈{0,1}𝑛

|𝑏⟩

Note: |𝑥⟩ are the first four qubits, |𝑏⟩ are all qubits from |0000⟩ to |1111⟩.

Note: 𝑥 is the input vector we chose randomly.

Note: 𝑥 ∙ 𝑏 is the inner product of the string |𝑥⟩ and all possible values of a bit string |𝑏⟩ of length 𝑛.

Then the oracle is acting. It modifies the second half of the input. As we chose |0000⟩ for input we

get |0000⨁𝑓(𝑥)⟩ = |𝑓(𝑥)⟩.

We apply the Hadamards to the upper qubits |𝑏⟩:

𝐻(
1

√2𝑛
∑ (−1)𝑥∙𝑏

𝑏∈{0,1}𝑛

|𝑏⟩|𝑓(𝑥)⟩)

This is the inner product

of 𝑥 and 𝑏 modulo 2.

Simon’s Algorithm

D. Kriesell page 15 of 17

We get:

1

2𝑛
∑ (−1)𝑥∙𝑏

𝑥∈{0,1}𝑛

𝑏∈{0,1}𝑛

|𝑏⟩|𝑓(𝑥)⟩

We are measuring the upper part |𝑏⟩ of |𝑏⟩|𝑓(𝑥)⟩. This gives an information about the type of

function. We must repeat this with different qubits |𝑥⟩ to determine the type of function.

We group the terms giving the same |𝑏⟩ in the |0⟩/|1⟩ basis and square the coefficients of the basis

elements. This way we get the probability of seeing |𝑏⟩|𝑓(𝑥)⟩.

We remember that |𝑏⟩|𝑓(𝑥)⟩ comes from two different sources: 𝑥0 and 𝑥0⨁𝑐.

We calculate the coefficient of |𝑏⟩|𝑓(𝑥)⟩:

|
1

2𝑛
((−1)𝑥0∙𝑏 + (−1)(𝑥0⨁𝑐)∙𝑏)|

2

= |
1

2𝑛
((−1)𝑥0∙𝑏 + (−1)𝑥0∙𝑏⨁𝑐∙𝑏)|

2

=

|
1

2𝑛
((−1)𝑥0∙𝑏 + (−1)𝑥0∙𝑏(−1)𝑐∙𝑏)|

2

= |
1

2𝑛
((−1)𝑥0∙𝑏(1 + (−1)𝑐∙𝑏))|

2

=;

We note that |((−1)𝑥0∙𝑏)|
2

 always gives 1 and proceed:

|
1

2𝑛
(1 + (−1)𝑐∙𝑏)|

2

If the inner product 𝑐 ∙ 𝑏 = 0 we get the probability
22

22𝑛
= 41−𝑛,

if the inner product 𝑐 ∙ 𝑏 = 1 we get 0.

Note that we calculate all by using ⨁.

Note: In our example we have 16 vectors 𝑏, we have 8 possibilities for 𝑓(𝑥) and half of the scalar

products is zero. The total probability thus gives 41−4 ∙ 16 ∙ 4 = 1.

This gives one bit of information about 𝑐. We need 𝑛 bit, so we need to repeat this 𝑛 times.

We go back to the example and run the function three times.

We have 15 possible 𝑐′𝑠 because 𝑐 = 0000 is not a valid value.

We might get:

𝑏1 = 0010, 𝑏2 = 0111, 𝑏3 = 1000

After each run the number of possible 𝑐′𝑠 reduces.

Simon’s Algorithm

D. Kriesell page 16 of 17

We build the scalar product of 𝑏1 and all possible 𝑐-vectors. Note that all calculations are made

modulo 2:

(0010)(

0
0
0
1

) = 0 (0010)(

0
0
1
0

) = 1 (0010)(

0
0
1
1

) = 1 (0010)(

0
1
0
0

) = 0

(0010)(

0
1
0
1

) = 0 (0010)(

0
1
1
0

) = 1 (0010)(

0
1
1
1

) = 1 (0010)(

1
0
0
0

) = 0

(0010)(

1
0
0
1

) = 0 (0010)(

1
0
1
0

) = 1 (0010)(

1
0
1
1

) = 1 (0010)(

1
1
0
0

) = 0

(0010)(

1
1
0
1

) = 0 (0010)(

1
1
1
0

) = 1 (0010)(

1
1
1
1

) = 1

We have 7 possible solutions for 𝑐.

We build the scalar product of 𝑏2 and all possible 𝑐-vectors we got from the first pass. Note that all

calculations are made modulo 2:

(0111)(

0
0
0
1

) = 1

(0111)(

0
1
0
0

) = 1

(0111)(

0
1
0
1

) = 0

(0111)(

1
0
0
0

) = 0

(0111)(

1
0
0
1

) = 1

(0111)(

1
1
0
0

) = 1

(0111)(

1
1
0
1

) = 0

The number of possible solutions reduces to 3.

We build the scalar product of 𝑏3 and all possible 𝑐-vectors we got from the second pass. Note that

all calculations are made modulo 2:

(1000)(

0
1
0
1

) = 0

(1000)(

1
0
0
0

) = 1

(1000)(

1
1
0
1

) = 1

We get 𝑐 = 0101.

Note: if the vectors 𝑏𝑖 are not linear independent, we might get no reduction and use more trials so

this is not a deterministic access.

Simon’s Algorithm

D. Kriesell page 17 of 17

We generalize this to an input of 𝑛 bit.

In our example we had the reduction chain:

15

16
 after the first trial,

7

8
 after the second trial,

3

4
 after the third trial. The fourth trial then brought the

result.

For the 𝑛-bit case we get the converging chain:

2𝑛 − 1

2𝑛
∙ … ∙

15

16
∙
7

8
∙
3

4
= (1 −

1

2𝑛
)…(1 −

1

16
) (1 −

1

8
) (1 −

1

4
)~

𝑒
−
1
2𝑛 ∙ … ∙ 𝑒−

1
16 ∙ 𝑒−

1
8 ∙ 𝑒−

1
4 = 𝑒

−(
1
2𝑛
+
1
22
)
= 𝑒−

1
4~78%

This is the probability to get the correct solution after 𝑛-1 trials for large 𝑛.

Notebooks
You find a jupyter notebook, dealing with simon’s algorithm, at:

https://github.com/amazon-braket/amazon-braket-

examples/blob/main/examples/advanced_circuits_algorithms/Simons_Algorithm/Simons_Algorithm.ipynb

Note: You need simons_utils.py to run this notebook.

Note: You need to install the amazon-plugin via “pip install amazon-braket-sdk”.

Note: You find a copy of Simons_Algorithm.ipynb and simons_utils.py on this website too.

I would like to thank my students Alex Heinz, Luca Kölsch, Matthias Hospach and Simon Schaal who

made this paper possible.

https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/advanced_circuits_algorithms/Simons_Algorithm/Simons_Algorithm.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/advanced_circuits_algorithms/Simons_Algorithm/Simons_Algorithm.ipynb
Simons_Algorithm.ipynb
simons_utils.py

