This paper follows a lecture Peter Shor has given at
https://openlearninglibrary.mit.edu/courses/course-
v1:MITx+8.370.2x+1T2018/courseware/Week2/lectures U2 3 simons alg/?child=last
In the first part we use a simple function $f(x):\left\{\begin{array}{lll}0 & 1\end{array}\right\} \times\left\{\begin{array}{lll}0 & 1\end{array}\right\} \rightarrow\left\{\begin{array}{lll}0 & 1\end{array}\right\} \times\left\{\begin{array}{ll}0 & 1\end{array}\right\}$ and examine the case the function is $1: 1$ and the case the function is $2: 1$.

1: 1 the function is bijective, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ for $x_{1} \neq x_{2}$.
2: 1 there exists a constant c with: $f(x)=f(x \oplus c)$.
Note: $\oplus=$ addition modulo 2 .
We work through the first part on conceptual level as well as on basic level.
In the second part we use a more elaborated function:

$$
f(x):\left\{\begin{array}{ll}
0 & 1
\end{array}\right\} \times\left\{\begin{array}{ll}
0 & 1
\end{array}\right\} \times \ldots \times\left\{\begin{array}{ll}
0 & 1
\end{array}\right\} \rightarrow\left\{\begin{array}{ll}
0 & 1
\end{array}\right\} \times\left\{\begin{array}{ll}
0 & 1
\end{array}\right\} \times \ldots \times\left\{\begin{array}{ll}
0 & 1
\end{array}\right\}
$$

We go through the process again, this time only on conceptual level and try to generalize it.

Simple example, conceptual level

For our example we use the following circuit:

Note: The oracle takes the first two qubits as input but modifies the second two qubits only.

We use a function $f(x):\left\{\begin{array}{ll}0 & 1\end{array}\right\} \times\left\{\begin{array}{ll}0 & 1\end{array}\right\} \rightarrow\left\{\begin{array}{ll}0 & 1\end{array}\right\} \times\left\{\begin{array}{ll}0 & 1\end{array}\right\}:$

$f(00)=01$	$f(01)=10$	$f(10)=11$	$f(11)=00$

Obviously f is $1: 1$, the constant $c=00, f(x)=f(x \oplus c)$.
For information only: The matrix for this function (shortform):

	$f(x)$		
00	01	10	11
01	$\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 10 & 0 & 0 & 0\end{array}\right)$		

Note: This is a typical permutation matrix with a single " 1 " in every row/column. This matrix is equivalent to the identity matrix and in the end we have no oracle at all.

Note: You find the complete matrix in the basic level.
We start with input |0000〉.
We apply the Hadamards:

$$
\begin{gathered}
\frac{1}{2}((|0\rangle+|1\rangle)(|0\rangle+|1\rangle)|00\rangle)=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)|00\rangle= \\
\frac{1}{2}(|0000\rangle+|0100\rangle+|1000\rangle+|1100\rangle)
\end{gathered}
$$

We apply the oracle, using our example function above:

$$
\frac{1}{2}(|0001\rangle+|0110\rangle+|1011\rangle+|1100\rangle)
$$

We apply the Hadamards after the oracle a second time. This results in:

$$
\begin{gathered}
\frac{1}{4}((|0\rangle+|1\rangle)(|0\rangle+|1\rangle)|01\rangle+(|0\rangle+|1\rangle)(|0\rangle-|1\rangle)|10\rangle+(|0\rangle-|1\rangle)(|0\rangle+|1\rangle)|11\rangle \\
\quad+(|0\rangle-|1\rangle)(|0\rangle-|1\rangle)|00\rangle)
\end{gathered}
$$

We expand the products and get:

$$
\begin{gathered}
\frac{1}{4}(|0000\rangle+|0001\rangle+|0010\rangle+|0011\rangle-|0100\rangle+|0101\rangle-|0110\rangle+|0111\rangle-|1000\rangle+|1001\rangle \\
+|1010\rangle-|1011\rangle+|1100\rangle+|1101\rangle-|1110\rangle-|1111\rangle)
\end{gathered}
$$

We collect the first two qubits:

$$
\begin{aligned}
& \frac{1}{4}(|00\rangle(|00\rangle+|01\rangle+|10\rangle+|11\rangle)-|01\rangle(|00\rangle-|01\rangle+|10\rangle-|11\rangle) \\
&\quad-|10\rangle(|00\rangle-|01\rangle-|10\rangle+|11\rangle)+|11\rangle(|00\rangle+|01\rangle-|10\rangle-|11\rangle))
\end{aligned}
$$

We get probabilities:

$\|00\rangle>0$	$\|01\rangle>0$	$\|10\rangle>0$	$\|11\rangle>0$

We achieved no reduction and assume the function is $1: 1$.

We change the function to:

$f(00)=00$	$f(01)=01$	$f(10)=00$	$f(11)=01$

Obviously f is 2 : 1 , the constant $c=10: f(x)=f(x \oplus c)$
For information only: The matrix for this function (shortform):

	$f(x)$		
00	01	10	11
01	$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$		

Note: The matrix is not of full rank 4×4.
Note: You find the complete matrix in the basic level.
We start with input |0000〉.
We apply the Hadamards:

$$
\begin{gathered}
\frac{1}{2}((|0\rangle+|1\rangle)(|0\rangle+|1\rangle)|00\rangle)=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)|00\rangle= \\
\frac{1}{2}(|0000\rangle+|0100\rangle+|1000\rangle+|1100\rangle)
\end{gathered}
$$

We apply the oracle, using our example function above:

$$
\frac{1}{2}(|0000\rangle+|0101\rangle+|1000\rangle+|1101\rangle)
$$

Note: The oracle takes the first two qubits as input but modifies the second two qubits only.

We apply the Hadamards after the oracle a second time. This results in:

$$
\begin{gathered}
\frac{1}{4}((|0\rangle+|1\rangle)(|0\rangle+|1\rangle)|00\rangle+(|0\rangle+|1\rangle)(|0\rangle-|1\rangle)|01\rangle+(|0\rangle-|1\rangle)(|0\rangle+|1\rangle)|00\rangle \\
+(|0\rangle-|1\rangle)(|0\rangle-|1\rangle)|01\rangle)
\end{gathered}
$$

We expand the products and get:

$$
\begin{gathered}
\frac{1}{4}(|0000\rangle+|0100\rangle+|1000\rangle+|1100\rangle+|0001\rangle-|0101\rangle+|1001\rangle-|1101\rangle+|0000\rangle+|0100\rangle \\
-|1000\rangle-|1100\rangle+|0001\rangle-|0101\rangle-|1001\rangle+|1101\rangle)=
\end{gathered}
$$

$$
\frac{1}{2}(|0000\rangle+|0100\rangle+|0001\rangle-|0101\rangle)
$$

We collect the first two qubits:

$$
\frac{1}{2}(|00\rangle(|00\rangle+|01\rangle)+|01\rangle(|00\rangle-|01\rangle))
$$

We get probabilities:

As 00 is no valid value for c we got the result $c=01$.
We achieved reduction and assume the function is $2: 1$.

Simple example, basic level

We use the circuit above:

We work with the $1: 1$ function

The first Hadamards applied to the input vector:

$$
\frac{1}{2}\left(\begin{array}{cccccccccccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

We construct the oracle.
We use the function:

$f(00)=01$	$f(01)=10$	$f(10)=11$	$f(11)=00$

The oracle acts:

$\|0000\rangle \rightarrow\|0001\rangle$	$\|0001\rangle \rightarrow\|0000\rangle$	$\|0010\rangle \rightarrow\|0011\rangle$	$\|0011\rangle \rightarrow\|0010\rangle$
$\|0100\rangle \rightarrow\|0110\rangle$	$\|0101\rangle \rightarrow\|0111\rangle$	$\|0110\rangle \rightarrow\|0100\rangle$	$\|0111\rangle \rightarrow\|0101\rangle$
$\|1000\rangle \rightarrow\|1011\rangle$	$\|1001\rangle \rightarrow\|1010\rangle$	$\|1010\rangle \rightarrow\|1001\rangle$	$\|1011\rangle \rightarrow\|1000\rangle$
$\|1100\rangle \rightarrow\|1100\rangle$	$\|1101\rangle \rightarrow\|1101\rangle$	$\|1110\rangle \rightarrow\|1110\rangle$	$\|1111\rangle \rightarrow\|1111\rangle$

We construct the oracle from the conceptual level:

We apply the oracle:

$$
\left(\begin{array}{llllllllllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

We apply the Hadamards again:

$$
\frac{1}{2}\left(\begin{array}{cccccccccccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right)=\frac{1}{4}\left(\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
-1 \\
1 \\
-1 \\
1 \\
-1 \\
1 \\
1 \\
-1 \\
1 \\
1 \\
-1 \\
-1
\end{array}\right)
$$

We compare with the result from the conceptual level. There we got:

$$
\begin{aligned}
\frac{1}{4}(|0000\rangle+|0001\rangle & +|0010\rangle+|0011\rangle-|0100\rangle+|0101\rangle-|0110\rangle+|0111\rangle-|1000\rangle+|1001\rangle+|1010\rangle-|1011\rangle \\
& +|1100\rangle+|1101\rangle-|1110\rangle-|1111\rangle)
\end{aligned}
$$

These are 16 basis vectors, we build them with the appropriate signs:

$$
\frac{1}{4}\left(\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
-1 \\
1 \\
-1 \\
1 \\
-1 \\
1 \\
1 \\
-1 \\
1 \\
1 \\
-1 \\
-1
\end{array}\right)
$$

Both results match. The probability to measure one of the basis vectors is $\left(\frac{1}{4}\right)^{2}$, we achieved no reduction in probability.

We work with the 2: 1 function.

The first Hadamards applied to the input vector:

$$
\frac{1}{2}\left(\begin{array}{cccccccccccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

We construct the oracle.
We use the function:

$f(00)=00$	$f(01)=01$	$f(10)=00$	$f(11)=01$

The constant or "secret string" $s:=10$

$$
f(x)=f(x \oplus 10)
$$

We apply the oracle:

The logic behind the scheme:

1. We place a CNOT on every pair of qubits - we prepare the calculation.
2. We search for the first " 1 " in the secret string. This defines the control line.
3. For every " 1 " in the secret string we place a CNOT between the control line and the target qubits - we are acting.

The oracle acts:

$\|0000\rangle$	$\rightarrow\|0000\rangle$	$\|0001\rangle \rightarrow\|0001\rangle$	$\|0010\rangle \rightarrow\|0010\rangle$
$\|0100\rangle \rightarrow\|0101\rangle$	$\|0101\rangle \rightarrow\|0100\rangle$	$\|0110\rangle \rightarrow\|0111\rangle$	$\|011\rangle\rangle \rightarrow\|0011\rangle$
$\|1000\rangle$	$\rightarrow\|1000\rangle$	$\|1001\rangle \rightarrow\|1001\rangle$	$\|1010\rangle \rightarrow\|1010\rangle$
$\|1100\rangle$	$\rightarrow\|1101\rangle$	$\|1101\rangle \rightarrow\|1100\rangle$	$\|1110\rangle \rightarrow\|1111\rangle$

We construct the oracle from the conceptual level:

Note: This looks like a CNOT from qubit 2 to qubit 4 . In fact, that is what remains from the three CNOTs, because the first CNOT and the third CNOT cancel. A CNOT applied to itself gives the identity matrix.

Note: We can shift operators in the circuit from left to right as long as we do not cross "hot spots".

We construct the matrices:
CNOT one
input

output

CNOT two
input

CNOT three is the same as CNOT one.

We build the matrix product: $($ CNOT one $) \cdot($ CNOT two $) \cdot($ CNOT one $)$:

$$
\left(\begin{array}{llllllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

This is the same matrix we constructed from the conceptual level.
We apply the oracle:

$$
\left(\begin{array}{llllllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

We apply the Hadamards again:
$\frac{1}{2}\left(\begin{array}{cccccccccccccccc}1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$

We compare with the result from the conceptual level. There we got:

$$
\frac{1}{2}(|0000\rangle+|0001\rangle+|0100\rangle-|0101\rangle)
$$

These are 4 basis vectors, we build them with the appropriate signs:

Both results match. We get a probability $\left(\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}=\frac{1}{2}\right)$ for vectors $|00\rangle$ and $|01\rangle$ and zero probability for vectors $|10\rangle$ and $|11\rangle$.

Basic level, slow motion

We take a closer look at the action of the oracle.

We take a look at how the input changes after each matrix:
(1) Hadamard
(2) CNOT1
(3) CNOT2
(4) CNOT3
(5) Hadamard
(6)

The input is a single basis vector in position 0 .
The first pair of Hadamards set the superposition, the positions 4,8 and 12 .
The first CNOT moves position 8 to 10 and 12 to 14 .
The second CNOT moves position 4 to 5 and 14 to 15 .
The third CNOT shifts back position 10 to 8 and 15 to 13 .
The last Hadamard "goes fail" and produces another superposition by shifting position 13, 8 and 5 to 5,4 and 3 .

Second part

We use a function

$$
f(x):\left\{\begin{array}{ll}
0 & 1
\end{array}\right\} \times\left\{\begin{array}{ll}
0 & 1
\end{array}\right\} \times \ldots \times\left\{\begin{array}{ll}
0 & 1
\end{array}\right\} \rightarrow\left\{\begin{array}{ll}
0 & 1
\end{array}\right\} \times\left\{\begin{array}{ll}
0 & 1
\end{array}\right\} \times \ldots \times\left\{\begin{array}{ll}
0 & 1
\end{array}\right\}
$$

Domain and range are bit strings of length n.
$f(x)$ is either $1: 1$, bijective $x \neq y \rightarrow f(x) \neq f(y)$ or $f(x)$ is $2: 1$ with $f(x)=f(x \oplus c)$.
$\oplus=$ addition modulo 2 .
The task:
Determine which of the two options applies to f and, if applicable, determine the constant c.
Example:

$$
f(x):\left\{\begin{array}{lll}
0 & 1
\end{array}\right\}^{4} \rightarrow\left\{\begin{array}{lll}
0 & 1
\end{array}\right\}^{4}
$$

x	$f(x)$	x	$f(x)$
$\{0000\}$	$\{1101\}$	$\{1000\}$	$\{1000\}$
$\{0001\}$	$\{0110\}$	$\{1001\}$	$\{1011\}$
$\{0010\}$	$\{0101\}$	$\{1010\}$	$\{1001\}$
$\{0011\}$	$\{1111\}$	$\{1011\}$	$\{0001\}$
$\{0100\}$	$\{0110\}$	$\{1100\}$	$\{1011\}$
$\{0101\}$	$\{1101\}$	$\{1101\}$	$\{1000\}$
$\{0110\}$	$\{1111\}$	$\{1110\}$	$\{0001\}$
$\{0111\}$	$\{0101\}$	$\{1111\}$	$\{1001\}$

The function is $2: 1$, the constant $c=0101 . c$ is often referred as "secret string".

Solving classically

We need to find one pair $f(x)=f(x \oplus s)$.
For n bits we have 2^{n} pairs $\left(x_{i}, f\left(x_{i}\right)\right)$.
Doing this in a deterministic way we need $\leq 2^{n-1}+1$ queries to find c according to the pigeonhole principle: $\Theta\left(2^{n}\right)$

Probabilistic we need $\Theta\left(2^{\frac{n}{2}}\right)$ queries to get the solution with high probability.

Solving quantum

For our example we use the following circuit:

Note: double lines mean classical bits.
Note: $|x\rangle$ are the input values, ranging from $|0000\rangle$ to $|1111\rangle$.

Note: we need to apply this quantum circuit several times to compute c.

Note: The oracle takes the first four qubits as input but modifies the second four ones.

We start with input $|x\rangle|0\rangle=|01010000\rangle$.
We apply the Hadamards:

$$
\begin{aligned}
& \frac{1}{\sqrt{2^{4}}}((|0\rangle+|1\rangle)(|0\rangle-|1\rangle)(|0\rangle+|1\rangle)(|0\rangle-|1\rangle)|0000\rangle)= \\
& \frac{1}{4}(|0000\rangle-|0001\rangle+|0010\rangle-|0011\rangle-|0100\rangle+|0101\rangle-|0110\rangle+|0111\rangle+|1000\rangle-|1001\rangle \\
& +|1010\rangle-|1011\rangle-|1100\rangle+|1101\rangle-|1110\rangle+|1111\rangle)|0000\rangle= \\
& \frac{1}{4}(|00000000\rangle-|00010000\rangle+|00100000\rangle-|00110000\rangle-|01000000\rangle+|01010000\rangle \\
& -|01100000\rangle+|01110000\rangle+|10000000\rangle-|10010000\rangle+|10100000\rangle \\
& -|10110000\rangle-|11000000\rangle+|11010000\rangle-|11100000\rangle+|11110000\rangle)
\end{aligned}
$$

We apply the oracle, using our example function above:

$$
\begin{aligned}
\frac{1}{4}(|00001101\rangle & -|00010110\rangle+|00100101\rangle-|00111111\rangle-|01000110\rangle+|01011101\rangle \\
& -|01101111\rangle+|01110101\rangle+|10001000\rangle-|10011011\rangle+|10101001\rangle \\
& -|10110001\rangle-|11001011\rangle+|11011000\rangle-|11100001\rangle+|11111001\rangle)
\end{aligned}
$$

We apply the Hadamards after the oracle a second time. This results in:

$\frac{1}{16}$ [
$+((\|0\rangle+\|1\rangle)(\|0\rangle+\|1\rangle)(\|0\rangle+\|1\rangle)(\|0\rangle+\|1\rangle)\|1101\rangle)$
$-((\|0\rangle+\|1\rangle)(\|0\rangle+\|1\rangle)(\|0\rangle+\|1\rangle)(\|0\rangle-\|1\rangle)\|0110\rangle)$
$+((\|0\rangle+\|1\rangle)(\|0\rangle+\|1\rangle)(\|0\rangle-\|1\rangle)(\|0\rangle+\|1\rangle)\|0101\rangle)$
$-((\|0\rangle+\|1\rangle)(\|0\rangle+\|1\rangle)(\|0\rangle-\|1\rangle)(\|0\rangle-\|1\rangle)\|1111\rangle)$
$-((\|0\rangle+\|1\rangle)(\|0\rangle-\|1\rangle)(\|0\rangle+\|1\rangle)(\|0\rangle+\|1\rangle)\|0110\rangle)$
$+((\|0\rangle+\|1\rangle)(\|0\rangle-\|1\rangle)(\|0\rangle+\|1\rangle)(\|0\rangle-\|1\rangle)\|1101\rangle)$
$-((\|0\rangle+\|1\rangle)(\|0\rangle-\|1\rangle)(\|0\rangle-\|1\rangle)(\|0\rangle+\|1\rangle)\|1111\rangle)$
$+((\|0\rangle+\|1\rangle)(\|0\rangle-\|1\rangle)(\|0\rangle-\|1\rangle)(\|0\rangle-\|1\rangle)\|0101\rangle)$
$+((\|0\rangle-\|1\rangle)(\|0\rangle+\|1\rangle)(\|0\rangle+\|1\rangle)(\|0\rangle+\|1\rangle)\|1000\rangle)$
$+((\|0\rangle-\|1\rangle)(\|0\rangle+\|1\rangle)(\|0\rangle+\|1\rangle)(\|0\rangle-\|1\rangle)\|1011\rangle)$
$+((\|0\rangle-\|1\rangle)(\|0\rangle+\|1\rangle)(\|0\rangle-\|1\rangle)(\|0\rangle+\|1\rangle)\|1001\rangle)$
$-((\|0\rangle-\|1\rangle)(\|0\rangle+\|1\rangle)(\|0\rangle-\|1\rangle)(\|0\rangle-\|1\rangle)\|0001\rangle)$
$-((\|0\rangle-\|1\rangle)(\|0\rangle-\|1\rangle)(\|0\rangle+\|1\rangle)(\|0\rangle+\|1\rangle)\|1011\rangle)$
$+((\|0\rangle-\|1\rangle)(\|0\rangle-\|1\rangle)(\|0\rangle+\|1\rangle)(\|0\rangle-\|1\rangle)\|1000\rangle)$

$-((\|0\rangle-\|1\rangle)(\|0\rangle-\|1\rangle)(\|0\rangle-\|1\rangle)(\|0\rangle+\|1\rangle)\|0001\rangle)$
$+((\|0\rangle-\|1\rangle)(\|0\rangle-\|1\rangle)(\|0\rangle-\|1\rangle)(\|0\rangle-\|1\rangle)\|1001\rangle)$
$]$

We expand the products and get:

Note: This is the sum:

$$
\frac{1}{2^{n}} \sum_{\substack{x \in\{0,1\}^{n} \\ b \in\{0,1\}^{n}}}(-1)^{x \cdot b}|b\rangle|f(x)\rangle
$$

We collect the first four qubits:

$$
\begin{aligned}
|0000\rangle(|1101\rangle & -|0110\rangle+|0101\rangle-|1111\rangle-|0110\rangle+|1101\rangle-|1111\rangle+|0101\rangle+|1000\rangle \\
& +|1011\rangle+|1001\rangle-|0001\rangle+|1011\rangle+|1000\rangle-|0001\rangle+|1001\rangle)=
\end{aligned}
$$

$$
2|0000\rangle(|1101\rangle-|0110\rangle+|0101\rangle-|1111\rangle+|1101\rangle+|1000\rangle+|1001\rangle-|0001\rangle)
$$

The possibility for measuring $|0000\rangle$ is >0.

$$
\begin{aligned}
|0001\rangle(|1101\rangle & +|0110\rangle+|0101\rangle+|1111\rangle-|0110\rangle-|1101\rangle-|1111\rangle-|0101\rangle+|1000\rangle \\
& -|1011\rangle+|1001\rangle+|0001\rangle+|1011\rangle-|1000\rangle-|0001\rangle-|1001\rangle)=0
\end{aligned}
$$

The possibility for measuring $|0001\rangle$ is zero.
We do this for the other qubits and get probabilities:

$\|0000\rangle>0$	$\|0001\rangle \rightarrow 0$	$\|0010\rangle>0$	$\|0011\rangle \rightarrow 0$
$\|0100\rangle \rightarrow 0$	$\|0101\rangle>0$	$\|0110\rangle \rightarrow 0$	$\|0111\rangle>0$
$\|1000\rangle>0$	$\|1001\rangle \rightarrow 0$	$\|1010\rangle>0$	$\|1011\rangle \rightarrow 0$
$\|1100\rangle \rightarrow 0$	$\|1101\rangle>0$	$\|1110\rangle \rightarrow 0$	$\|1111\rangle>0$

The first run reduces the candidates for c from 15 to 7 . Remember that $|0000\rangle$ is not a valid candidate because the function then would be 1 : 1 .

We generalize.
This is the inner product
We apply the Hadamards $H^{\otimes n}|x\rangle$:

$$
\begin{gathered}
H^{\otimes n}|x\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{i=1}^{n}(-1)^{\sum_{i=1}^{n} x_{i} b_{i}}|b\rangle= \\
\frac{1}{\sqrt{2^{n}}} \sum_{b \in\{0,1\}^{n}}(-1)^{x \cdot b}|b\rangle
\end{gathered}
$$

Note: $|x\rangle$ are the first four qubits, $|b\rangle$ are all qubits from $|0000\rangle$ to $|1111\rangle$.
Note: x is the input vector we chose randomly.
Note: $x \cdot b$ is the inner product of the string $|x\rangle$ and all possible values of a bit string $|b\rangle$ of length n.
Then the oracle is acting. It modifies the second half of the input. As we chose $|0000\rangle$ for input we get $|0000 \oplus f(x)\rangle=|f(x)\rangle$.

We apply the Hadamards to the upper qubits $|b\rangle$:

$$
H\left(\frac{1}{\sqrt{2^{n}}} \sum_{b \in\{0,1\}^{n}}(-1)^{x \cdot b}|b\rangle|f(x)\rangle\right)
$$

We get:

$$
\frac{1}{2^{n}} \sum_{\substack{x \in\{0,1\}^{n} \\ b \in\{0,1\}^{n}}}(-1)^{x \cdot b}|b\rangle|f(x)\rangle
$$

We are measuring the upper part $|b\rangle$ of $|b\rangle|f(x)\rangle$. This gives an information about the type of function. We must repeat this with different qubits $|x\rangle$ to determine the type of function.

We group the terms giving the same $|b\rangle$ in the $|0\rangle /|1\rangle$ basis and square the coefficients of the basis elements. This way we get the probability of seeing $|b\rangle|f(x)\rangle$.

We remember that $|b\rangle|f(x)\rangle$ comes from two different sources: x_{0} and $x_{0} \oplus c$.
We calculate the coefficient of $|b\rangle|f(x)\rangle$:

$$
\begin{gathered}
\left|\frac{1}{2^{n}}\left((-1)^{x_{0} \cdot b}+(-1)^{\left(x_{0} \oplus c\right) \cdot b}\right)\right|^{2}=\left|\frac{1}{2^{n}}\left((-1)^{x_{0} \cdot b}+(-1)^{x_{0} \cdot b \oplus c \cdot b}\right)\right|^{2}= \\
\left|\frac{1}{2^{n}}\left((-1)^{x_{0} \cdot b}+(-1)^{x_{0} \cdot b}(-1)^{c \cdot b}\right)\right|^{2}=\left|\frac{1}{2^{n}}\left((-1)^{x_{0} \cdot b}\left(1+(-1)^{c \cdot b}\right)\right)\right|^{2}=
\end{gathered}
$$

We note that $\left|\left((-1)^{x_{0} \cdot b}\right)\right|^{2}$ always gives 1 and proceed:

$$
\left|\frac{1}{2^{n}}\left(1+(-1)^{c \cdot b}\right)\right|^{2}
$$

If the inner product $c \cdot b=0$ we get the probability $\frac{2^{2}}{2^{2 n}}=4^{1-n}$,
if the inner product $c \cdot b=1$ we get 0 .
Note that we calculate all by using \oplus.
Note: In our example we have 16 vectors b, we have 8 possibilities for $f(x)$ and half of the scalar products is zero. The total probability thus gives $4^{1-4} \cdot 16 \cdot 4=1$.

This gives one bit of information about c. We need n bit, so we need to repeat this n times.
We go back to the example and run the function three times.
We have 15 possible $c^{\prime} s$ because $c=0000$ is not a valid value.
We might get:

$$
b_{1}=0010, b_{2}=0111, b_{3}=1000
$$

After each run the number of possible $c^{\prime} s$ reduces.

We build the scalar product of b_{1} and all possible c-vectors. Note that all calculations are made modulo 2:

$(0010)\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)=0$	$(0010)\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)=1$	$(0010)\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right)=1$	$(0010)\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)=0$
$(0010)\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right)=0$	$(0010)\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)=1$	$(0010)\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right)=1$	$(0010)\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)=0$
$(0010)\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)=0$	$(0010)\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)=1$	$(0010)\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right)=1$	$(0010)\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right)=0$
$(0010)\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right)=0$	$(0010)\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right)=1$	$(0010)\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=1$	

We have 7 possible solutions for c.
We build the scalar product of b_{2} and all possible c-vectors we got from the first pass. Note that all calculations are made modulo 2:

$(0111)\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)=1$			$(0111)\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)=1$
$(0111)\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right)=0$			$(0111)\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)=0$
$(0111)\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)=1$			$(0111)\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right)=1$
$(0111)\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right)=0$			

The number of possible solutions reduces to 3 .
We build the scalar product of b_{3} and all possible c-vectors we got from the second pass. Note that all calculations are made modulo 2 :

$(1000)\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right)=0$			$(1000)\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)=1$
$(1000)\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right)=1$			

We get $c=0101$.
Note: if the vectors b_{i} are not linear independent, we might get no reduction and use more trials so this is not a deterministic access.

We generalize this to an input of n bit.
In our example we had the reduction chain:
$\frac{15}{16}$ after the first trial, $\frac{7}{8}$ after the second trial, $\frac{3}{4}$ after the third trial. The fourth trial then brought the result.

For the n-bit case we get the converging chain:

$$
\begin{gathered}
\frac{2^{n}-1}{2^{n}} \cdot \ldots \cdot \frac{15}{16} \cdot \frac{7}{8} \cdot \frac{3}{4}=\left(1-\frac{1}{2^{n}}\right) \ldots\left(1-\frac{1}{16}\right)\left(1-\frac{1}{8}\right)\left(1-\frac{1}{4}\right) \sim \\
e^{-\frac{1}{2^{n}}} \cdot \ldots \cdot e^{-\frac{1}{16}} \cdot e^{-\frac{1}{8}} \cdot e^{-\frac{1}{4}}=e^{-\left(\frac{1}{2^{n}}+\frac{1}{2^{2}}\right)}=e^{-\frac{1}{4}} \sim 78 \%
\end{gathered}
$$

This is the probability to get the correct solution after $n-1$ trials for large n.

Notebooks

You find a jupyter notebook, dealing with simon's algorithm, at:
https://github.com/amazon-braket/amazon-braket-
examples/blob/main/examples/advanced circuits algorithms/Simons Algorithm/Simons Algorithm.ipynb
Note: You need simons_utils.py to run this notebook.
Note: You need to install the amazon-plugin via "pip install amazon-braket-sdk".
Note: You find a copy of Simons Algorithm.ipynb and simons utils.py on this website too.
I would like to thank my students Alex Heinz, Luca Kölsch, Matthias Hospach and Simon Schaal who made this paper possible.

