This paper follows a lecture Peter Shor has given at

https://openlearninglibrary.mit.edu/courses/coursev1:MITx+8.370.2x+1T2018/courseware/Week2/lectures U2 3 simons alg/?child=last

In the first part we use a simple function $f(x): \{0 \ 1\} \times \{0 \ 1\} \rightarrow \{0 \ 1\} \times \{0 \ 1\}$ and examine the case the function is 1: 1 and the case the function is 2: 1.

1:1 the function is bijective, $f(x_1) \neq f(x_2)$ for $x_1 \neq x_2$.

2: 1 there exists a constant *c* with: $f(x) = f(x \oplus c)$.

Note: \oplus = addition modulo 2.

We work through the first part on conceptual level as well as on basic level.

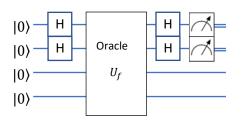
In the second part we use a more elaborated function:

 $f(x): \{0\ 1\} \times \{0\ 1\} \times \dots \times \{0\ 1\} \to \{0\ 1\} \times \{0\ 1\} \times \dots \times \{0\ 1\}$

We go through the process again, this time only on conceptual level and try to generalize it.

Simple example, conceptual level

For our example we use the following circuit:



Note: The oracle takes the first two qubits as input but modifies the second two qubits only.

We use a function $f(x): \{0 \ 1\} \times \{0 \ 1\} \rightarrow \{0 \ 1\} \times \{0 \ 1\}:$

$f(00) = 01 \qquad f(01) = 10 \qquad f(10) = 11 \qquad f(11) = 00$	f(00) = 01	f(01) = 10	f(10) = 11	f(11) = 00
--	------------	------------	------------	------------

Obviously f is 1: 1, the constant c = 00, $f(x) = f(x \oplus c)$.

For information only: The matrix for this function (shortform):

	f(x)
	f(x) 00 01 10 11
$\begin{array}{r} 00\\ x \\ 10\\ 11 \end{array}$	$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$

Note: This is a typical permutation matrix with a single "1" in every row/column. This matrix is equivalent to the identity matrix and in the end we have no oracle at all.

Note: You find the complete matrix in the basic level.

We start with input $|0000\rangle$.

We apply the Hadamards:

$$\frac{1}{2}((|0\rangle + |1\rangle)(|0\rangle + |1\rangle)|00\rangle) = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)|00\rangle = \frac{1}{2}(|0000\rangle + |0100\rangle + |1000\rangle + |1100\rangle)$$

We apply the oracle, using our example function above:

$$\frac{1}{2}(|0001\rangle + |0110\rangle + |1011\rangle + |1100\rangle)$$

We apply the Hadamards after the oracle a second time. This results in:

$$\frac{1}{4} ((|0\rangle + |1\rangle)(|0\rangle + |1\rangle)|01\rangle + (|0\rangle + |1\rangle)(|0\rangle - |1\rangle)|10\rangle + (|0\rangle - |1\rangle)(|0\rangle + |1\rangle)|11\rangle$$
$$+ (|0\rangle - |1\rangle)(|0\rangle - |1\rangle)|00\rangle)$$

We expand the products and get:

$$\frac{1}{4}(|0000\rangle + |0001\rangle + |0010\rangle + |0011\rangle - |0100\rangle + |0101\rangle - |0110\rangle + |0111\rangle - |1000\rangle + |1001\rangle + |1001\rangle + |1010\rangle - |1110\rangle - |1110\rangle - |1111\rangle)$$

We collect the first two qubits:

$$\frac{1}{4} (|00\rangle (|00\rangle + |01\rangle + |10\rangle + |11\rangle) - |01\rangle (|00\rangle - |01\rangle + |10\rangle - |11\rangle) - |10\rangle (|00\rangle - |01\rangle - |10\rangle + |11\rangle) + |11\rangle (|00\rangle + |01\rangle - |10\rangle - |11\rangle))$$

We get probabilities:

_				
	$ 00\rangle > 0$	$ 01\rangle > 0$	$ 10\rangle > 0$	$ 111\rangle > 0$
	$ 00\rangle > 0$	$ 01\rangle > 0$	$ 10\rangle > 0$	111 > 0
_				

We achieved no reduction and assume the function is 1:1.

We change the function to:

f(00) = 00 $f(01) = 01$ $f(10) = 00$ $f(11) = 01$

Obviously *f* is 2: 1, the constant c = 10: $f(x) = f(x \oplus c)$

For information only: The matrix for this function (shortform):

	f(x)
	$\begin{array}{c} f(x) \\ 00 \ 01 \ 10 \ 11 \end{array}$
$\begin{array}{c} 00\\ x \\ 10\\ 11 \end{array}$	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$

Note: The matrix is not of full rank 4×4 .

Note: You find the complete matrix in the basic level.

We start with input $|0000\rangle$.

We apply the Hadamards:

$$\frac{1}{2} ((|0\rangle + |1\rangle)(|0\rangle + |1\rangle)|00\rangle) = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle)|00\rangle = \frac{1}{2} (|0000\rangle + |0100\rangle + |1000\rangle + |1100\rangle)$$

We apply the oracle, using our example function above:

$$\frac{1}{2}(|0000\rangle + |0101\rangle + |1000\rangle + |1101\rangle)$$

We apply the Hadamards after the oracle a second time. This results in:

$$\frac{1}{4} ((|0\rangle + |1\rangle)(|0\rangle + |1\rangle)|00\rangle + (|0\rangle + |1\rangle)(|0\rangle - |1\rangle)|01\rangle + (|0\rangle - |1\rangle)(|0\rangle + |1\rangle)|00\rangle + (|0\rangle - |1\rangle)(|0\rangle - |1\rangle)|01\rangle)$$

We expand the products and get:

$$\frac{1}{4}(|0000\rangle + |0100\rangle + |1000\rangle + |1100\rangle + |0001\rangle - |0101\rangle + |1001\rangle - |1101\rangle + |0000\rangle + |0100\rangle - |1000\rangle - |1100\rangle + |0001\rangle - |0101\rangle - |1001\rangle + |1101\rangle) =$$

Note: The oracle takes the first two qubits as input but modifies the second two qubits only.

$$\frac{1}{2}(|0000\rangle + |0100\rangle + |0001\rangle - |0101\rangle)$$

We collect the first two qubits:

$$\frac{1}{2} \big(|00\rangle (|00\rangle + |01\rangle) + |01\rangle (|00\rangle - |01\rangle) \big)$$

We get probabilities:

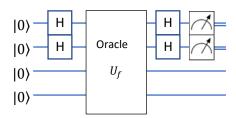
$ 00\rangle > 0$	$ 01\rangle > 0$	$ 10\rangle = 0$	$ 11\rangle = 0$
/			

As 00 is no valid value for c we got the result $\overline{c} = 01$.

We achieved reduction and assume the function is 2:1.

Simple example, basic level

We use the circuit above:



We work with the 1:1 function

The first Hadamards applied to the input vector:

	/1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0 \	/1\		/1\
	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0 \	(0)		0
	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0		0
	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0		0
	1	0	0	0	-1	0	0	0	1	0	0	0	-1	0	0	0	0		1
	0	1	0	0	0	-1	0	0	0	1	0	0	0	-1	0	0	0		0
	0	0	1	0	0	0	-1	0	0	0	1	0	0	0	-1	0	0		0
1	0	0	0	1	0	0	0	-1	0	0	0	1	0	0	0	-1	0	$ _{-1}$	0
2	1	0	0	0	1	0	0	0	-1	0	0	0	-1	0	0	0	0	2	1
	0	1	0	0	0	1	0	0	0	-1	0	0	0	-1	0	0	0		0
	0	0	1	0	0	0	1	0	0	0	-1	0	0	0	-1	0	0		0
	0	0	0	1	0	0	0	1	0	0	0	-1	0	0	0	-1	0		0
	1	0	0	0	-1	0	0	0	-1	0	0	0	1	0	0	0	0		1
	0	1	0	0	0	-1	0	0	0	-1	0	0	0	1	0	0	0		0
	0	0	1	0	0	0	-1	0	0	0	-1	0	0	0	1	0 /	\ 0 /		0
	/0	0	0	1	0	0	0	-1	0	0	0	-1	0	0	0	1 /	\0/		<u>\0</u>

We construct the oracle.

We use the function:

f(00) = 01 $f(01) = 10$ $f(10) = 11$ $f(11) = 00$				
	f(00) = 01	f(01) = 10	f(10) = 11	f(11) = 00
	f(00) = 01	((01) - 10)	f(10) = 11	f(11) = 00

The oracle acts:

$ 0000\rangle \rightarrow 0001\rangle$	0001 angle ightarrow 0000 angle	0010 angle ightarrow 0011 angle	$ 0011\rangle \rightarrow 0010\rangle$
0100 angle ightarrow 0110 angle	$ 0101\rangle \rightarrow 0111\rangle$	$ 0110\rangle \rightarrow 0100\rangle$	0111 angle ightarrow 0101 angle
$ 1000\rangle \rightarrow 1011\rangle$	$ 1001\rangle \rightarrow 1010\rangle$	$ 1010\rangle \rightarrow 1001\rangle$	$ 1011\rangle \rightarrow 1000\rangle$
$ 1100\rangle \rightarrow 1100\rangle$	$ 1101\rangle \rightarrow 1101\rangle$	$ 1110\rangle \rightarrow 1110\rangle$	$ 1111\rangle \rightarrow 1111\rangle$

We construct the oracle from the conceptual level:

](0000)) - ((1	111>
	10000		4	0	0		0	0	0	0	0	0	0	0	0	0	Ļ
	$ 0000\rangle \rightarrow$	/0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
input		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	$ 1111\rangle \rightarrow$	/0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

We apply the oracle:

70	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0١		/1\		(0)	
1	0	0	Õ	0	0	0	0	0	0	0	0	0	0	0	0)		$(\bar{0})$		$\begin{pmatrix} 1\\1 \end{pmatrix}$	
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0		0			
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0		1		0	
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0		0		0	
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0		0		1	
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	_ 1	0	
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2	1	$=\frac{1}{2}$	0	
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0		0		0	
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0		0		0	
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0		0		1	
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0		1		1	
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0		0		0	
0 /	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0		0)		\0/	
/0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1'		/0/		/0/	

We apply the Hadamards again:

	/1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0 \	$\langle 0 \rangle$		/1\	
	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	(1)		1	
	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0		1	
	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0		1	
	1	0	0	0	-1	0	0	0	1	0	0	0	-1	0	0	0	0		-1	
	0	1	0	0	0	-1	0	0	0	1	0	0	0	$^{-1}$	0	0	0		1	
	0	0	1	0	0	0	-1	0	0	0	1	0	0	0	-1	0			-1	
1	0	0	0	1	0	0	0	-1	0	0	0	1	0	0	0	-1	1 0	_ 1	1	
2	1	0	0	0	1	0	0	0	-1	0	0	0	-1	0	0	0	20	- 4	-1	
	0	1	0	0	0	1	0	0	0	-1	0	0	0	-1	0	0	0		1	
	0	0	1	0	0	0	1	0	0	0	-1	0	0	0	-1	0	0		1	
	0	0	0	1	0	0	0	1	0	0	0	-1	0	0	0	-1	1		-1	
	1	0	0	0	-1	0	0	0	-1	0	0	0	1	0	0	0	1		1	
	0	1	0	0	0	-1	0	0	0	-1	0	0	0	1	0	0	0		1	
	0	0	1	0	0	0	-1	0	0	0	-1	0	0	0	1	0	/ \0/		\ -1	
	/0	0	0	1	0	0	0	-1	0	0	0	-1	0	0	0	1 /	∖ 0∕		\-1/	

We compare with the result from the conceptual level. There we got:

$$\frac{1}{4}(|0000\rangle + |0001\rangle + |0010\rangle + |0011\rangle - |0100\rangle + |0101\rangle - |0110\rangle + |0111\rangle - |1000\rangle + |1001\rangle + |1010\rangle - |1011\rangle + |1100\rangle + |1101\rangle - |1110\rangle - |1111\rangle)$$

output

These are 16 basis vectors, we build them with the appropriate signs:

Both results match. The probability to measure one of the basis vectors is $\left(\frac{1}{4}\right)^2$, we achieved no reduction in probability.

We work with the 2:1 function.

The first Hadamards applied to the input vector:

	/1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0 \	/1\		/1\
	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0 \	(0)		0
	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0		0
	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0		0
	1	0	0	0	-1	0	0	0	1	0	0	0	-1	0	0	0	0		1
	0	1	0	0	0	-1	0	0	0	1	0	0	0	-1	0	0	0		0
	0	0	1	0	0	0	-1	0	0	0	1	0	0	0	-1	0	0		0
1	0	0	0	1	0	0	0	-1	0	0	0	1	0	0	0	-1	0	$-\frac{1}{2}$	0
2	1	0	0	0	1	0	0	0	-1	0	0	0	-1	0	0	0	0	2	1
	0	1	0	0	0	1	0	0	0	-1	0	0	0	-1	0	0	0		0
	0	0	1	0	0	0	1	0	0	0	-1	0	0	0	-1	0	0		0
	0	0	0	1	0	0	0	1	0	0	0	-1	0	0	0	-1	0		0
	1	0	0	0	-1	0	0	0	-1	0	0	0	1	0	0	0	0		1
	0	1	0	0	0	-1	0	0	0	-1	0	0	0	1	0	0	0		0
	0	0	1	0	0	0	-1	0	0	0	-1	0	0	0	1	0 /	\0/		0
	/0	0	0	1	0	0	0	-1	0	0	0	-1	0	0	0	1 /	/0/		/0/

We construct the oracle.

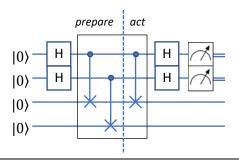
We use the function:

$f(00) = 00 \qquad \qquad f(01) = 01$	f(10) = 00	f(11) = 01
---------------------------------------	------------	------------

The constant or "secret string" $s\coloneqq 10$

$$f(x) = f(x \oplus 10)$$

We apply the oracle:



The logic behind the scheme:

- 1. We place a CNOT on every pair of qubits we prepare the calculation.
- 2. We search for the first "1" in the secret string. This defines the control line.
- 3. For every "1" in the secret string we place a CNOT between the control line and the target qubits we are acting.

The oracle acts:

0000 angle ightarrow 0000 angle	0001 angle ightarrow 0001 angle	0010 angle ightarrow 0010 angle	0011 angle ightarrow 0011 angle
0100 angle ightarrow 0101 angle	$ 0101\rangle \rightarrow 0100\rangle$	$ 0110\rangle \rightarrow 0111\rangle$	$ 0111\rangle \rightarrow 0110\rangle$
$ 1000\rangle \rightarrow 1000\rangle$	$ 1001\rangle \rightarrow 1001\rangle$	$ 1010\rangle \rightarrow 1010\rangle$	$ 1011\rangle \rightarrow 1011\rangle$
$ 1100\rangle \rightarrow 1101\rangle$	$ 1101\rangle \rightarrow 1100\rangle$	$ 1110\rangle \rightarrow 1111\rangle$	$ 1111\rangle \rightarrow 1110\rangle$

We construct the oracle from the conceptual level:

			0000	(010	(0100	(0110	1	.000		1010	1	100	1	110		output
				0001	C	0011	0	101	()111		1001		1011		1101		1111	
	/0000		/1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0\	
	0001		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0010		0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0011		0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
	0100		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
	0101		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
innut	0110		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
input	0111	\rightarrow	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
	1000		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	1001		0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
	1010		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	
	1011		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	
	1100		0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	
	1101		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
	\ 1110 /		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	ł
	\11111/		/0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0/	

Note: This looks like a CNOT from qubit 2 to qubit 4. In fact, that is what remains from the three CNOTs, because the first CNOT and the third CNOT cancel. A CNOT applied to itself gives the identity matrix.

Note: We can shift operators in the circuit from left to right as long as we do not cross "hot spots".

We construct the matrices:

CNOT one

			0000	(0010		0100		0110)	1000		101	0	1100)	1110)	output
				0001	(0011		0101		0111		1001		1011		110	1	1111	
	/0000		/1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0\	
	0001		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0010		0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0011		0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
	0100		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
	0101		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
innut	0110		0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
input	0111	\rightarrow	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
	1000		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	
	1001		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	
	1010		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	1011		0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
	1100		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
	1101		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
	\1110 /		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
	\1111/		/0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0⁄	

			0000		0010		0100		0110)	1000)	101	0	1100)	1110)	output
				0001	L	0011	(0101		0111	L	1001		1011	L	110	1	1111	
	/0000		/1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0\	
	0001		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	l .
	0010		0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0011		0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
	0100		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
	0101		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
input	0110		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
input	0111	\rightarrow	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
	1000		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	1001		0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
	1010		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	
	1011		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	
	1100		0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	
	1101		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
	\1111/		/0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0⁄	

CNOT three is the same as CNOT one.

/1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0 \
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
/0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0/

We build the matrix product: $(CNOT one) \cdot (CNOT two) \cdot (CNOT one)$:

This is the same matrix we constructed from the conceptual level.

We apply the oracle:

$ \begin{array}{c} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1	$\frac{1}{2}$	$ \begin{array}{c} 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$=\frac{1}{2}$	$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$	
	-	-	-			-	-		-	-	-	_			-		-			

We apply the Hadamards again:

$\frac{1}{2}$	$ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$	0 1 0 0 1 0 0 0 1 0 0 0 0 0 0	0 0 1 0 0 0 1 0 0 0 1 0 0 0	0 0 1 0 0 0 1 0 0 0 0 1 0	$ \begin{array}{c} 1 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ -1 \end{array} $	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}$	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \end{array} $	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\$	$ \begin{array}{c} 1 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 1 \\ \end{array} $	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \end{array} $	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 2 \\ 1 \\ 0 $	$=\frac{1}{2}$	$ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	
	0 0	0 0	1 0	0 1	0 0	0 0	1 0	0 1	0 0	0 0	$-1 \\ 0$	0 -1	0 0	0 0	$-1 \\ 0$	0 -1	000000000000000000000000000000000000000		0 0	

We compare with the result from the conceptual level. There we got:

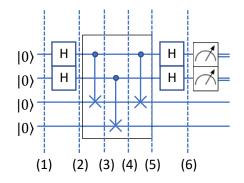
$$\frac{1}{2}(|0000\rangle + |0001\rangle + |0100\rangle - |0101\rangle)$$

These are 4 basis vectors, we build them with the appropriate signs:

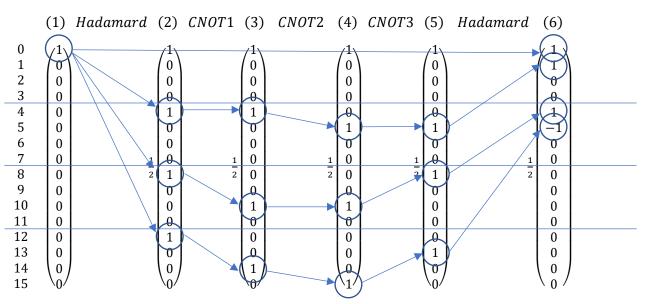
Both results match. We get a probability $\left(\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{1}{2}\right)$ for vectors $|00\rangle$ and $|01\rangle$ and zero probability for vectors $|10\rangle$ and $|11\rangle$.

Basic level, slow motion

We take a closer look at the action of the oracle.



We take a look at how the input changes after each matrix:



The input is a single basis vector in position 0.

The first pair of Hadamards set the superposition, the positions 4, 8 and 12.

The first CNOT moves position 8 to 10 and 12 to 14.

The second CNOT moves position 4 to 5 and 14 to 15.

The third CNOT shifts back position 10 to 8 and 15 to 13.

The last Hadamard "goes fail" and produces another superposition by shifting position 13, 8 and 5 to 5,4 and 3.

Second part

We use a function

 $f(x): \{0\ 1\} \times \{0\ 1\} \times \dots \times \{0\ 1\} \to \{0\ 1\} \times \{0\ 1\} \times \dots \times \{0\ 1\}$

Domain and range are bit strings of length *n*.

f(x) is either 1: 1, bijective $x \neq y \rightarrow f(x) \neq f(y)$ or f(x) is 2: 1 with $f(x) = f(x \oplus c)$.

 \oplus = addition modulo 2.

The task:

Determine which of the two options applies to f and, if applicable, determine the constant c.

Example:

	(()		<i>c(</i>)
$x \rightarrow$	f(x)	$x \rightarrow$	f(x)
{0000}	{1101}	{1000}	{1000}
{0001}	{0110}	{1001}	{1011}
{0010}	{0101}	{1010}	{1001}
{0011}	{1111}	{1011}	{0001}
{0100}	{0110}	{1100}	{1011}
{0101}	{1101}	{1101}	{1000}
{0110}	{1111}	{1110}	{0001}
{0111}	{0101}	{1111}	{1001}

```
f(x): \{0 \ 1\}^4 \to \{0 \ 1\}^4
```

The function is 2:1, the constant c = 0101. c is often referred as "secret string".

Solving classically

We need to find one pair $f(x) = f(x \oplus s)$.

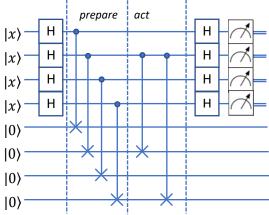
For *n* bits we have 2^n pairs $(x_i, f(x_i))$.

Doing this in a deterministic way we need $\leq 2^{n-1} + 1$ queries to find c according to the pigeonhole principle: $\Theta(2^n)$

Probabilistic we need $\Theta\left(2^{\frac{n}{2}}\right)$ queries to get the solution with high probability.

Solving quantum

For our example we use the following circuit:



We start with input $|x\rangle|0\rangle = |01010000\rangle$.

We apply the Hadamards:

Note: double lines mean classical bits.

Note: $|x\rangle$ are the input values, ranging from $|0000\rangle$ to $|1111\rangle$.

Note: we need to apply this quantum circuit several times to compute *c*.

Note: The oracle takes the first four qubits as input but modifies the second four ones.

$$\frac{1}{\sqrt{2^4}} \big((|0\rangle + |1\rangle)(|0\rangle - |1\rangle)(|0\rangle + |1\rangle)(|0\rangle - |1\rangle)|0000\rangle \big) =$$

 $\frac{1}{4}(|0000\rangle - |0001\rangle + |0010\rangle - |0011\rangle - |0100\rangle + |0101\rangle - |0110\rangle + |0111\rangle + |1000\rangle - |1001\rangle + |1010\rangle - |1010\rangle + |1100\rangle + |1110\rangle + |1111\rangle)|0000\rangle =$

$$\frac{1}{4}(|0000000\rangle - |00010000\rangle + |0010000\rangle - |00110000\rangle - |01000000\rangle + |01010000\rangle - |01100000\rangle + |01110000\rangle - |10010000\rangle + |10100000\rangle - |10110000\rangle + |10100000\rangle + |10110000\rangle + |11110000\rangle + |1110000\rangle + |1110000\rangle + |11110000\rangle + |11110000\rangle + |1110000\rangle + |110000\rangle + |1100000\rangle + |1100000\rangle + |1100000\rangle + |1100000\rangle + |1100000\rangle + |100000\rangle + |1000000\rangle + |100000\rangle + |100000\rangle + |1000000\rangle + |1000000\rangle + |1000000\rangle +$$

We apply the oracle, using our example function above:

$$\frac{1}{4}(|00001101\rangle - |00010110\rangle + |00100101\rangle - |00111111\rangle - |01000110\rangle + |01011101\rangle - |01101111\rangle + |01110101\rangle + |10001000\rangle - |10011011\rangle + |10101001\rangle - |10110001\rangle - |11001011\rangle + |11011000\rangle - |11100001\rangle + |11111001\rangle)$$

We apply the Hadamards after the oracle a second time. This results in:

$\frac{1}{16}$
$+ ((0\rangle + 1\rangle)(0\rangle + 1\rangle)(0\rangle + 1\rangle)(0\rangle + 1\rangle) 1101\rangle)$
$-((0\rangle + 1\rangle)(0\rangle + 1\rangle)(0\rangle + 1\rangle)(0\rangle - 1\rangle) 0110\rangle)$
$+ \big((0\rangle + 1\rangle)(0\rangle + 1\rangle)(0\rangle - 1\rangle)(0\rangle + 1\rangle) 0101\rangle \big)$
$-((0\rangle + 1\rangle)(0\rangle + 1\rangle)(0\rangle - 1\rangle)(0\rangle - 1\rangle) 1111\rangle)$
$-((0\rangle + 1\rangle)(0\rangle - 1\rangle)(0\rangle + 1\rangle)(0\rangle + 1\rangle) 0110\rangle)$
$+ \big((0\rangle + 1\rangle)(0\rangle - 1\rangle)(0\rangle + 1\rangle)(0\rangle - 1\rangle) 1101\rangle \big)$
$-((0\rangle + 1\rangle)(0\rangle - 1\rangle)(0\rangle - 1\rangle)(0\rangle + 1\rangle) 1111\rangle)$
$+ \big((0\rangle + 1\rangle)(0\rangle - 1\rangle)(0\rangle - 1\rangle)(0\rangle - 1\rangle) 0101\rangle \big)$
$+ \big((0\rangle - 1\rangle)(0\rangle + 1\rangle)(0\rangle + 1\rangle)(0\rangle + 1\rangle) 1000\rangle \big)$
$+ \big((0\rangle - 1\rangle)(0\rangle + 1\rangle)(0\rangle + 1\rangle)(0\rangle - 1\rangle) 1011\rangle \big)$
$+ \big((0\rangle - 1\rangle)(0\rangle + 1\rangle)(0\rangle - 1\rangle)(0\rangle + 1\rangle) 1001\rangle \big)$
$-((0\rangle - 1\rangle)(0\rangle + 1\rangle)(0\rangle - 1\rangle)(0\rangle - 1\rangle) 0001\rangle)$
$-((0\rangle - 1\rangle)(0\rangle - 1\rangle)(0\rangle + 1\rangle)(0\rangle + 1\rangle) 1011\rangle)$
+ $((0\rangle - 1\rangle)(0\rangle - 1\rangle)(0\rangle + 1\rangle)(0\rangle - 1\rangle) 1000\rangle)$

$-((0\rangle - 1\rangle)(0\rangle - 1\rangle)(0\rangle + 1\rangle)(0\rangle + 1\rangle) 0001\rangle)$
$+ ((0\rangle - 1\rangle)(0\rangle - 1\rangle)(0\rangle - 1\rangle)(0\rangle - 1\rangle) 1001\rangle)$

We expand the products and get:

$\frac{1}{16}$
$ 00001101\rangle + 00011101\rangle + 00101101\rangle + 00111101\rangle + 01001101\rangle + 01011101\rangle + 01101101\rangle$
$+ 01111101\rangle + 10001101\rangle + 10011101\rangle + 10101101\rangle + 10111101\rangle$
$+ 11001101\rangle + 11011101\rangle + 11101101\rangle + 11111101\rangle$
$- 00000110\rangle + 00010110\rangle - 00100110\rangle + 00110110\rangle - 01000110\rangle + 01010110\rangle - 01100110\rangle$
$+ 01110110\rangle - 10000110\rangle + 10010110\rangle - 10100110\rangle + 10110110\rangle$
$- 11000110\rangle + 11010110\rangle - 11100110\rangle + 11110110\rangle$
$+ 00000101\rangle + 00010101\rangle - 00100101\rangle - 00110101\rangle + 01000101\rangle + 01010101\rangle - 01100101\rangle$
$- 01110101\rangle + 10000101\rangle + 10010101\rangle - 10100101\rangle - 10110101\rangle$
$+ 11000101\rangle + 11010101\rangle - 11100101\rangle - 11110101\rangle$
$- 00001111\rangle + 00011111\rangle + 00101111\rangle - 00111111\rangle - 01001111\rangle + 01011111\rangle + 01101111\rangle$
$- 01111111\rangle - 10001111\rangle + 10011111\rangle + 101011111\rangle - 10111111\rangle$
$- 11001111\rangle + 11011111\rangle + 11101111\rangle - 11111111\rangle$
$- 00000110\rangle - 00010110\rangle - 00100110\rangle - 00110110\rangle + 01000110\rangle + 01010110\rangle + 01100110\rangle$
$+ 01110110\rangle - 10000110\rangle - 10010110\rangle - 10100110\rangle + 10110110\rangle$
$+ 11000110\rangle + 11010110\rangle + 11100110\rangle + 11110110\rangle$
$+ 00001101\rangle - 00011101\rangle + 00101101\rangle - 00111101\rangle - 01001101\rangle + 01011101\rangle - 01101101\rangle$
$+ 01111101\rangle + 10001101\rangle - 10011101\rangle + 10101101\rangle - 10111101\rangle$
$- 11001101\rangle + 11011101\rangle - 11101101\rangle + 11111101\rangle$
$- 00001111\rangle - 00011111\rangle + 00101111\rangle + 00111111\rangle + 01001111\rangle + 01001111\rangle + 010011111\rangle - 01101111\rangle$
$- 0111111\rangle - 10001111\rangle - 10011111\rangle + 10101111\rangle + 10111111\rangle$
$+ 11001111\rangle + 11011111\rangle - 11101111\rangle - 11111111\rangle$
$+ 00000101\rangle - 00010101\rangle - 00100101\rangle + 00110101\rangle - 01000101\rangle + 01010101\rangle + 01100101\rangle$
$- 01110101\rangle + 10000101\rangle - 10010101\rangle - 10100101\rangle + 10110101\rangle$
$- 11000101\rangle + 11010101\rangle + 11100101\rangle - 11110101\rangle$
$+ 00001000\rangle + 00011000\rangle + 00101000\rangle + 00111000\rangle + 01001000\rangle + 01011000\rangle + 01101000\rangle + 01101000\rangle + 01111000\rangle$
$+ 0111000\rangle - 1001000\rangle - 1011000\rangle - 10101000\rangle - 10111000\rangle$ $- 11001000\rangle - 11011000\rangle - 11101000\rangle - 11111000\rangle$
$ 1101000\rangle - 1101000\rangle - 1101000\rangle - 1111000\rangle$ + $ 00001011\rangle - 00011011\rangle + 00101011\rangle - 00111011\rangle + 01001011\rangle + 01101011\rangle$
$- 01111011\rangle - 10001011\rangle + 00101011\rangle + 0001011\rangle + 01001011\rangle + 0101011\rangle$
$- 11001011\rangle + 11011011\rangle - 11101011\rangle + 11111011\rangle$
$+ 00001001\rangle + 00011001\rangle - 00101001\rangle - 00111001\rangle + 01001001\rangle + 01011001\rangle - 01101001\rangle$
$- 01111001\rangle - 10001001\rangle - 10011001\rangle + 10101001\rangle + 10111001\rangle$
$- 11001001\rangle - 11011001\rangle + 11101001\rangle + 11111001\rangle$
$- 00000001\rangle + 00010001\rangle + 00100001\rangle - 00110001\rangle - 01000001\rangle + 01010001\rangle + 01100001\rangle$
$- 01110001\rangle + 10000001\rangle - 10010001\rangle - 10100001\rangle + 10110001\rangle$
$+ 11000001\rangle - 11010001\rangle - 11100001\rangle + 11110001\rangle$
$+ 00001011\rangle + 00011011\rangle + 00101011\rangle + 00111011\rangle - 01001011\rangle - 01011011\rangle - 01101011\rangle$
$- 01111011\rangle - 10001011\rangle - 10011011\rangle - 10101011\rangle - 10111011\rangle$
$+ 11001011\rangle + 11011011\rangle + 11101011\rangle + 11111011\rangle$
+ 00001000> - 00011000> + 00101000> - 00111000> - 01001000> + 01011000> - 01101000>
$+ 01111000\rangle - 10001000\rangle + 10011000\rangle - 10101000\rangle + 10111000\rangle$
+ 11001000> - 11011000> + 11101000> - 11111000>
$- 00000001\rangle - 00010001\rangle + 00100001\rangle + 00110001\rangle + 01000001\rangle + 01010001\rangle - 01100001\rangle$
$- 01110001\rangle + 10000001\rangle + 10010001\rangle - 10100001\rangle - 10110001\rangle$
$- 11000001\rangle - 11010001\rangle + 11100001\rangle + 11110001\rangle$
$+ 00001001\rangle - 00011001\rangle - 00101001\rangle + 00111001\rangle - 01001001\rangle + 01011001\rangle + 01101001\rangle$
$- 01111001\rangle - 10001001\rangle + 10011001\rangle + 10101001\rangle - 10111001\rangle$
$+ 11001001\rangle - 11011001\rangle - 11101001\rangle + 11111001\rangle$
]

Note: This is the sum:

$$\frac{1}{2^n} \sum_{\substack{x \in \{0,1\}^n \\ b \in \{0,1\}^n}} (-1)^{x \cdot b} |b\rangle |f(x)\rangle$$

We collect the first four qubits:

$$\begin{array}{l} |0000\rangle(|1101\rangle - |0110\rangle + |0101\rangle - |1111\rangle - |0110\rangle + |1101\rangle - |1111\rangle + |0101\rangle + |1000\rangle \\ + |1011\rangle + |1001\rangle - |0001\rangle + |1011\rangle + |1000\rangle - |0001\rangle + |1001\rangle) = \end{array}$$

$$2|0000\rangle(|1101\rangle - |0110\rangle + |0101\rangle - |1111\rangle + |1101\rangle + |1000\rangle + |1001\rangle - |0001\rangle)$$

The possibility for measuring $|0000\rangle$ is > 0.

$$|0001\rangle(|1101\rangle + |0110\rangle + |0101\rangle + |1111\rangle - |0110\rangle - |1101\rangle - |1111\rangle - |0101\rangle + |1000\rangle \\ - |1011\rangle + |1001\rangle + |0001\rangle + |1011\rangle - |1000\rangle - |0001\rangle - |1001\rangle) = 0$$

The possibility for measuring $|0001\rangle$ is zero.

We do this for the other qubits and get probabilities:

0000> > 0	$ 0001\rangle \rightarrow 0$	0010> > 0	$ 0011\rangle \rightarrow 0$
$ 0100\rangle \rightarrow 0$	0101> > 0	$ 0110\rangle \rightarrow 0$	0111> > 0
1000> > 0	$ 1001\rangle \rightarrow 0$	1010> > 0	$ 1011\rangle \rightarrow 0$
$ 1100\rangle \rightarrow 0$	1101> > 0	$ 1110\rangle \rightarrow 0$	1111> > 0

The first run reduces the candidates for c from 15 to 7. Remember that $|0000\rangle$ is not a valid candidate because the function then would be 1:1.

We generalize.

We apply the Hadamards $H^{\otimes n}|x\rangle$:

This is the inner product of x and b modulo 2.

$$H^{\otimes n} |x\rangle = \frac{1}{\sqrt{2^n}} \sum_{i=1}^n (-1)^{\sum_{i=1}^n x_i b_i} |b\rangle = \frac{1}{\sqrt{2^n}} \sum_{b \in \{0,1\}^n} (-1)^{x \cdot b} |b\rangle$$

Note: $|x\rangle$ are the first four qubits, $|b\rangle$ are all qubits from $|0000\rangle$ to $|1111\rangle$.

Note: *x* is the input vector we chose randomly.

Note: $x \cdot b$ is the inner product of the string $|x\rangle$ and all possible values of a bit string $|b\rangle$ of length n.

Then the oracle is acting. It modifies the second half of the input. As we chose $|0000\rangle$ for input we get $|0000 \oplus f(x)\rangle = |f(x)\rangle$.

We apply the Hadamards to the upper qubits $|b\rangle$:

$$H\left(\frac{1}{\sqrt{2^n}}\sum_{b\in\{0,1\}^n}(-1)^{x\cdot b}|b\rangle|f(x)\rangle\right)$$

We get:

$$\frac{1}{2^n} \sum_{\substack{x \in \{0,1\}^n \\ b \in \{0,1\}^n}} (-1)^{x \cdot b} |b\rangle |f(x)\rangle$$

We are measuring the upper part $|b\rangle$ of $|b\rangle|f(x)\rangle$. This gives an information about the type of function. We must repeat this with different qubits $|x\rangle$ to determine the type of function.

We group the terms giving the same $|b\rangle$ in the $|0\rangle/|1\rangle$ basis and square the coefficients of the basis elements. This way we get the probability of seeing $|b\rangle|f(x)\rangle$.

We remember that $|b\rangle|f(x)\rangle$ comes from two different sources: x_0 and $x_0\oplus c$.

We calculate the coefficient of $|b\rangle|f(x)\rangle$:

$$\left|\frac{1}{2^{n}}\left((-1)^{x_{0}\cdot b} + (-1)^{(x_{0}\oplus c)\cdot b}\right)\right|^{2} = \left|\frac{1}{2^{n}}\left((-1)^{x_{0}\cdot b} + (-1)^{x_{0}\cdot b\oplus c\cdot b}\right)\right|^{2} = \left|\frac{1}{2^{n}}\left((-1)^{x_{0}\cdot b} + (-1)^{x_{0}\cdot b}(-1)^{c\cdot b}\right)\right|^{2} = \left|\frac{1}{2^{n}}\left((-1)^{x_{0}\cdot b}\left(1 + (-1)^{c\cdot b}\right)\right)\right|^{2} = \left|\frac{1}{2^{n}}\left(1 + (-1)^{c\cdot b}\left(1 + (-1)^{c\cdot b}\right)\right|^{2} = \left|\frac{1}{2^{n$$

We note that $\left|\left((-1)^{x_0\cdot b}\right)\right|^2$ always gives 1 and proceed:

$$\left|\frac{1}{2^n} \left(1 + (-1)^{c \cdot b}\right)\right|^2$$

If the inner product $c \cdot b = 0$ we get the probability $\frac{2^2}{2^{2n}} = 4^{1-n}$, if the inner product $c \cdot b = 1$ we get 0.

Note that we calculate all by using \oplus .

Note: In our example we have 16 vectors b, we have 8 possibilities for f(x) and half of the scalar products is zero. The total probability thus gives $4^{1-4} \cdot 16 \cdot 4 = 1$.

This gives one bit of information about c. We need n bit, so we need to repeat this n times.

We go back to the example and run the function three times.

We have 15 possible c's because c = 0000 is not a valid value.

We might get:

$$b_1 = 0010, b_2 = 0111, b_3 = 1000$$

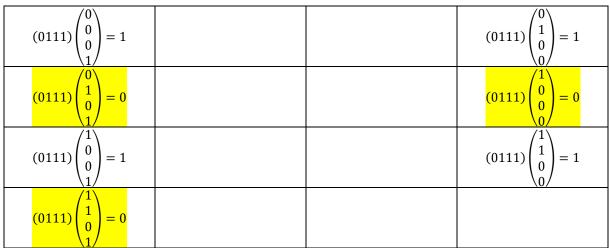
After each run the number of possible c's reduces.

$(0010)\begin{pmatrix}0\\0\\0\\1\end{pmatrix}=0$	$(0010) \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} = 1$	$(0010) \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix} = 1$	$(0010)\begin{pmatrix}0\\1\\0\\0\end{pmatrix}=0$
$(0010) \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = 0$	$(0010) \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = 1$	$(0010) \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} = 1$	$(0010) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = 0$
$(0010) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = 0$	$(0010) \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = 1$	$(0010) \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} = 1$	$(0010) \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = 0$
$(0010)\begin{pmatrix}1\\1\\0\\1\end{pmatrix} = 0$	$(0010)\begin{pmatrix}1\\1\\0\\\end{pmatrix}=1$	$(0010) \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = 1$	

We build the scalar product of b_1 and all possible c-vectors. Note that all calculations are made modulo 2:

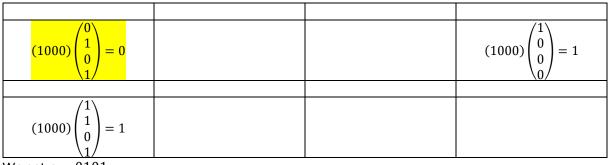
We have 7 possible solutions for c.

We build the scalar product of b_2 and all possible *c*-vectors we got from the first pass. Note that all calculations are made modulo 2:



The number of possible solutions reduces to 3.

We build the scalar product of b_3 and all possible *c*-vectors we got from the second pass. Note that all calculations are made modulo 2:



We get c = 0101.

Note: if the vectors b_i are not linear independent, we might get no reduction and use more trials so this is not a deterministic access.

We generalize this to an input of n bit.

In our example we had the reduction chain:

 $\frac{15}{16}$ after the first trial, $\frac{7}{8}$ after the second trial, $\frac{3}{4}$ after the third trial. The fourth trial then brought the result.

For the *n*-bit case we get the converging chain:

$$\frac{2^n - 1}{2^n} \cdot \dots \cdot \frac{15}{16} \cdot \frac{7}{8} \cdot \frac{3}{4} = \left(1 - \frac{1}{2^n}\right) \dots \left(1 - \frac{1}{16}\right) \left(1 - \frac{1}{8}\right) \left(1 - \frac{1}{4}\right) \sim e^{-\frac{1}{2^n}} \cdot \dots \cdot e^{-\frac{1}{16}} \cdot e^{-\frac{1}{8}} \cdot e^{-\frac{1}{4}} = e^{-\left(\frac{1}{2^n} + \frac{1}{2^2}\right)} = e^{-\frac{1}{4}} \sim 78\%$$

This is the probability to get the correct solution after n-1 trials for large n.

Notebooks

You find a jupyter notebook, dealing with simon's algorithm, at:

https://github.com/amazon-braket/amazon-braketexamples/blob/main/examples/advanced circuits algorithms/Simons Algorithm/Simons Algorithm.ipynb

Note: You need simons_utils.py to run this notebook.

Note: You need to install the amazon-plugin via "pip install amazon-braket-sdk".

Note: You find a copy of <u>Simons_Algorithm.ipynb</u> and <u>simons_utils.py</u> on this website too.

I would like to thank my students Alex Heinz, Luca Kölsch, Matthias Hospach and Simon Schaal who made this paper possible.