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One of the problems representing spin is that in three-dimensional space we have three directions: x, 

y, and z. However, the spin state space works with complex-valued vector spaces. A two-dimensional 

complex vector space corresponds to a four-dimensional real vector space, which we can no longer 

easily visualize.  

We express the possible spin states in the |0⟩/|1⟩ basis. This is the orientation of the spin along the 

𝑧-axis. 

Spin states along the 𝑧-axis: 
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Note: |𝑥 +⟩ usually written as |+⟩, |𝑥 −⟩ usually written as |−⟩ 

Note: |𝑦 +⟩ often written as |𝑖 +⟩, |𝑦 −⟩ often written as |𝑖 −⟩ 

The orientation of spin is visualized by using the Bloch-Sphere. 

A spin orientated spherical in the 𝑧-direction is written as |0⟩ and corresponds to the complex-valued 

vector (
1
0

). A spin orientated spherical in the −𝑧-direction is written as |1⟩ and corresponds to the 

complex-valued vector (
0
1

). Please note that (
1
0

) and (
0
1

) are orthogonal vectors, whereas the 

spherical direction 𝑧 and −𝑧 are not. 

Using the |0⟩/|1⟩-basis we assign: 
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Please note that the spherical directions 𝑥 and −𝑥 as well as 𝑦 and −𝑦 are not orthogonal, the states 

|+⟩, |−⟩ and |𝑦 +⟩, |𝑦 −⟩ are orthogonal. 

An arbitrary state |𝜓⟩ can be expressed in the |0⟩/|1⟩-basis by 

first rotating it by the angle 𝜃 with respect to the 𝑧-axis and then 

by the angle 𝜑 with respect to the 𝑥-axis. 

We have to deal with the spherical/complex problematic again. 

Rotating a spherical vector by 90° resp. by 
𝜋

2
 produces an 

orthogonal spherical vector. 

Rotating a complex state by 180° resp. by 𝜋 produces an 

orthogonal complex state.  

We show this by an example, setting 𝜃 =
𝜋

2
 and 𝜑 = 0. Obviously, 

the state |0⟩ = (
1
0

) will change to the state |+⟩ =
1

√2
(|0⟩ + |1⟩) 

In contrast, if we take the spherical vector (
1
0

) and rotate it by 
𝜋

2
 it will change into the vector − (

0
1

) 

and this is an orthogonal direction spherical. 

Rotating is performed by using unitary matrices. An invertible complex valued square matrix 𝑈 is 

unitary if its conjugate transpose is also its inverse: 

𝑈†𝑈 = 𝑈𝑈† = 𝐼 

Rotation preserves the length (norm) of a vector. In quantum mechanics the length of a vector 

corresponds to its probability amplitude, so a rotation doesn’t change it. 

Note: The rows and columns of a unitary matrix form an orthonormal basis of ℂ𝑛. 

Rotation around one of the primary axes is performed by help of the Pauli matrices: 

𝜎𝑥 = (
0 1
1 0

), 𝜎𝑦 = (
0 −𝑖
𝑖 0

), 𝜎𝑧 = (
1 0
0 −1

) 

The Pauli matrices are unitary: 

𝜎𝑥
† = (

0 1
1 0

), 𝜎𝑦
† = (

0 −𝑖
𝑖 0

), 𝜎𝑧
† = (

1 0
0 −1

) 

We check unitarity: 

𝜎𝑥
†𝜎𝑥 = (

0 1
1 0

) (
0 1
1 0

) = (
1 0
0 1

) 

𝜎𝑦
†𝜎𝑦 = (

0 −𝑖
𝑖 0

) (
0 −𝑖
𝑖 0

) = (
1 0
0 1

) 

𝜎𝑧
†𝜎𝑧 = (

1 0
0 −1

) (
1 0
0 −1

) = (
1 0
0 1

) 

We apply rotation around the 𝑦-axis to the state vector |0⟩ = (
1
0

): 

(
0 −𝑖
𝑖 0

) (
1
0

) = (
0
𝑖

) = −𝑖 (
0
1

) 

{3} 

{1} 

{2} 

{4} 
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We call the factor −𝑖 a global phase. A global phase has no effect to quantum mechanical 

measurements and can be ignored in most cases. 

We rewrite −𝑖 = 𝑒𝑖
3

2
𝜋 and get: 

(
0 −𝑖
𝑖 0

) (
1
0

) = 𝑒𝑖
3
2

𝜋 ∙ (
0
1

) 

Obviously, the rotation angle is 𝜋 resp. 180°. Rotating twice by use of the Pauli matrices restores the 

original state: 

(
0 −𝑖
𝑖 0

) 𝑒𝑖
3
2

𝜋 ∙ (
0
1

) = 𝑒𝑖
3
2

𝜋 ∙ −𝑖 (
1
0

) = 𝑒𝑖
6
2

𝜋 ∙ (
1
0

) = (
1
0

) 

Note: 𝑒𝑖
6

2
𝜋 = 𝑒𝑖2𝜋 = 1 

The vector |+⟩ =
1

√2
(|0⟩ + |1⟩) should rotate to the vector |−⟩ =

1

√2
(|0⟩ − |1⟩). We check this: 

(
0 −𝑖
𝑖 0

)
1

√2
(

1
1

) = −𝑖
1

√2
(

1
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) 

Again, we use that −𝑖 = 𝑒𝑖
3

2
𝜋 and get: 

(
0 −𝑖
𝑖 0

)
1

√2
(

1
1

) = 𝑒𝑖
3
2

𝜋 ∙
1

√2
(

1
−1

) 

We rotate again: 

(
0 −𝑖
𝑖 0

) 𝑒𝑖
3
2

𝜋 ∙
1

√2
(

1
−1

) = 𝑒𝑖
3
2

𝜋 ∙ 𝑖 ∙
1

√2
(

1
1

) = 

𝑒𝑖
3
2

𝜋 ∙ 𝑒𝑖
1
2

𝜋 ∙
1

√2
(

1
1

) =
1

√2
(

1
1

) 

Besides working with explicit representation of vectors we can work on the conceptional level. 

The calculations above, {1} til {7} give: 

{1} 𝜎𝑥
†𝜎𝑥 = 𝐼𝑑 , {2} 𝜎𝑦

†𝜎𝑦 = 𝐼𝑑, {3} 𝜎𝑧
†𝜎𝑧 = 𝐼𝑑 

{4} 𝜎𝑦|0⟩ = |1⟩ 

{5} 𝜎𝑦|1⟩ = |0⟩ 

{6} 𝜎𝑦|+⟩ = |−⟩ 

{7} 𝜎𝑦|−⟩ = |+⟩ 

So far, we can rotate the Bloch sphere around the axes 𝑥, 𝑦, 𝑧 by 𝜋 resp. 180°. 

If we want to interchange two points on the Bloch sphere, we can build this rotation with a 

combination of a maximum of three rotations around the axes 𝑥, 𝑦, 𝑧. 

  

{5} 

{6} 

{7} 
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In order to rotate the Bloch sphere round the 𝑥/𝑦/𝑧-axis by an angle of 𝜃 we apply the unitary 

matrix: 

𝑒−𝑖∙
𝜃
2

∙𝜎𝑥 = (
𝑐𝑜𝑠 (

𝜃

2
) −𝑖 ∙ 𝑠𝑖𝑛 (

𝜃

2
)

−𝑖 ∙ 𝑠𝑖𝑛 (
𝜃

2
) 𝑐𝑜𝑠 (

𝜃

2
)

) 

𝑒−𝑖∙
𝜃
2

∙𝜎𝑦 = (
𝑐𝑜𝑠 (

𝜃

2
) −𝑠𝑖𝑛 (

𝜃

2
)

𝑠𝑖𝑛 (
𝜃

2
) 𝑐𝑜𝑠 (

𝜃

2
)

) 

𝑒−𝑖∙
𝜃
2

∙𝜎𝑧 = (𝑒−𝑖∙
𝜃
2 0

0 𝑒𝑖∙
𝜃
2

) = 𝑒−𝑖∙
𝜃
2 (

1 0
0 𝑒𝑖∙𝜃) ≃ (

1 0
0 𝑒𝑖∙𝜃) 

Note: for the proof you may refer to  

“exponentiation_of_pauli_matrices” on this website within the part of quantum mechanics or 

https://www.researchgate.net/publication/335654130_Rotations_on_the_Bloch_Sphere. 

The Hadamard matrix 𝐻 rotates around the (𝑥 + 𝑧)-axis by 𝜋 resp. 180°: 

 

It flips 𝑥- and 𝑧-axis: 

1
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1
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1
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1

2
(

2
0
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1
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(
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) (
0
1
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1

√2
(
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1

√2
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1
0

) − (
0
1

)) 
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1
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1
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(
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1

2
(

0
2
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) 
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