One of the problems representing spin is that in three-dimensional space we have three directions: x, y, and z. However, the spin state space works with complex-valued vector spaces. A two-dimensional complex vector space corresponds to a four-dimensional real vector space, which we can no longer easily visualize.

We express the possible spin states in the $|0\rangle /|1\rangle$ basis. This is the orientation of the spin along the z-axis.

Spin states along the z-axis:	Spin states along the x-axis:	Spin along the y-axis:
$\|0\rangle=\binom{1}{0}$	$\|x+\rangle=\frac{1}{\sqrt{2}}(\|0\rangle+\|1\rangle)$	$\|y+\rangle=\frac{1}{\sqrt{2}}(\|0\rangle+i\|1\rangle)$
$\|x+\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}$	$\|y+\rangle=\frac{1}{\sqrt{2}}\binom{1}{i}$	
$\|1\rangle=\binom{0}{1}$	$\|x-\rangle=\frac{1}{\sqrt{2}}(\|0\rangle-\|1\rangle)$	$\|y-\rangle=\frac{1}{\sqrt{2}}(\|0\rangle-i\|1\rangle)$
$\|x-\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1}$	$\|y-\rangle=\frac{1}{\sqrt{2}}\binom{1}{-i}$	

Note: $|x+\rangle$ usually written as $|+\rangle,|x-\rangle$ usually written as $|-\rangle$
Note: $|y+\rangle$ often written as $|i+\rangle,|y-\rangle$ often written as $|i-\rangle$
The orientation of spin is visualized by using the Bloch-Sphere.
A spin orientated spherical in the z-direction is written as $|0\rangle$ and corresponds to the complex-valued vector $\binom{1}{0}$. A spin orientated spherical in the $-z$-direction is written as $|1\rangle$ and corresponds to the complex-valued vector $\binom{0}{1}$. Please note that $\binom{1}{0}$ and $\binom{0}{1}$ are orthogonal vectors, whereas the spherical direction z and $-z$ are not.

Using the $|0\rangle /|1\rangle$-basis we assign:

Please note that the spherical directions x and $-x$ as well as y and $-y$ are not orthogonal, the states

An arbitrary state $|\psi\rangle$ can be expressed in the $|0\rangle /|1\rangle$-basis by first rotating it by the angle θ with respect to the z-axis and then by the angle φ with respect to the x-axis.

We have to deal with the spherical/complex problematic again.
Rotating a spherical vector by 90° resp. by $\frac{\pi}{2}$ produces an orthogonal spherical vector.

Rotating a complex state by 180° resp. by π produces an orthogonal complex state.

We show this by an example, setting $\theta=\frac{\pi}{2}$ and $\varphi=0$. Obviously,

|1) the state $|0\rangle=\binom{1}{0}$ will change to the state $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ In contrast, if we take the spherical vector $\binom{1}{0}$ and rotate it by $\frac{\pi}{2}$ it will change into the vector $-\binom{0}{1}$ and this is an orthogonal direction spherical.

Rotating is performed by using unitary matrices. An invertible complex valued square matrix U is unitary if its conjugate transpose is also its inverse:

$$
U^{\dagger} U=U U^{\dagger}=I
$$

Rotation preserves the length (norm) of a vector. In quantum mechanics the length of a vector corresponds to its probability amplitude, so a rotation doesn't change it.

Note: The rows and columns of a unitary matrix form an orthonormal basis of \mathbb{C}^{n}.
Rotation around one of the primary axes is performed by help of the Pauli matrices:

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The Pauli matrices are unitary:

$$
\sigma_{x}^{\dagger}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}^{\dagger}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{z}^{\dagger}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

We check unitarity:

$$
\begin{gather*}
\sigma_{x}^{\dagger} \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\sigma_{y}^{\dagger} \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\sigma_{z}^{\dagger} \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{gather*}
$$

We apply rotation around the y-axis to the state vector $|0\rangle=\binom{1}{0}$:

$$
\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{0}=\binom{0}{i}=-i\binom{0}{1}
$$

We call the factor $-i$ a global phase. A global phase has no effect to quantum mechanical measurements and can be ignored in most cases.

We rewrite $-i=e^{i \frac{3}{2} \pi}$ and get:

$$
\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{0}=e^{i \frac{3}{2} \pi} \cdot\binom{0}{1}
$$

Obviously, the rotation angle is π resp. 180°. Rotating twice by use of the Pauli matrices restores the original state:

$$
\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) e^{i \frac{3}{2} \pi} \cdot\binom{0}{1}=e^{i \frac{3}{2} \pi} \cdot-i\binom{1}{0}=e^{i \frac{6}{2} \pi} \cdot\binom{1}{0}=\binom{1}{0}
$$

Note: $e^{i \frac{6}{2} \pi}=e^{i 2 \pi}=1$
The vector $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ should rotate to the vector $|-\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$. We check this:

$$
\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{1}=-i \frac{1}{\sqrt{2}}\binom{1}{-1}
$$

Again, we use that $-i=e^{i \frac{3}{2} \pi}$ and get:

$$
\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{1}=e^{i \frac{3}{2} \pi} \cdot \frac{1}{\sqrt{2}}\binom{1}{-1}
$$

We rotate again:

$$
\begin{gather*}
\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) e^{i \frac{3}{2} \pi} \cdot \frac{1}{\sqrt{2}}\binom{1}{-1}=e^{i \frac{3}{2} \pi} \cdot i \cdot \frac{1}{\sqrt{2}}\binom{1}{1}= \\
e^{i \frac{3}{2} \pi} \cdot e^{i \frac{1}{2} \pi} \cdot \frac{1}{\sqrt{2}}\binom{1}{1}=\frac{1}{\sqrt{2}}\binom{1}{1}
\end{gather*}
$$

Besides working with explicit representation of vectors we can work on the conceptional level.
The calculations above, $\{1\}$ til $\{7\}$ give:

So far, we can rotate the Bloch sphere around the axes x, y, z by π resp. 180°.
If we want to interchange two points on the Bloch sphere, we can build this rotation with a combination of a maximum of three rotations around the axes x, y, z.

In order to rotate the Bloch sphere round the $x / y / z$-axis by an angle of θ we apply the unitary matrix:

$$
\begin{gathered}
e^{-i \cdot \frac{\theta}{2} \cdot \sigma_{x}}=\left(\begin{array}{cc}
\cos \left(\frac{\theta}{2}\right) & -i \cdot \sin \left(\frac{\theta}{2}\right) \\
-i \cdot \sin \left(\frac{\theta}{2}\right) & \cos \left(\frac{\theta}{2}\right)
\end{array}\right) \\
e^{-i \cdot \frac{\theta}{2} \cdot \sigma_{y}}=\left(\begin{array}{cc}
\cos \left(\frac{\theta}{2}\right) & -\sin \left(\frac{\theta}{2}\right) \\
\sin \left(\frac{\theta}{2}\right) & \cos \left(\frac{\theta}{2}\right)
\end{array}\right) \\
e^{-i \cdot \frac{\theta}{2} \cdot \sigma_{z}}=\left(\begin{array}{cc}
e^{-i \cdot \frac{\theta}{2}} & 0 \\
0 & e^{i \cdot \frac{\theta}{2}}
\end{array}\right)=e^{-i \cdot \frac{\theta}{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \cdot \theta}
\end{array}\right) \simeq\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \cdot \theta}
\end{array}\right)
\end{gathered}
$$

Note: for the proof you may refer to
"exponentiation_of_pauli_matrices" on this website within the part of quantum mechanics or https://www.researchgate.net/publication/335654130 Rotations on the Bloch Sphere.

The Hadamard matrix H rotates around the $(x+z)$-axis by π resp. 180° :

|1)
It flips x - and z-axis:

$\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\binom{1}{0}=\frac{1}{\sqrt{2}}\binom{1}{1}=\frac{1}{\sqrt{2}}\left(\binom{1}{0}+\binom{0}{1}\right)$	$H\|0\rangle=\|+\rangle$
$\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{1}=\frac{1}{2}\binom{2}{0}=\binom{1}{0}$	$H\|+\rangle=\|0\rangle$
$\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & 1 \\ 1 & -1\end{array}\right)\binom{0}{1}=\frac{1}{\sqrt{2}}\binom{1}{-1}=\frac{1}{\sqrt{2}}\left(\binom{1}{0}-\binom{0}{1}\right)$	$H\|1\rangle=\|-\rangle$
$\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{-1}=\frac{1}{2}\binom{0}{2}=\binom{0}{1}$	$H\|-\rangle=\|1\rangle$

