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This is a collection of mathematics needed to start.  

Hope I can help you with learning quantum mechanics. 
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Formal Logic. 
Formal logic or classical logic works with 1 and 0 ore true and false. 

A statement: If it is raining, the street becomes wet. 

In mathematics we use the name “proposition” for statement.  

A proposition can be true or false. Mathematically propositions can be equations like 2 + 3 = 5. An 

equation like 2 ∙ 𝑥 + 3 = 7 is not a proposition but a propositional expression that becomes true or 

false depending on what you insert for the variable x.  

If you concatenate propositions with “and” resp. the “or”, true or false for the composite proposition  

follow rules. 

Let A and B be propositions, then the truth values (A “or” B) are: 

𝐴 𝐵 𝐴 𝑜𝑟 𝐵
0 0 0
0 1 1
1 0 1
1 1 1

 

The truth values for (A “and” B): 

𝐴 𝐵 𝐴 𝑎𝑛𝑑 𝐵
0 0 0
0 1 0
1 0 0
1 1 1

 

There is a special logical operator ¬, the “not” that simply switches the truth value to its opposite: 

𝐴 ¬𝐴
0 1
1 0

 

In quantum mechanics often used is the orientation of a spin in space. This spin can be “up” or 

“down”.  

We need a way to describe these orientations.  

A simple variable with e.g., 1 for “spin up” and 0 for “spin down” is not sufficient, we use two 

variables for the orientation, one representing “up”, the other “down”. As they are logically 

connected to each other, we write them as (
𝑎
𝑏
) : 

 (
1
0
) defines the state with the spin-vector “up”, 

 (
0
1
) the state with the spin-vector “down”.  

This fits with our formal logic. The proposition “the spin is up or down” is true for both combinations: 

𝐴 𝐵 𝐴 𝑜𝑟 𝐵
0 1 1
1 0 1

 

 

 



High School Mathematics for Quantum Mechanics 

D. Kriesell page 4 of 13 

The proposition “the spin is up and down” is false for both combinations: 

𝐴 𝐵 𝐴 𝑎𝑛𝑑 𝐵
0 1 0
1 0 0

 

We need a method to show that the positions “up” and “down” are mutually exclusive. We adopt the 

dot product: (
𝑎
𝑏
) ∙ (

𝑐
𝑑
) = 𝑎𝑐 + 𝑏𝑑 and apply it: 

(
1
0
) ∙ (

0
1
) = 1 ∙ 0 + 0 ∙ 1 = 0 

Unfortunately, things are a little bit more complicated in quantum mechanics. The result of 

measuring the spin gives either (
1
0
) or (

0
1
). 

The spin itself can take all combinations in between: 𝛼 (
1
0
) and 𝛽 (

0
1
) with 𝛼 and 𝛽 being fractions 

between 0 and 1.  

We standardize the notation for the spin positions: 𝛼 (
1
0
) and 𝛽 (

0
1
) merge to (

𝛼
𝛽).  

We check the proposition “the spin is (
𝛼
𝛽)” and “the spin is (

𝛼
𝛽)”, this should give +1 too: 

(
𝛼
𝛽) ∙ (

𝛼
𝛽) = 𝛼 ∙ 𝛼 + 𝛽 ∙ 𝛽 = 𝛼

2 + 𝛽2 

As the result should be 1, we get a normalization condition: 𝛼2 + 𝛽2 = 1. 

Constantly writing terms like (
1
0
) is cumbersome, therefore Dirac invented the symbol |𝑢⟩ for (

1
0
) 

and |𝑑⟩ for (
0
1
).  

He named this notation “ket”. Using kets instead of 𝛼 (
1
0
) and 𝛽 (

0
1
) we can write more easily 𝛼|𝑢⟩ 

and 𝛽|𝑑⟩.  

Throughout quantum mechanics there will be a constant change between all possible notations, 

because for some problems special notations fit best. 

Conclusion: 

The state of a spin can be described by: 

- verbal, spin is up, or spin is down, 

- by a symbol (
𝛼
𝛽) with polar opposites (

1
0
) and (

0
1
), 

- by the expression |𝑢⟩ for “up” and |𝑑⟩ for “down”, 

- by the expression 𝛼|𝑢⟩ + 𝛽|𝑑⟩ for a generalized spin 

- the normalization condition 𝛼2 + 𝛽2 = 1. 

Note: (
1
0
) etc. can be used as vectors in the real R²-space. The spin has an orientation in real space, 

but the internal relations between “up” and “down” have not.  
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Complex numbers 
A complex number consists of a real part and an imaginary part. We write it as 𝑧 = 𝑎 + 𝑖𝑏 with 𝑎, 𝑏 ∈

ℝ. The imaginary unit 𝑖 has the property 𝑖 ∙ 𝑖 = −1 or 𝑖2 = −1.  

We can represent complex numbers by a plane with the horizontal real axis and the vertical 

imaginary axis. This is called the cartesian mode. 

 

A second way of representation describes a complex number by the angle it has with the real axis 

and its length resp. the absolute value. This is called the gaussian mode. In this mode we write a 

complex number as 𝑟 ∙ 𝑒𝑖𝜑. 

We can switch from one representation to the other: 

Given 𝑧 = 𝑎 + 𝑖𝑏:  |𝑧| 𝑜𝑟 𝑟 = √𝑎2 + 𝑏2  𝜑 = arccos (
𝑎

𝑟
) if 𝑏 ≥ 0  

resp.    𝜑 = −arccos (
𝑎

𝑟
) if 𝑏 < 0. 

Given 𝑧 = 𝑟𝑒𝑖𝜑:  𝑎 = 𝑟 ∙ cos(𝜑)   𝑏 = 𝑟 ∙ sin (𝜑)   

or    𝑧 = 𝑟 ∙ (cos(𝜑) + 𝑖 ∙ sin (𝜑)) 

Every complex number z has a complex conjugate number, marked as 𝑧̅ or 𝑧∗. The complex conjugate 

switches the imaginary part to the opposite sign. 𝑧 = 𝑎 + 𝑖𝑏 changes to 𝑧̅ = 𝑎 − 𝑖𝑏 and vice versa.  

With that we get new formulas: 

|𝑧| = √𝑧𝑧̅ 

Note: √𝑧𝑧̅ is a positive real number. 

𝑟𝑒(𝑧) 𝑜𝑟 𝑎 =  
𝑧 + 𝑧̅

2
 

𝑖𝑚(𝑧) 𝑜𝑟 𝑏 =
𝑧 − 𝑧̅

2
  

Additions and subtraction of complex numbers are best performed with the cartesian 

representation. 

(𝑎 + 𝑖𝑏) + (𝑐 + 𝑖𝑑) = 𝑎𝑐 + 𝑖𝑏𝑑 

Multiplication and division are best performed with the gaussian representation. 

𝑟1𝑒
𝑖𝜑 ∙ 𝑟2𝑒

𝑖𝜃 = 𝑟1𝑟2𝑒
𝑖(𝜑+𝜃) 

… graphic courtesy of 

Wikipedia … 
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Matrices with real coefficients 
The logical not-operator acting on the state of a spin reverses it. With our choice of writing the state 

of a spin as (
1
0
) we need a matrix for the reverse operation. The matrix (

0 1
1 0

) performs this: 

(
0 1
1 0

) (
1
0
) = (

0 ∙ 1 + 1 ∙ 0
1 ∙ 1 + 0 ∙ 0

) = (
0
1
) 

(
0 1
1 0

) (
0
1
) = (

0 ∙ 0 + 1 ∙ 1
1 ∙ 0 + 0 ∙ 1

) = (
1
0
) 

In quantum mechanics matrices often are referred to as “operators”. If we refer to the matrix 

(
0 1
1 0

) as “negation operator” neg and using the Dirac ket, we write the calculations above as 

𝑛𝑒𝑔|𝑢⟩ = |𝑑⟩ 

𝑛𝑒𝑔|𝑑⟩ = |𝑢⟩ 

A matrix acting on a vector produces a new vector like in the examples above.  

A matrix acting on a matrix produces a new matrix: 

(
0 1
1 0

) ∙ (
0 1
1 0

) = (
0 ∙ 0 + 1 ∙ 1 0 ∙ 1 + 1 ∙ 0
1 ∙ 0 + 0 ∙ 1 1 ∙ 1 + 0 ∙ 0

) = (
1 0
0 1

) 

(
1 0
0 1

) is called the identity matrix 𝐼𝑑. 

We call a matrix A the inverse to matrix B, if 𝐴 ∙ 𝐵 = 𝐼𝑑 and in this case write 𝐵 = 𝐴−1. Sometimes it 

happens that a matrix is its own inverse like in the upper example the matrix (
0 1
1 0

).  

There is a scheme to produce the inverse matrix, look for “Gauss-Jordan-Algorithm” on the internet.  

If we sum up the elements on the diagonal of a matrix, we get the trace of the matrix. This works 

only with quadratic matrices.  

A matrix having elements ≠ 0 only at the diagonal is called a diagonal matrix, the identity matrix 

being an example of. 

A matrix 𝐴 can be transposed to 𝐴𝑡 meaning that it is mirrored at the diagonal. 

𝐴 ≔ (
𝑎 𝑏
𝑐 𝑑

) → 𝐴𝑡 = (
𝑎 𝑐
𝑏 𝑑

) 

𝐴 ≔ (
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

) → 𝐴𝑡 = (
𝑎 𝑑
𝑏 𝑑
𝑐 𝑓

) 

A vector is a special form of a matrix and can be written in two ways:  

as m× 1-matrix, a column vector 𝑥⃗ = (

𝑥1
⋮
𝑥𝑚
) 

as 1 × 𝑛-matrix, a row vector 𝑥⃗ = (𝑥1…𝑥𝑛)  

To work with matrices the number of lines of the first matrix must be equal to the number of 

columns of the second matrix.  For quadratic matrices this means they must have the same size.  
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An example for rectangular matrices: 

(
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

)(
𝑘 𝑙
𝑚 𝑛
𝑜 𝑝

) = (
𝑎 ∙ 𝑘 + 𝑏 ∙ 𝑚 + 𝑐 ∙ 𝑜 𝑎 ∙ 𝑙 + 𝑏 ∙ 𝑛 + 𝑐 ∙ 𝑝
𝑑 ∙ 𝑘 + 𝑒 ∙ 𝑚 + 𝑓 ∙ 𝑜 𝑑 ∙ 𝑙 + 𝑒 ∙ 𝑛 + 𝑓 ∙ 𝑝

) = (
𝑢 𝑣
𝑤 𝑥

) 

If matrices act on matrices the commutative law isn’t always valid. Let 𝐴 and 𝐵 matrices with 𝐴 ≠ 𝐵, 

then normally 𝐴 ∙ 𝐵 ≠ 𝐵 ∙ 𝐴. Example:  

𝐴 ∙ 𝐵 = (
3 1
2 4

) (
5 2
2 1

) = (
3 ∙ 5 + 1 ∙ 2 3 ∙ 2 + 1 ∙ 1
3 ∙ 2 + 1 ∙ 1 2 ∙ 2 + 4 ∙ 1

) = (
17 7
7 8

) 

𝐵 ∙ 𝐴 = (
5 2
2 1

) (
3 1
2 4

) = (
5 ∙ 3 + 2 ∙ 2 5 ∙ 1 + 1 ∙ 4
2 ∙ 3 + 1 ∙ 2 2 ∙ 1 + 1 ∙ 4

) = (
19 9
8 6

) 

This plays an important role in quantum mechanics and led to the definition of a commutator. The 

commutator of the matrices 𝐴 and 𝐵: 

[𝐴, 𝐵] =  𝐴 ∙ 𝐵 − 𝐵 ∙ 𝐴 

For our example we get: 

[(
3 1
2 4

) , (
5 2
2 1

)] = (
17 7
7 8

) − (
19 9
8 6

) = (
−2 −2
−1 2

) 

If the commutator of two matrices is zero, the matrices commute. 

A real number 𝑟 has an absolute value written as |𝑟|.  

A complex number 𝑧 has an absolute value written as |𝑧|.  

A matrix has something like an absolute value that is called the determinant of the matrix. For a 

2 × 2-matrix the determinant is easy to calculate: 

|(
3 5
7 11

)| = (3 ∙ 11 − 5 ∙ 7) = −2 

For a 3 × 3-matrix the calculation scheme is more tedious: 

|(
1 3 5
7 11 13
17 19 23

)| = 1 ∙ |(
11 13
19 23

)| − 3 ∙ |(
7 13
17 23

)| + 5 ∙ |(
7 11
17 19

)| = −84 

If a matrix 𝐴 acts on a vector, the result normally is another vector. There are rare cases a matrix 

acting on a vector produces the same vector or a multiple of it (the identity matrix e.g. always 

replicates the vector applied to it). Such vectors are called “eigenvector” to the matrix 𝐴. The 

multitude is called “eigenvalue” of the eigenvector.  

To find eigenvectors we first must check the determinant of the matrix, it must be ≠ 0: 

det(𝐴) ≔ |𝐴| ≠ 0 

Example: 

𝐴 ≔ (
1 8
2 7

) 

|𝐴| = |(
1 8
2 7

)| = −9 
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We calculate the characteristic polynomial to get the eigenvalues:  

det(𝐴 − 𝜆𝐼) = 0 

|𝐴 − 𝜆𝐼| = |(
1 − 𝜆 8
2 7 − 𝜆

)| = 0 

(1 − 𝜆)(7 − 𝜆) − 16 = 0 

𝜆2 − 8𝜆 − 9 = 0 

Solution: 

𝜆1/2 =
8 ∓ 10

2
 

𝜆1 = 9, 𝜆2 = −1 

There must exist vectors that fulfill: 

(
1 8
2 7

) (
𝑎
𝑏
) = 𝜆 (

𝑎
𝑏
) 

We use the first eigenvalue 𝜆1 = 9: 

𝐼: 𝑎 + 8𝑏 = 9𝑎 

𝐼𝐼: 2𝑎 + 7𝑏 = 9𝑏 

From 𝐼: we get 

𝑏 = 𝑎 

From 𝐼𝐼: we get 

𝑏 = 𝑎 

Our first eigenvector is (
1
1
) and every multiple of it. 

We use the second eigenvalue 𝜆2 = −1: 

𝐼: 𝑎 + 8𝑏 = −𝑎 

𝐼𝐼: 2𝑎 + 7𝑏 = −𝑏 

From 𝐼: we get 

𝑏 = −
𝑎

4
 

From 𝐼𝐼: we get 

𝑎 = 𝑎 

Our second eigenvector is (
1

−
1

4

) and every multiple of it. 

We check our solution for eigenvector 1: 

𝐴 ∙ (
1
1
) = (

1 8
2 7

) (
1
1
) = (

9
9
) = 9 (

1
1
) 

 



High School Mathematics for Quantum Mechanics 

D. Kriesell page 9 of 13 

We check our solution for eigenvector 2: 

𝐴 ∙ (
1

−
1

4

) = (
1 8
2 7

)(
1

−
1

4

) = (
−1
1

4

) = (−1)(
1

−
1

4

) 

In quantum mechanics these equations often are written with kets: 

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝐴:= (
1 8
2 7

) 

(
1
1
) ≔ |𝜆1⟩ 𝑎𝑛𝑑 (

1

−
1

4

) ≔ |𝜆2⟩  

𝐴|𝜆1⟩ = 𝜆1|𝜆1⟩ = 9|𝜆1⟩ 

𝐴|𝜆2⟩ = 𝜆2|𝜆2⟩ = −1|𝜆2⟩ 

Eigenvectors are linearly independent to each other. 

Note: eigenvectors are not necessarily orthogonal to each other.  

Standard basis of a cartesian vector space are vectors (
1
0
) and (

0
1
) but every other couple of linear 

independent vectors can serve too. This way we can use eigenvectors as a new basis of the space 

they were born. 

The dot-product:  

(
1
2
) ∙ (

3
5
) = 1 ∙ 3 + 2 ∙ 5 = 13 

If 𝑎⃗ ∙ 𝑏⃗⃗ = 0 then the two vectors are orthogonal to each other.  

You transpose (
1
2
) to (1 2) and multiplicate row vector with column vector: (1 2) ∙ (

3
5
) = 13.  

This can be done the other way around and gives a surprising result: (
3
5
) ∙ (1 2) = (

3 6
5 10

). 

Matrices with complex coefficients 
Quantum mechanics deals with the contrast 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 ↔ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟. 

You can complex conjugate a matrix: 

𝐴 = (
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑘

) → 𝐴∗ = (
𝑎∗ 𝑏∗ 𝑐∗

𝑑∗ 𝑒∗ 𝑓∗

𝑔∗ ℎ∗ 𝑘∗
) 

If a matrix and its complex conjugated are identic then the matrix must have real coefficients only. 

𝐴 = 𝐴∗ → 𝑎𝑖𝑗 ∈ ℝ 

A matrix U is called unitary if: you transpose it 𝑈 → 𝑈𝑡, build the complex conjugate 𝑈𝑡 → 𝑈𝑡∗, 

multiply the original matrix and get the identity:  

𝑈𝑈𝑡∗ = 𝐼 = 𝑈𝑡∗𝑈 

In physics this is called Hermitian adjoint: 𝑈†𝑈 = 𝑈𝑈† = 𝐼. Please note the symbol †. 
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Example: 𝑈 ≔
1

2
(
1 + 𝑖 1 − 𝑖
1 − 𝑖 1 + 𝑖

) 

𝑈𝑈† =
1

2
(
1 + 𝑖 1 − 𝑖
1 − 𝑖 1 + 𝑖

)
1

2
(
1 − 𝑖 1 + 𝑖
1 + 𝑖 1 − 𝑖

) = 

1

4
(
(1 + 𝑖)(1 − 𝑖) + (1 − 𝑖)(1 + 𝑖) (1 + 𝑖)(1 + 𝑖) + (1 − 𝑖)(1 − 𝑖)
(1 − 𝑖)(1 − 𝑖) + (1 + 𝑖)(1 + 𝑖) (1 − 𝑖)(1 + 𝑖) + (1 + 𝑖)(1 − 𝑖)

) = 

1

4
(

(1 + 1) + (1 + 1) (1 + 2𝑖 − 1) + (1 − 2𝑖 − 1)
(1 − 2𝑖 − 1) + (1 + 2𝑖 − 1) (1 + 1) + (1 + 1)

) = 

1

4
(
4 0
0 4

) = (
1 0
0 1

) 

For row vectors and column vectors the following rule applies: if you switch between column and 

row vector you have to complex conjugate: the column vector 𝑎̅: = |𝑎⟩ = (
𝑎1
𝑎2
) has the 

corresponding row vector (𝑎1
∗ 𝑎2

∗) ≔ ⟨𝑎∗|, the latter called bra ⟨𝑎∗|. 

The combination ⟨𝑎|𝑎⟩ delivers a scalar product and is called the inner product. The combination 

|𝑎⟩⟨𝑎| is called the outer product and delivers a matrix or an operator.  

This leads to the following behavior: 

⟨𝑎|𝑏⟩ = ⟨𝑏∗|𝑎∗⟩ = ⟨𝑏|𝑎⟩∗ 

Tensor products 
We can combine two vector spaces by building the tensor product of both.  

(
𝑎11 𝑎12
𝑎21 𝑎22

)⨂(
𝑏11 𝑏12
𝑏21 𝑏22

) = (
𝑎11 (

𝑏11 𝑏12
𝑏21 𝑏22

) 𝑎12 (
𝑏11 𝑏12
𝑏21 𝑏22

)

𝑎21 (
𝑏11 𝑏12
𝑏21 𝑏22

) 𝑎22 (
𝑏11 𝑏12
𝑏21 𝑏22

)
) = 

(

𝑎11𝑏11 𝑎11𝑏12 𝑎12𝑏11 𝑎12𝑏12
𝑎11𝑏21 𝑎11𝑏22 𝑎12𝑏21 𝑎12𝑏22
𝑎21𝑏11 𝑎21𝑏12 𝑎22𝑏11 𝑎22𝑏12
𝑎21𝑏21 𝑎21𝑏22 𝑎22𝑏21 𝑎22𝑏22

) 

In quantum mechanics we need the tensor product of two spin-states.  

We remember the symbols |𝑢⟩ for (
1
0
) and |𝑑⟩ for (

0
1
) or in combined form: (

𝛼
𝛽) for 𝛼|𝑢⟩ + 𝛽|𝑑⟩.  

Combining two spin states into a product space (the tensor product space): 

(
𝛼
𝛽)⨂(

𝛾
𝛿
) = (

𝛼 (
𝛾
𝛿
)

𝛽 (
𝛾
𝛿
)
) = (

𝛼𝛾
𝛼𝛿
𝛽𝛾
𝛽𝛿

) 

Especially important is the tensor product for the states up and down for each spin: 

|𝑢⟩⨂|𝑢⟩ ≔ |𝑢𝑢⟩ = (
1
0
)⨂(

1
0
) = (

1(
1
0
)

0 (
1
0
)
) = (

1
0
0
0

) 
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|𝑢⟩⨂|𝑑⟩ ≔ |𝑢𝑑⟩ = (
1
0
)⨂(

0
1
) = (

1 (
0
1
)

0 (
0
1
)
) = (

0
1
0
0

) 

|𝑑⟩⨂|𝑢⟩ ≔ |𝑑𝑢⟩ = (
0
1
)⨂(

1
0
) = (

0(
1
0
)

1 (
1
0
)
) = (

0
0
1
0

) 

|𝑑⟩⨂|𝑑⟩ ≔ |𝑑𝑑⟩ = (
0
1
)⨂(

0
1
) = (

0(
0
1
)

1 (
0
1
)
) = (

0
0
0
1

) 

The vectors |𝑢⟩ and |𝑑⟩ form a basis for the spin state. The tensor product of these two basis vectors 

forms a basis for the tensor state of two spins. The expression |𝑢𝑢⟩ has always the meaning of |𝑢⟩ for 

the first spin and |𝑢⟩ for the second spin etc.  

Calculus 
The derivative of a function is defined as: 

𝑓′(𝑥) = lim
△𝑥→0

𝑓(𝑥 +△ 𝑥) − 𝑓(𝑥)

△ 𝑥
 

In physics the derivative in respect to time 
𝑑𝑓

𝑑𝑡
 is often written as 𝑓̇. 

If 𝑓 is a function of more than one variable we can partially derive it. In this case we chose one 

variable and regard all other being constant. 

𝑓(𝑥, 𝑦, 𝑧) ≔ 𝑥 + 2𝑥𝑦 + 𝑧³ 

𝜕𝑓

𝜕𝑥
= 1 + 2𝑦,

𝜕𝑓

𝜕𝑦
= 2𝑥,

𝜕𝑓

𝜕𝑧
= 3𝑧² 

𝜕2𝑓

𝜕𝑥2
= 0,

𝜕2𝑓

𝜕𝑦2
= 0,

𝜕2𝑓

𝜕𝑧2
= 6𝑧 

Integration by parts: 

∫ 𝑢(𝑥)𝑣′(𝑥)𝑑𝑥 = [𝑢(𝑥)𝑣(𝑥)]𝑎
𝑏 −∫ 𝑢′(𝑥)𝑣(𝑥)𝑑𝑥

𝑏

𝑎

𝑏

𝑎

 

Note: if 𝑢(𝑥) and (𝑥) are normalized and the integration performed from −∞ to ∞ this becomes: 

∫ 𝑢(𝑥)𝑣′(𝑥)𝑑𝑥 = −∫ 𝑢′(𝑥)𝑣(𝑥)𝑑𝑥
∞

−∞

∞

−∞

 

The expression [𝑢(𝑥)𝑣(𝑥)]−∞
∞  vanishes because 𝑢(𝑥) and (𝑥) becomes zero in infinity. 

A differential equation connects a function and some of its derivatives, e.g.: 

𝑓′(𝑥) = 2 ∙ 𝑓(𝑥) 

The exponential function 𝑓(𝑥) = 𝑒2𝑥 is a solution to this differential equation, because: 

𝑓′(𝑒2𝑥) = 2 ∙ 𝑒2𝑥 = 2 ∙ 𝑓(𝑥) 
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Besides the function 𝑓(𝑥) = 𝑒2𝑥 every multiple 𝑓(𝑥) = 𝑎𝑒2𝑥 is solution to this differential equation: 

𝑓′(𝑎𝑒2𝑥) = 𝑎𝑓′(𝑒2𝑥) = 𝑎 ∙ 2 ∙ 𝑒2𝑥 = 2 ∙ 𝑎𝑒2𝑥 = 2 ∙ 𝑓(𝑥) 

Mathematicians view to functions concentrates on what the function does with the variable. The 

variable itself is no object of investigation. Physicists often are interested in the variable itself. Let us 

show this by an example.  

Kinetic energy  𝐸𝑘𝑖𝑛 is described by the formula 𝐸𝑘𝑖𝑛 =
𝑚∙𝑣2

2
.  

Momentum is mass times velocity:  𝑝 = 𝑚 ∙ 𝑣 so we can write alternatively: 

𝐸𝑘𝑖𝑛 =
𝑝2

2𝑚
 

We partially derive 𝐸𝑘𝑖𝑛 to the variable 𝑝: 

𝜕𝐸𝑘𝑖𝑛
𝜕𝑝

=
𝜕

𝜕𝑝
(
𝑝2

2𝑚
) =

2𝑝

2𝑚
=
𝑝

𝑚
 

If we compare with the definition of momentum we get: 

𝜕𝐸𝑘𝑖𝑛
𝜕𝑝

= 𝑣 

If we partially derive 𝐸𝑘𝑖𝑛 =
𝑚∙𝑣2

2
 to the variable 𝑣: 

𝜕𝐸𝑘𝑖𝑛
𝜕𝑣

=
𝜕

𝜕𝑣
(
𝑚𝑣2

2
) =

2𝑚𝑣

2
= 𝑚𝑣 = 𝑝 

The mutual dependencies 
𝜕𝐸𝑘𝑖𝑛

𝜕𝑝
= 𝑣 and 

𝜕𝐸𝑘𝑖𝑛

𝜕𝑣
= 𝑝 are what physicists are interested in. 

Statistics 
A function 𝑓:ℝ → ℝ is called probability density function: 

1. 𝑓(𝑥) ≥ 0 

2. 𝑓 is continuous 

3. ∫ 𝑓(𝑥)𝑑𝑥
+∞

−∞
= 1 

The probability for 𝑎 < 𝑥 ≤ 𝑏: 

𝑃(𝑎 < 𝑥 ≤ 𝑏) = 𝐹(𝑏) − 𝐹(𝑎) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

Expectation value: 

𝜇 = 𝐸[𝑥] ≔

{
 
 

 
 ∑𝑥𝑗𝑝𝑗

𝑗

                     𝑖𝑓 𝑥 𝑖𝑠 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒

∫ 𝑥𝑓(𝑥)𝑑𝑥
+∞

−∞

     𝑖𝑓 𝑥 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠

 

Shifting the elements of a distribution by a constant shifts the expectation value: 

𝑥𝑗 → (𝑥𝑗 − 𝑎): 𝐸[𝑋] → 𝐸[𝑋 − 𝑎] = 𝐸[𝑋] − 𝑎 
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Variance or expectation value of the squared deviation: 

𝜎2: =

{
 
 

 
 ∑(𝑥𝑗 − 𝜇)

2𝑝𝑗
𝑗

                     𝑖𝑓 𝑥 𝑖𝑠 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒

∫ (𝑥 − 𝜇)2𝑓(𝑥)𝑑𝑥
+∞

−∞

     𝑖𝑓 𝑥 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠

 

Standard deviation 𝜎 is the square root of the variance 𝜎2. 

If the expectation value 𝐸[𝑋] of a distribution is 0 then the variance 𝜎2 is the expectation value of x²: 

𝜎2 =

{
 
 

 
 ∑(𝑥𝑗)

2𝑝𝑗
𝑗

= 𝐸[𝑥2]                     𝑖𝑓 𝑥 𝑖𝑠 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒

∫ (𝑥)2𝑓(𝑥)𝑑𝑥
+∞

−∞

= 𝐸[𝑥2]     𝑖𝑓 𝑥 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠

 


