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This paper deals with the time evolution of a two-level quantum system, a qubit in a real 

existing system.  

We do this with the picture of a precessing magnetic moment (a spin up/down) and access 

this by both working with a static laboratory system and the rotating frame method. Both are 

giving the same result. 

You may find more information at: 

https://en.wikipedia.org/wiki/Rabi_frequency 

https://quantum-abc.de/spin_flip_1.pdf 

 

Hope I can help you with learning quantum mechanics. 

 

This is an experimental text and may contain errors. 

  

https://en.wikipedia.org/wiki/Rabi_frequency
https://quantum-abc.de/spin_flip_1.pdf
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General two-level system 
The time-dependent Hamiltonian of a precessing magnetic moment, a precessing spin: 

𝐻 = −𝜇 ∙ 𝐵⃗⃗ =
1

2
ℏ (

𝜔0 𝜔𝑅𝑒−𝑖𝜔𝑡

𝜔𝑅𝑒𝑖𝜔𝑡 −𝜔0

) 

This Hamiltonian describes the energy of a two-level magnetic moment in a combination of 

static and rotating magnetic fields: 

𝐵⃗⃗(𝑡) = −|𝐵⃗⃗1|𝑒𝑥𝑐𝑜𝑠(𝜔𝑡) − |𝐵⃗⃗1|𝑒𝑦𝑠𝑖𝑛(𝜔𝑡) + |𝐵⃗⃗0|𝑒𝑧 

The rotating magnetic field in the 𝑥 − 𝑦-plane: 

−|𝐵⃗⃗1|𝑒𝑥𝑐𝑜𝑠(𝜔𝑡) − |𝐵⃗⃗1|𝑒𝑦𝑠𝑖𝑛(𝜔𝑡) 

The static field in the 𝑧-direction: 

|𝐵⃗⃗0|𝑒𝑧 

Note:  

𝜔0 = 𝛾|𝐵⃗⃗0|  Larmor frequency 

𝜔  frequency of the driving field 

𝜔𝑅 = 𝛾|𝐵⃗⃗1|  Rabi frequency 

𝛾  gyromagnetic ratio 

𝛿 = 𝜔 − 𝜔0 difference between frequency of the driving field and Larmor frequency 

Ω𝑅 = √𝛿2 + 𝜔2
𝑅 generalized Rabi frequency. 

We use the standard basis for qubits: 

(
1
0

) = | ↓⟩ = |0⟩ ≔ |𝑒⟩ and (
0
1

) = | ↑⟩ = |1⟩ ≔ |𝑔⟩ 

Note: In spin terminology |𝑔⟩ is the ground state, |𝑒⟩ is the (first) excited state. 

Note: In spin terminology | ↑⟩ and | ↓⟩ are states with 𝜇 being oriented along the ∓𝑒𝑧 axis. 

Note: ground state and excited state depend on the charge of the particle. For electrons the 

spin in direction of the magnetic field is the excited state, the spin antiparallel to the magnetic 

field is the ground state. For positive charges like a proton this reverses.  

The general time-dependent two-level system described in probability amplitudes: 

|𝜓(𝑡)⟩ = 𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡|𝑔⟩ + 𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡|𝑒⟩ 
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We transform the picture of a precessing magnetic moment resp. a precessing spin around a 

magnetic field along the 𝑧-axis into its projection onto the 𝑧-axis. 

 

In case the spin is 
precessing tightly around 
the 𝑧-direction the 
probability amplitude for spin 
up is nearly one, the 
probability amplitude for spin 
down is nearly zero. 
 

In case the spin is 
precessing perpendicular to 
the 𝑧-direction the 
probability amplitude for spin 
up is the same as the 
probability amplitude for spin 

down, each equal √1
2⁄ . 

In case the spin is 
precessing tightly around 
the −𝑧-direction the 
probability amplitude for spin 
up is nearly zero, the 
probability amplitude for spin 
down is nearly one.  
 

 

Note: Don’t confuse the angle 𝜑 and the basis vectors (
1
0

) and (
0
1

). For 𝜑 = 0 we have 100% 

spin up = (
1
0

), for 𝜑 = 𝜋 we have 100% spin down = (
0
1

). 

Note: Instead of using “probability amplitude” we can call this “population of a state”.  

We name 𝑎𝑔 and 𝑎𝑒 the probability amplitude of the population of ground level and excited 

level, both are time dependent.  

According to quantum computing rules we have: 

(𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡)
2

+ (𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡)
2

= 1 

More precisely: 

𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡𝑎𝑔(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡𝑎𝑒(𝑡)𝑒𝑖
𝜔0
2

𝑡 = 1 

This gives: 

(𝑎𝑔(𝑡))
2

𝑒𝑖
𝜔0
2

𝑡𝑒−𝑖
𝜔0
2

𝑡 + (𝑎𝑒(𝑡))
2

𝑒−𝑖
𝜔0
2

𝑡𝑒𝑖
𝜔0
2

𝑡 = 1 

(𝑎𝑔(𝑡))
2

+ (𝑎𝑒(𝑡))
2

= 1 

This fits with 𝑎𝑔(𝑡) = 𝑠𝑖𝑛(𝑡) and 𝑎𝑒(𝑡) = 𝑐𝑜𝑠(𝑡). 

To obtain the change of probability densities 𝑎̇𝑔 and 𝑎̇𝑒 we solve the Schrödinger equation: 

𝐻|𝜓(𝑡)⟩ = 𝑖ℏ
𝑑

𝑑𝑡
|𝜓(𝑡)⟩ 

  



Spin Flip 

Dieter Kriesell  page 4 of 9 

We write |𝜓(𝑡)⟩ in vector notation: 

|𝜓(𝑡)⟩ = 𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 (
0
1

) + 𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 (
1
0

) = (
𝑎𝑒(𝑡)𝑒−𝑖

𝜔0
2

𝑡

𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
) 

We apply the Hamiltonian: 
 

We differentiate |𝜓(𝑡)⟩: 
 

𝐻|𝜓(𝑡)⟩ = 

1

2
ℏ (

𝜔0 𝜔𝑅𝑒−𝑖𝜔𝑡

𝜔𝑅𝑒𝑖𝜔𝑡 −𝜔0

) (
𝑎𝑒(𝑡)𝑒−𝑖

𝜔0
2

𝑡

𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
) = 

1

2
ℏ (

𝜔0𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝜔𝑅𝑒−𝑖𝜔𝑡𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡

𝜔𝑅𝑒𝑖𝜔𝑡𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 − 𝜔0𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
) = 

1

2
ℏ (

𝜔0𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝜔𝑅𝑎𝑔(𝑡)𝑒
𝑖(

𝜔0
2

−𝜔)𝑡

𝜔𝑅𝑒
𝑖(𝜔−

𝜔0
2

)𝑡
𝑎𝑒(𝑡) − 𝜔0𝑎𝑔(𝑡)𝑒𝑖

𝜔0
2

𝑡
) 

 

𝑖ℏ
𝑑

𝑑𝑡
|𝜓(𝑡)⟩ = 

𝑖ℏ
𝑑

𝑑𝑡
(

𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡

𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
) = 

𝑖ℏ (
𝑎̇𝑒(𝑡)𝑒−𝑖

𝜔0
2

𝑡 − 𝑖
𝜔0

2
𝑎𝑒(𝑡)𝑒−𝑖

𝜔0
2

𝑡

𝑎̇𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 + 𝑖
𝜔0

2
𝑎𝑔(𝑡)𝑒𝑖

𝜔0
2

𝑡
) 

 

 

We get the equation: 

𝑖ℏ (
𝑎̇𝑒(𝑡)𝑒−𝑖

𝜔0
2

𝑡 − 𝑖
𝜔0

2
𝑎𝑒(𝑡)𝑒−𝑖

𝜔0
2

𝑡

𝑎̇𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 + 𝑖
𝜔0

2
𝑎𝑔(𝑡)𝑒𝑖

𝜔0
2

𝑡
) =

1

2
ℏ (

𝜔0𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝜔𝑅𝑎𝑔(𝑡)𝑒
𝑖(

𝜔0
2

−𝜔)𝑡

𝜔𝑅𝑒
𝑖(𝜔−

𝜔0
2

)𝑡
𝑎𝑒(𝑡) − 𝜔0𝑎𝑔(𝑡)𝑒𝑖

𝜔0
2

𝑡
) 

We remove ℏ: 

(
2𝑖𝑎̇𝑒(𝑡)𝑒−𝑖

𝜔0
2

𝑡 + 𝜔0𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡

2𝑖𝑎̇𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 − 𝜔0𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
) = (

𝜔0𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝜔𝑅𝑎𝑔(𝑡)𝑒
𝑖(

𝜔0
2

−𝜔)𝑡

𝜔𝑅𝑒
𝑖(𝜔−

𝜔0
2

)𝑡
𝑎𝑒(𝑡) − 𝜔0𝑎𝑔(𝑡)𝑒𝑖

𝜔0
2

𝑡
) 

We treat the two equations separately: 

Equation one: 
 

Equation two: 
 

2𝑖𝑎̇𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝜔0𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡
 

= 𝜔0𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝜔𝑅𝑎𝑔(𝑡)𝑒
𝑖(

𝜔0
2

−𝜔)𝑡
 

 

2𝑖𝑎̇𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 − 𝜔0𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
 

= 𝜔𝑅𝑒
𝑖(𝜔−

𝜔0
2

)𝑡
𝑎𝑒(𝑡) − 𝜔0𝑎𝑔(𝑡)𝑒𝑖

𝜔0
2

𝑡
 

 

2𝑖𝑎̇𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 = 𝜔𝑅𝑎𝑔(𝑡)𝑒
𝑖(

𝜔0
2

−𝜔)𝑡
 

 

2𝑖𝑎̇𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 = 𝜔𝑅𝑒
𝑖(𝜔−

𝜔0
2

)𝑡
𝑎𝑒(𝑡) 

 

2𝑖𝑎̇𝑒(𝑡) = 𝜔𝑅𝑎𝑔(𝑡)𝑒𝑖(𝜔0−𝜔)𝑡 

 

2𝑖𝑎̇𝑔(𝑡) = 𝜔𝑅𝑒𝑖(𝜔−𝜔0)𝑡𝑎𝑒(𝑡) 

 

𝑖𝑎̇𝑒(𝑡) =
1

2
𝜔𝑅𝑎𝑔(𝑡)𝑒𝑖(𝜔0−𝜔)𝑡 

 

𝑖𝑎̇𝑔(𝑡) =
1

2
𝜔𝑅𝑒𝑖(𝜔−𝜔0)𝑡𝑎𝑒(𝑡) 

 

 

What we have at this stage is the change of population or the change of probability 

amplitudes. This is a system of differential equations we will handle later. 
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Parallel, we work with the time-independent Hamiltonian 𝐻′ in the rotating frame. 

We compare both Hamiltonians: 

The laboratory system with the time-
dependent Hamiltonian 𝐻: 

The rotating system with the time-
independent Hamiltonian 𝐻′: 

𝐻 = −𝜇 ∙ 𝐵⃗⃗ =
1

2
ℏ (

𝜔0 𝜔𝑅𝑒−𝑖𝜔𝑡

𝜔𝑅𝑒𝑖𝜔𝑡 −𝜔0

) 𝐻′ =
1

2
ℏ (

−𝛿 𝜔𝑅

𝜔𝑅 𝛿
) 

 

Note: In the rotating frame we have 𝜔 = 0, 𝛿 ≔ 𝜔 − 𝜔0 = −𝜔0. 

To obtain the equations of motion, the change of probability densities 𝑎̇𝑔 and 𝑎̇𝑒 we solve the 

Schrödinger equation: 

𝐻′|𝜓(𝑡)⟩ = 𝑖ℏ
𝑑

𝑑𝑡
|𝜓(𝑡)⟩ 

We rewrite |𝜓(𝑡)⟩ in vector notation: 

|𝜓(𝑡)⟩ = 𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 (
0
1

) + 𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 (
1
0

) = (
𝑎𝑒(𝑡)𝑒−𝑖

𝜔0
2

𝑡

𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
) 

We apply the Hamiltonian: 
 

We differentiate |𝜓(𝑡)⟩: 
 

𝐻′|𝜓(𝑡)⟩ = 

1

2
ℏ (

−𝛿 𝜔𝑅

𝜔𝑅 𝛿
) (

𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡

𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
) = 

1

2
ℏ (

−𝛿𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝜔𝑅𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡

𝜔𝑅𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝛿𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
) 

 

𝑖ℏ
𝑑

𝑑𝑡
|𝜓(𝑡)⟩ = 

𝑖ℏ
𝑑

𝑑𝑡
(

𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡

𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
) = 

𝑖ℏ (
𝑎̇𝑒(𝑡)𝑒−𝑖

𝜔0
2

𝑡 − 𝑖
𝜔0

2
𝑎𝑒(𝑡)𝑒−𝑖

𝜔0
2

𝑡

𝑎̇𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 + 𝑖
𝜔0

2
𝑎𝑔(𝑡)𝑒𝑖

𝜔0
2

𝑡
) 

 

 

We get the equation: 

1

2
ℏ (

−𝛿𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝜔𝑅𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡

𝜔𝑅𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝛿𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
) = 𝑖ℏ (

𝑎̇𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 − 𝑖
𝜔0

2
𝑎𝑒(𝑡)𝑒−𝑖

𝜔0
2

𝑡

𝑎̇𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 + 𝑖
𝜔0

2
𝑎𝑔(𝑡)𝑒𝑖

𝜔0
2

𝑡
) 

We multiply by 
2

ℏ
: 

(
−𝛿𝑎𝑒(𝑡)𝑒−𝑖

𝜔0
2

𝑡 + 𝜔𝑅𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡

𝜔𝑅𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝛿𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
) = 2𝑖 (

𝑎̇𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 − 𝑖
𝜔0

2
𝑎𝑒(𝑡)𝑒−𝑖

𝜔0
2

𝑡

𝑎̇𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 + 𝑖
𝜔0

2
𝑎𝑔(𝑡)𝑒𝑖

𝜔0
2

𝑡
) 

(
−𝛿𝑎𝑒(𝑡)𝑒−𝑖

𝜔0
2

𝑡 + 𝜔𝑅𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡

𝜔𝑅𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝛿𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
) = (

2𝑖𝑎̇𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝜔0𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡

2𝑖𝑎̇𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 − 𝜔0𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
) 
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We get two equations: 

−𝛿𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝜔𝑅𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 = 2𝑖𝑎̇𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝜔0𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡
 

𝜔𝑅𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝛿𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 = 2𝑖𝑎̇𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 − 𝜔0𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
 

Equation one: 

−𝛿𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝜔𝑅𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 = 2𝑖𝑎̇𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝜔0𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡
 

2𝑖𝑎̇𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 = −𝛿𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝜔𝑅𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 − 𝜔0𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡
 

2𝑖𝑎̇𝑒(𝑡) = −𝛿𝑎𝑒(𝑡) + 𝜔𝑅𝑎𝑔(𝑡)𝑒𝑖𝜔0𝑡 − 𝜔0𝑎𝑒(𝑡) 

2𝑖𝑎̇𝑒(𝑡) = −𝑎𝑒(𝑡)(𝛿 + 𝜔0) + 𝜔𝑅𝑎𝑔(𝑡)𝑒𝑖𝜔0𝑡 

𝑖𝑎̇𝑒(𝑡) = −
1

2
𝑎𝑒(𝑡)(𝛿 + 𝜔0) +

1

2
𝜔𝑅𝑎𝑔(𝑡)𝑒𝑖𝜔0𝑡 

We use the specifics of the rotating frame:  

𝜔 = 0, 𝛿 ≔ 𝜔 − 𝜔0 = −𝜔0 

We get: 

𝑖𝑎̇𝑒(𝑡) = −
1

2
𝑎𝑒(𝑡)(𝛿 + 𝜔0) +

1

2
𝜔𝑅𝑎𝑔(𝑡)𝑒𝑖𝜔0𝑡 =

1

2
𝜔𝑅𝑎𝑔(𝑡)𝑒𝑖𝜔0𝑡 

Equation two: 

𝜔𝑅𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝛿𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 = 2𝑖𝑎̇𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 − 𝜔0𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
 

2𝑖𝑎̇𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 = 𝜔𝑅𝑎𝑒(𝑡)𝑒−𝑖
𝜔0
2

𝑡 + 𝛿𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡 + 𝜔0𝑎𝑔(𝑡)𝑒𝑖
𝜔0
2

𝑡
 

2𝑖𝑎̇𝑔(𝑡) = 𝜔𝑅𝑎𝑒(𝑡)𝑒−𝑖𝜔0𝑡 + 𝛿𝑎𝑔(𝑡) + 𝜔0𝑎𝑔(𝑡) 

2𝑖𝑎̇𝑔(𝑡) = 𝜔𝑅𝑎𝑒(𝑡)𝑒−𝑖𝜔0𝑡 + 𝛿𝑎𝑔(𝑡)(𝛿 + 𝜔0) 

𝑖𝑎̇𝑔(𝑡) =
1

2
𝜔𝑅𝑎𝑒(𝑡)𝑒−𝑖𝜔0𝑡 +

1

2
𝑎𝑔(𝑡)(𝛿 + 𝜔0) 

We use the specifics of the rotating frame:  

𝜔 = 0, 𝛿 ≔ 𝜔 − 𝜔0 = −𝜔0 

We get: 

𝑖𝑎̇𝑔(𝑡) =
1

2
𝜔𝑅𝑎𝑒(𝑡)𝑒−𝑖𝜔0𝑡 +

1

2
𝑎𝑔(𝑡)(𝛿 + 𝜔0) =

1

2
𝜔𝑅𝑎𝑒(𝑡)𝑒−𝑖𝜔0𝑡 
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We compare the results of the two ways to access the problem: 

Static frame Rotating frame 

𝑖𝑎̇𝑔(𝑡) =
1

2
𝜔𝑅𝑒𝑖(𝜔−𝜔0)𝑡𝑎𝑒(𝑡) 𝑖𝑎̇𝑔(𝑡) =

1

2
𝜔𝑅𝑎𝑒(𝑡)𝑒−𝑖𝜔0𝑡 

𝑖𝑎̇𝑒(𝑡) =
1

2
𝜔𝑅𝑎𝑔(𝑡)𝑒𝑖(𝜔0−𝜔)𝑡 𝑖𝑎̇𝑒(𝑡) =

1

2
𝜔𝑅𝑎𝑔(𝑡)𝑒𝑖𝜔0𝑡 

 

Noting that in the rotating frame 𝜔 = 0 we have the same result. 

Equations of change in probability density resp. population 
We rewrite 𝛿 = 𝜔 − 𝜔0. 

 

𝑎̇𝑔 = −𝑖
𝜔𝑅

2
𝑒𝑖𝛿𝑡𝑎𝑒 𝑎̇𝑒 = −𝑖

𝜔𝑅

2
𝑒−𝑖𝛿𝑡𝑎𝑔 

 

This system of differential equations has the solutions (calculated by https://mathdf.com/dif/) 

𝑎𝑒 = 𝐶1 ∙ 𝑠𝑖𝑛 (
1

2
(√𝛿2 + 𝜔𝑅

2 − 𝛿) 𝑡) + 𝐶 ∙ 𝑐𝑜𝑠 (
1

2
(√𝛿2 + 𝜔𝑅

2 − 𝛿) 𝑡) 

𝑎𝑔 = 𝐶
𝑖

𝜔𝑅
(𝛿 − √𝛿2 + 𝜔𝑅

2) 𝑒𝑖𝛿𝑡 ∙ 𝑠𝑖𝑛 (
1

2
(√𝛿2 + 𝜔𝑅

2 − 𝛿) 𝑡) + 𝐶1

𝑖

𝜔𝑅
(√𝛿2 + 𝜔𝑅

2 − 𝛿) 𝑒𝑖𝛿𝑡

∙ 𝑐𝑜𝑠 (
1

2
(√𝛿2 + 𝜔𝑅

2 − 𝛿) 𝑡) 

We use the boundary condition that the system at time 𝑡 = 0 is in the ground state: 

𝑎𝑔(𝑡 = 0) = 1, 𝑎𝑒(𝑡 = 0) = 0 

𝑎𝑔(𝑡 = 0) = 1 = 𝐶1

𝑖

𝜔𝑅
(√𝛿2 + 𝜔𝑅

2 − 𝛿) → 𝐶1 =
𝜔𝑅

𝑖(√𝛿2 + 𝜔𝑅
2 − 𝛿)

 

𝑎𝑒(𝑡 = 0) = 0 = 𝐶 

We get the complete solution: 

𝑎𝑒 =
𝜔𝑅

𝑖(√𝛿2 + 𝜔𝑅
2 − 𝛿)

∙ 𝑠𝑖𝑛 (
1

2
(√𝛿2 + 𝜔𝑅

2 − 𝛿) 𝑡) 

𝑎𝑔 = 𝑒𝑖𝛿𝑡 ∙ 𝑐𝑜𝑠 (
1

2
(√𝛿2 + 𝜔𝑅

2 − 𝛿) 𝑡) 

For (𝑡 = 0) the ground state is complete: 

𝑎𝑔(𝑡 = 0) = 1 

For (𝑡 = 0) the excited state is empty: 

𝑎𝑒(𝑡 = 0) = 0 

  

https://mathdf.com/dif/
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What happens if the ground state becomes zero for the first cycle: 

𝑐𝑜𝑠 (
1

2
(√𝛿2 + 𝜔𝑅

2 − 𝛿) 𝑡) = 0 →
1

2
(√𝛿2 + 𝜔𝑅

2 − 𝛿) 𝑡 =
𝜋

2
→ 

(√𝛿2 + 𝜔𝑅
2 − 𝛿) 𝑡 = 𝜋 → 𝑡 =

𝜋

√𝛿2 + 𝜔𝑅
2 − 𝛿

 

We insert into the excited state: 

𝑎𝑒 =
𝜔𝑅

𝑖(√𝛿2 + 𝜔𝑅
2 − 𝛿)

∙ 𝑠𝑖𝑛 (
1

2
(√𝛿2 + 𝜔𝑅

2 − 𝛿) 𝑡) → 

𝑎𝑒 =
𝜔𝑅

𝑖(√𝛿2 + 𝜔𝑅
2 − 𝛿)

∙ 𝑠𝑖𝑛 (
1

2
(√𝛿2 + 𝜔𝑅

2 − 𝛿)
𝜋

√𝛿2 + 𝜔𝑅
2 − 𝛿

) → 

𝑎𝑒 =
𝜔𝑅

𝑖(√𝛿2 + 𝜔𝑅
2 − 𝛿)

∙ 𝑠𝑖𝑛 (
𝜋

2
) → 

𝑎𝑒 =
𝜔𝑅

𝑖(√𝛿2 + 𝜔𝑅
2 − 𝛿)

 

We get the absolute value of 𝑎𝑒: 

|𝑎𝑒|2 =
𝜔𝑅

𝑖(√𝛿2 + 𝜔𝑅
2 − 𝛿)

𝜔𝑅

−𝑖(√𝛿2 + 𝜔𝑅
2 − 𝛿)

= 

𝜔𝑅
2

(√𝛿2 + 𝜔𝑅
2 − 𝛿)

2 

Note: we need 𝛿 to be negative. 

We take a look at the argument of the sin with an example 𝜔𝑅 = 50. 

 

What we get is: 

If the difference between the frequency of driving field and Larmor frequency is zero, we 

have a complete interchange between ground state and excited state. 

If the difference between the frequency of driving field and Larmor frequency is not zero, the 

excited state will not be filled up completely. 
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Together with the preceding factor we get a picture for 𝑎𝑒: 

𝑎𝑒 =
𝜔𝑅

𝑖(√𝛿2 + 𝜔𝑅
2 − 𝛿)

∙ 𝑠𝑖𝑛 (
1

2
(√𝛿2 + 𝜔𝑅

2 − 𝛿) 𝑡) 

 

Note: 𝜔𝑅 = 50, −1 < 𝛿 < −5  


