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This file contains more exercises on quantum mechanics ... hope I can help you with learning 

quantum mechanics … 

Dieter Kriesell  
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Exercise 1  

Given a particle of mass m in a one-dimensional potential 𝑉(𝑥) with the wavefunction:  

𝜓(𝑥) = 𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

, 𝑎 > 0 

Normalize 𝜓(𝑥) to determine the constant 𝐶. 

Calculate the expectation value of the position operator 〈𝑥〉. 

Calculate the expectation value 〈𝑥2〉. 

Exercise 2  

Given a particle of mass 𝑚 in a one-dimensional potential 𝑉(𝑥) with the wavefunction:  

𝜓(𝑥) = 𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

, 𝑎 > 0 

Calculate the expectation value of the momentum operator 〈𝑝̂〉. 

Calculate the expectation value of 〈𝑝̂2〉. 

Note: the momentum operator 𝑝̂:  

𝑝̂ = −𝑖ℏ
𝑑

𝑑𝑥
 

Exercise 3  

Given the wave function:  

𝜓(𝑥) = 𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

, 𝑎 > 0 

Calculate the expectation value of the Hamiltonian 〈𝐻̂〉: 

〈𝐻̂〉 = −
ℏ2

2𝑚

𝑑2

𝑑𝑥2
+ 𝑉(𝑥) 

Assume that the potential vanishes, 𝑉(𝑥) = 0. 
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Exercise 4  

We assume 𝜓(𝑥) to be an energy eigenstate. From the potential 𝑉(𝑥) we only know that 𝑉(0)is 

zero.  

𝜓(𝑥) = 𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

, 𝑎 > 0 

Using the Hamiltonian, find the potential 𝑉(𝑥). 

Calculate the Energy 𝐸. 

Exercise 5  

The wave function 𝜓(𝑥) = 𝐶 ∙ 𝑥 ∙ 𝑒−
1

2
𝑎𝑥2

, 𝑎 > 0 cannot be a ground state wave function of the 

harmonic oscillator (why?). 

We use the momentum operator 

𝑝̂ = −𝑖ℏ
𝑑

𝑑𝑥
 

and the position operator 𝑥 ≔ 𝑥 and define the lowering operator:  

𝑎̂− =
𝑖

√2ℏ𝜔
(𝑃̂ − 𝑖𝜔𝑋̂) 

Apply the lowering operator to 𝜓(𝑥).  

Verify that the result is a ground state. 

Exercise 6  

Given a particle of mass 𝑚 moving in a 1D 𝛿-potential  

𝑉(𝑥) = −𝑎𝛿(𝑥), 𝑎 > 0. 

This kind of potential allows one bound state. 

Calculate the energy of the bound state.  
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Exercise 7  

Given a particle of mass 𝑚 moving in a one-dimensional  

region with two 𝛿-potentials  

𝑉(𝑥) = −𝑉0(𝛿(𝑥 + 𝑎) + 𝛿(𝑥 − 𝑎)), 𝑎 > 0 

Shown is the odd bound wave function.  

Calculate the minimum energy for 𝑉0 to guarantee  

an odd bound solution.  
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Exercise 1  
Given a particle of mass m in a one-dimensional potential 𝑉(𝑥) with the wavefunction:  

𝜓(𝑥) = 𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

, 𝑎 > 0 

Normalize 𝜓(𝑥) to determine the constant 𝐶. 

Calculate the expectation value of the position operator 〈𝑥〉. 

Calculate the expectation value of the square of the position operator 〈𝑥2〉. 

a) Normalizing a wave function: 

∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥
∞

−∞

= 1 

In our case the wave function is real, 𝜓∗(𝑥) = 𝜓(𝑥). 

We calculate: 

∫ 𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

∙ 𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

𝑑𝑥
∞

−∞

= 𝐶2 ∫ 𝑥2 ∙ 𝑒−𝑎𝑥2
𝑑𝑥

∞

−∞

=; 

A look at Wikipedia (https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions) shows:  

∫ 𝑥2 ∙ 𝑒−𝑎𝑥2
𝑑𝑥

∞

−∞

=
1

2
√

𝜋

𝑎3
 

We get:  

𝐶2 ∙
1

2
√

𝜋

𝑎3
= 1 → 𝐶2 = √

4 ∙ 𝑎3

𝜋
→ 𝐶 = (

4 ∙ 𝑎3

𝜋
)

1
4

 

Note: 𝑎 > 0 so 𝐶 is strictly positive. 

b) The expectation value of the position operator 〈𝑥̂〉:  

〈𝑥〉 = ∫ 𝜓∗(𝑥) ∙ 𝑥 ∙ 𝜓(𝑥)𝑑𝑥
∞

−∞

 

∫ 𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

∙ 𝑥 ∙ 𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

𝑑𝑥
∞

−∞

= 𝐶2 ∫ 𝑥3 ∙ 𝑒−𝑎𝑥2
𝑑𝑥

∞

−∞

=; 

 

The function is antisymmetric so any integral symmetric to 0  

is zero:  

〈𝑥〉 = 0 

https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions
https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions
https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions
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c) The expectation value of the squared position operator 〈𝑥̂2〉:  

〈𝑥2〉 = ∫ 𝜓∗(𝑥) ∙ 𝑥2 ∙ 𝜓(𝑥)𝑑𝑥
∞

−∞

 

∫ 𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

∙ 𝑥2 ∙ 𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

𝑑𝑥
∞

−∞

= 𝐶2 ∫ 𝑥4 ∙ 𝑒−𝑎𝑥2
𝑑𝑥

∞

−∞

=; 

We look at the shape of the function. This is a symmetric function; the integral 

will give a (real) value. Going with the integration borders to ±∞ we get the 

necessary condition that the function must go to zero for 𝑥 → ±∞. This 

normally is guaranteed by multiplying by an exponential 𝑒−𝑥2
. 

We use Wikipedia:  

∫ 𝑥𝑛 ∙ 𝑒−𝑎𝑥2
𝑑𝑥

∞

0

=
Γ (

𝑛 + 1
2

)

2 (𝑎
𝑛+1

2 )
 

We have 𝑛 = 4: 

∫ 𝑥4 ∙ 𝑒−𝑎𝑥2
𝑑𝑥

∞

0

=
Γ (

5
2)

2 (𝑎
5
2)

 

We use Wikipedia (Gamma function - Wikipedia):  

Γ (
5

2
) =

3

4
√𝜋 

∫ 𝑥4 ∙ 𝑒−𝑎𝑥2
𝑑𝑥

∞

0

=
3

8
√𝜋 ∙ 𝑎−

5
2  →  ∫ 𝑥4 ∙ 𝑒−𝑎𝑥2

𝑑𝑥
∞

−∞

=
3

4
√𝜋 ∙ 𝑎−

5
2 

We collect the results:  

𝐶2 ∫ 𝑥4 ∙ 𝑒−𝑎𝑥2
𝑑𝑥

∞

−∞

= 𝐶2 ∙
3

4
√𝜋 ∙ 𝑎−

5
2 

We use: 

𝐶 = (
4 ∙ 𝑎3

𝜋
)

1
4

 

We get: 

〈𝑥2〉 = 𝐶2 ∫ 𝑥4 ∙ 𝑒−𝑎𝑥2
𝑑𝑥

∞

−∞

= √
4 ∙ 𝑎3

𝜋
∙

3

4
√𝜋 ∙ 𝑎−

5
2 = √4 ∙ 𝑎3 ∙

3

4
𝑎−

5
2 = 2 ∙ 𝑎

3
2 ∙

3

4
𝑎−

5
2 =

3

2𝑎
 

https://en.wikipedia.org/wiki/Gamma_function#:~:text=In%20mathematics%2C%20the%20gamma%20function%20%28represented%20by%20%2C,non-positive%20integers.%20For%20any%20positive%20integer%2C%20%3D%20%28%E2%88%92%29%21
https://en.wikipedia.org/wiki/Gamma_function#:~:text=In%20mathematics%2C%20the%20gamma%20function%20%28represented%20by%20%2C,non-positive%20integers.%20For%20any%20positive%20integer%2C%20%3D%20%28%E2%88%92%29%21
https://en.wikipedia.org/wiki/Gamma_function#:~:text=In%20mathematics%2C%20the%20gamma%20function%20%28represented%20by%20%2C,non-positive%20integers.%20For%20any%20positive%20integer%2C%20%3D%20%28%E2%88%92%29%21
https://en.wikipedia.org/wiki/Gamma_function#:~:text=In%20mathematics%2C%20the%20gamma%20function%20%28represented%20by%20%2C,non-positive%20integers.%20For%20any%20positive%20integer%2C%20%3D%20%28%E2%88%92%29%21
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Exercise 2  
Given a particle of mass m in a one-dimensional potential 𝑉(𝑥) with the wavefunction:  

𝜓(𝑥) = 𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

, 𝑎 > 0 

Calculate the expectation value of the momentum operator 〈𝑝̂〉. 

Calculate the expectation value of 〈𝑝̂2〉. 

Note: the momentum operator 𝑝̂:  

𝑝̂ = −𝑖ℏ
𝑑

𝑑𝑥
 

a) Calculate the expectation value of the momentum operator 〈𝑝̂〉. 
The momentum operator 𝑝̂ applied to the wave function: 

𝑝̂𝜓(𝑥) = −𝑖ℏ
𝑑𝜓(𝑥)

𝑑𝑥
= −𝑖ℏ𝐶 ∙

𝑑

𝑑𝑥
(𝑥 ∙ 𝑒−

1
2

𝑎𝑥2

) = 

−𝑖ℏ𝐶 (𝑒−
1
2

𝑎𝑥2

− 𝑎𝑥2𝑒−
1
2

𝑎𝑥2

) = −𝑖ℏ𝐶 ∙ 𝑒−
1
2

𝑎𝑥2
(1 − 𝑎𝑥2) 

We have two approaches to the solution.  

The high-level approach:  

〈𝑝̂〉 = 𝑚
𝑑〈𝑥〉

𝑑𝑥
= 0 

The expectation value of momentum vanishes if we have a closed system with internal forces only. 

The low-level approach:  

〈𝑝̂〉 = ∫ 𝜓∗(𝑥) ∙ 𝑝̂ ∙ 𝜓(𝑥)𝑑𝑥
∞

−∞

 

We will do this carefully. We need: 

𝜓∗(𝑥), 𝑝̂, 𝜓(𝑥) 

𝜓∗(𝑥) = 𝜓(𝑥) = 𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

, 𝑝̂𝜓(𝑥) = −𝑖ℏ𝐶𝑒−
1
2

𝑎𝑥2
(1 − 𝑎𝑥2) 

We calculate the argument of the integral: 

𝜓∗(𝑥) ∙ 𝑝̂(𝜓(𝑥)) = 

𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

∙ (−𝑖ℏ𝐶𝑒−
1
2

𝑎𝑥2
(1 − 𝑎𝑥2)) = 𝐶 ∙ 𝑥 ∙ (−𝑖)ℏ𝐶(1 − 𝑎𝑥2) ∙ 𝑒−𝑎𝑥2

= 



Wave Functions 1D  

D. Kriesell      page 8 of 24  

−𝑖ℏ𝐶2(𝑥(1 − 𝑎𝑥2)) ∙ 𝑒−𝑎𝑥2
= −𝑖ℏ𝐶2(𝑥 − 𝑎𝑥3) ∙ 𝑒−𝑎𝑥2

= 

𝑖ℏ𝐶2𝑎𝑥3 ∙ 𝑒−𝑎𝑥2
− 𝑖ℏ𝐶2𝑥 ∙ 𝑒−𝑎𝑥2

 

We get the Integrals: 

−𝑖ℏ𝐶2 ∫ 𝑥 ∙ 𝑒−𝑎𝑥2
𝑑𝑥

∞

−∞

 

𝑖ℏ𝐶2𝑎 ∫ 𝑥3 ∙ 𝑒−𝑎𝑥2
𝑑𝑥

∞

−∞

 

Both integrals are antisymmetric, the value of each integral is zero. 

b) Calculate the expectation value of 〈𝑝̂2〉. 
Note: It is easier if you try to express results in terms of 𝜓(𝑥) because you can use some results of 

exercise one. If you resolve anything down to the exponentials, you must go through Wikipedia 

and the integrals again. 

The square of the momentum operator:  

𝑝̂2 = (−𝑖ℏ
𝑑

𝑑𝑥
) (−𝑖ℏ

𝑑

𝑑𝑥
) = −ℏ2

𝑑2

𝑑𝑥2
 

The expectation value of the square of the momentum operator:  

〈𝑝̂2〉 = ∫ 𝜓∗(𝑥) ∙ 𝑝̂2 ∙ 𝜓(𝑥)𝑑𝑥
∞

−∞

= −ℏ2 ∫ 𝜓∗(𝑥) ∙
𝑑2

𝑑𝑥2
𝜓(𝑥)𝑑𝑥

∞

−∞

=; 

We need the first and second derivative of 𝜓(𝑥).  

𝑑

𝑑𝑥
(𝜓(𝑥)) we take from part a):  

𝑑

𝑑𝑥
(𝜓(𝑥)) = 𝐶𝑒−

1
2

𝑎𝑥2
(1 − 𝑎𝑥2) = 𝐶𝑒−

1
2

𝑎𝑥2

− 𝐶𝑎𝑥2𝑒−
1
2

𝑎𝑥2

 

We note: 

𝜓∗(𝑥) = 𝜓(𝑥) = 𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

 

We rewrite in terms of 𝜓(𝑥): 

𝑑

𝑑𝑥
(𝜓(𝑥)) = 𝜓(𝑥) (

1

𝑥
− 𝑎𝑥) 

  



Wave Functions 1D  

D. Kriesell      page 9 of 24  

Second derivative: 

𝑑2

𝑑𝑥2
𝜓(𝑥) =

𝑑

𝑑𝑥
(𝜓(𝑥) (

1

𝑥
− 𝑎𝑥)) = 𝜓(𝑥) (

1

𝑥
− 𝑎𝑥) (

1

𝑥
− 𝑎𝑥) + 𝜓(𝑥) (−

1

𝑥2
− 𝑎) = 

𝜓(𝑥) (
1

𝑥2
− 2𝑎 + 𝑎2𝑥2) + 𝜓(𝑥) (−

1

𝑥2
− 𝑎) = 𝜓(𝑥)(−3𝑎 + 𝑎2𝑥2) 

We calculate the Integral: 

〈𝑝̂2〉 = ∫ 𝜓∗(𝑥) ∙ 𝑝̂2 ∙ 𝜓(𝑥)𝑑𝑥
∞

−∞

= −ℏ2 ∫ 𝜓∗(𝑥) ∙
𝑑2

𝑑𝑥2
𝜓(𝑥)𝑑𝑥

∞

−∞

= 

−ℏ2 ∫ 𝜓∗(𝑥) ∙ 𝜓(𝑥)(−3𝑎 + 𝑎2𝑥2)𝑑𝑥
∞

−∞

= 

3𝑎ℏ2 ∫ 𝜓∗(𝑥) ∙ 𝜓(𝑥)𝑑𝑥
∞

−∞

− ℏ2𝑎2 ∫ 𝜓∗(𝑥) ∙ 𝜓(𝑥) ∙ 𝑥2𝑑𝑥
∞

−∞

 

The first integral is the normalizing condition. 

3𝑎ℏ2 ∫ 𝜓∗(𝑥) ∙ 𝜓(𝑥)𝑑𝑥
∞

−∞

= 3𝑎ℏ2 

The second integral is the expectation value of 〈𝑥2〉: 

ℏ2𝑎2 ∫ 𝜓∗(𝑥) ∙ 𝜓(𝑥) ∙ 𝑥2𝑑𝑥
∞

−∞

=
3ℏ2𝑎2

2𝑎
=

3

2
ℏ2𝑎 

We get: 

3𝑎ℏ2 ∫ 𝜓∗(𝑥) ∙ 𝜓(𝑥)𝑑𝑥
∞

−∞

− ℏ2𝑎2 ∫ 𝜓∗(𝑥) ∙ 𝜓(𝑥) ∙ 𝑥2𝑑𝑥
∞

−∞

=
3

2
ℏ2𝑎 

〈𝑝̂2〉 =
3

2
ℏ2𝑎 
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Exercise 3 
Given the normalized wave function:  

𝜓(𝑥) = 𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

, 𝑎 > 0 

Calculate the expectation value of the Hamiltonian 〈𝐻̂〉. 

Assume that the potential vanishes, 𝑉(𝑥) = 0. 

The Hamiltonian with potential zero:  

𝐻̂ = −
ℏ2

2𝑚

𝑑2

𝑑𝑥2
 

The expectation value of the Hamiltonian with our specific wave function:  

∫ 𝜓∗(𝑥) ∙ 𝐻̂(𝜓(𝑥))𝑑𝑥
∞

−∞

= −
ℏ2

2𝑚
∫ 𝜓∗(𝑥) ∙

𝑑2

𝑑𝑥2 (𝜓(𝑥))𝑑𝑥
∞

−∞

=; 

The second derivative of 𝜓(𝑥) we get from exercise two:  

𝑑2

𝑑𝑥2
𝜓(𝑥) = 𝜓(𝑥)(−3𝑎 + 𝑎2𝑥2) 

We continue with the expectation value:  

−
ℏ2

2𝑚
∫ 𝜓∗(𝑥) ∙

𝑑2

𝑑𝑥2 (𝜓(𝑥))𝑑𝑥
∞

−∞

= −
ℏ2

2𝑚
∫ 𝜓∗(𝑥) ∙ 𝜓(𝑥)(−3𝑎 + 𝑎2𝑥2)𝑑𝑥

∞

−∞

= 

= −
ℏ2

2𝑚
∫ 𝜓∗(𝑥) ∙ 𝜓(𝑥)(−3𝑎 + 𝑎2𝑥2)𝑑𝑥

∞

−∞

= 

3

2
𝑎

ℏ2

𝑚
∫ 𝜓∗(𝑥) ∙ 𝜓(𝑥)𝑑𝑥

∞

−∞

− 𝑎2
ℏ2

2𝑚
∫ 𝜓∗(𝑥) ∙ 𝜓(𝑥) ∙ 𝑥2𝑑𝑥

∞

−∞

 

Note: The first integral is the normalized wavefunction giving 1. The second integral is the 

expectation value of the squared position operator 〈𝑥̂2〉 (see exercise 1c) 
3

2𝑎
. 

We get:  

3

2
𝑎

ℏ2

𝑚
∫ 𝜓∗(𝑥) ∙ 𝜓(𝑥)𝑑𝑥

∞

−∞

− 𝑎2
ℏ2

2𝑚
∫ 𝜓∗(𝑥) ∙ 𝜓(𝑥) ∙ 𝑥2𝑑𝑥

∞

−∞

=
3

2
𝑎

ℏ2

𝑚
− 𝑎2

ℏ2

2𝑚

3

2𝑎
= 

3

2

𝑎ℏ2

𝑚
−

3

4

𝑎ℏ2

𝑚
=

3

4

𝑎ℏ2

𝑚
 

〈𝐻̂〉 =
3

4

𝑎ℏ2

𝑚
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Exercise 4 
We assume 𝜓(𝑥) to be an energy eigenstate. From the potential 𝑉(𝑥) we only know that 𝑉(0) is 

zero.  

𝜓(𝑥) = 𝐶 ∙ 𝑥 ∙ 𝑒−
1
2

𝑎𝑥2

, 𝑎 > 0 

a) Calculate the Energy eigenvalue 𝐸. 

b) Using the Hamiltonian, find the potential 𝑉(𝑥). 

a) Calculate the Energy eigenvalue 𝐸. 
The Hamiltonian 𝐻̂:  

𝐻̂ = −
ℏ2

2𝑚

𝑑2

𝑑𝑥2
+ 𝑉(𝑥) = 𝐸 

From exercise 3 we get the second derivative of 𝜓(𝑥):  

𝑑2

𝑑𝑥2
𝜓(𝑥) = 𝜓(𝑥)(−3𝑎 + 𝑎2𝑥2) 

We solve the equation:  

−
ℏ2

2𝑚
𝜓(𝑥)(−3𝑎 + 𝑎2𝑥2) + 𝑉(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥) 

We use 𝑥 =  0 and 𝑉(0) = 0:  

3𝑎ℏ2

2𝑚
𝜓(0) = 𝐸𝜓(0) 

𝜓(0 + 𝜀) is a number, we get in the limes 𝜀 → 0: 

3𝑎ℏ2

2𝑚
= 𝐸 

b) Using the Hamiltonian, find the potential 𝑉(𝑥). 
For finding the potential 𝑉(𝑥) we use the energy eigenvalue we got from part a):  

−
ℏ2

2𝑚
𝜓(𝑥)(−3𝑎 + 𝑎2𝑥2) + 𝑉(𝑥)𝜓(𝑥) =

3𝑎ℏ2

2𝑚
𝜓(𝑥) 

Now we divide by 𝜓(𝑥). This is mathematically not correct because there might be values of 𝑥 

where 𝜓(𝑥) is zero … but we are physicists … we get: 

−
ℏ2

2𝑚
(−3𝑎 + 𝑎2𝑥2) + 𝑉(𝑥) =

3𝑎ℏ2

2𝑚
 

  



Wave Functions 1D  

D. Kriesell      page 12 of 24  

We solve the equation for the variable 𝑉(𝑥): 

𝑉(𝑥) =
3𝑎ℏ2

2𝑚
+

ℏ2

2𝑚
(−3𝑎 + 𝑎2𝑥2) =

3𝑎ℏ2

2𝑚
−

3𝑎ℏ2

2𝑚
+ 𝑥2

𝑎2ℏ2

2𝑚
= 𝑥2

𝑎2ℏ2

2𝑚
 

Note: this is a quadratic potential fitting for the harmonic oscillator. 

Note: Dividing the equation by 𝜓(𝑥) is unproblematic as long as 𝜓(𝑥) is zero only at discrete 

points.  
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Exercise 5 

The wave function 𝜓(𝑥) = 𝐶 ∙ 𝑥 ∙ 𝑒−
1

2
𝑎𝑥2

, 𝑎 > 0 cannot be a ground state wave function of the 

harmonic oscillator (why?). 

We use the momentum operator 𝑝̂ = −𝑖ℏ
𝑑

𝑑𝑥
, the position operator 𝑥 = 𝑥 and define the lowering 

operator 𝑎̂−: 

𝑎̂− = (𝑝̂ − 𝑖𝑎ℏ𝑥) 

a) Apply the lowering operator to 𝜓(𝑥).  

b) Verify that the result is a ground state.  

𝜓(𝑥) = 𝐶 ∙ 𝑥 ∙ 𝑒−
1

2
𝑎𝑥2

, 𝑎 > 0  cannot be a ground state wave function because the "𝑥" in it causes a 

node, a zero crossing. Ground state functions are node-free. 

a) Apply the lowering operator to 𝜓(𝑥). 

𝑎̂− (𝜓(𝑥)) = (𝑝̂ − 𝑖𝑎ℏ𝑥)(𝜓(𝑥)) = (𝑖ℏ
𝑑

𝑑𝑥
− 𝑖𝑎ℏ𝑥) (𝜓(𝑥)) =; 

We use the first derivative of 𝜓(𝑥) from exercise 2 and rewrite in terms of 𝜓(𝑥): 

𝑑

𝑑𝑥
𝜓(𝑥) = 𝐶𝑒−

1
2

𝑎𝑥2

− 𝑎𝑥𝜓(𝑥) = 𝜓(𝑥) (
1

𝑥
− 𝑎𝑥) 

We get: 

𝑎̂− (𝜓(𝑥)) = (−𝑖ℏ
𝑑

𝑑𝑥
− 𝑖𝑎ℏ𝑥) (𝜓(𝑥)) = −𝑖ℏ𝜓(𝑥) (

1

𝑥
− 𝑎𝑥) − 𝑖𝑎ℏ𝑥𝜓(𝑥) = −

𝑖ℏ𝜓(𝑥)

𝑥
 

We expand 𝜓(𝑥):  

𝑎̂− (𝜓(𝑥)) = −
𝑖ℏ

𝑥
𝐶 ∙ 𝑥 ∙ 𝑒−

1
2

𝑎𝑥2

= −𝑖ℏ𝐶𝑒−
1
2

𝑎𝑥2

 

This is a new, node-free wave function – the hopefully ground state wave function. 

b) Verify that the result is a ground state. 
We apply the lowering operator again. The result must be zero because the lowering operator 

applied to the ground state annihilates the ground state. 

We name the ground state 𝜓0(𝑥):  

𝜓0(𝑥) = −𝑖ℏ𝐶𝑒−
1
2

𝑎𝑥2
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We need the derivative of the ground state:  

𝑑

𝑑𝑥
𝜓0(𝑥) = −𝑎𝑥𝜓0(𝑥) 

We apply the lowering operator to the ground state: 

(−𝑖ℏ
𝑑

𝑑𝑥
− 𝑖𝑎ℏ𝑥) (𝜓0(𝑥)) = −𝑖ℏ

𝑑

𝑑𝑥
𝜓0(𝑥) − 𝑖𝑎ℏ𝑥𝜓0(𝑥) = 

𝑖ℏ𝑎𝑥𝜓0(𝑥) − 𝑖𝑎ℏ𝑥𝜓0(𝑥) = 0 
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Exercise 6 
Given a particle of mass 𝑚 moving in a one-dimensional 𝛿  

potential 𝑉(𝑥) = −𝑎𝛿(𝑥), 𝑎 > 0. 

This kind of potential allows one bound state.  

Calculate the energy of the bound state.  

 

Note: units are 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑚 for meter, 𝑚𝑎𝑠𝑠 = 𝑘𝑔 for kilogram, 𝑡𝑖𝑚𝑒 = 𝑠 for seconds.  

Step 1: dimensional access. 
The potential has the unit:  

[𝑉] = 𝑒𝑛𝑒𝑟𝑔𝑦 = 𝐽𝑜𝑢𝑙𝑒 =
𝑘𝑔 ∙ 𝑚2

𝑠2
 

The 𝛿-function has the unit:  
[𝛿] =

1

𝑚
 

Planck's constant has the unit:  [ℏ] = 𝐽𝑜𝑢𝑙𝑒 ∙ 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

This leads to the unit of 𝑎:  

[𝑎] = 𝐽𝑜𝑢𝑙𝑒 ∙ 𝑚 =
𝑘𝑔 ∙ 𝑚3

𝑠2
 

With these units we can express the energy for the bound state we are looking for as:  

𝐸 = −𝑐
𝑚𝑎2

ℏ2
 

Note: "𝑐 > 0" is a number, a placeholder for a factor to be determined in the end (step 6). The 

minus sign is needed because the energy of bound states must be negative.  

We check the units  

[
𝑚 ∙ 𝑎2

ℏ2
] = 𝑘𝑔 ∙

𝑘𝑔2 ∙ 𝑚6

𝑠4
∙

𝑠4

𝑘𝑔2 ∙ 𝑚4 ∙ 𝑠2
=

𝑘𝑔 ∙ 𝑚2

𝑠2
= [𝐸] 

Note: 𝑎 is not the acceleration but a number that determines the strength of the potential 𝑉. 

Step 2: We solve the Schrödinger equation:  

𝐻̂ = −
ℏ2

2𝑚

𝑑2

𝑑𝑥2
+ 𝑉(𝑥) = 𝐸 

−
ℏ2

2𝑚

𝑑2

𝑑𝑥2
𝜓(𝑥) + 𝑉(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥) 
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−
ℏ2

2𝑚

𝑑2

𝑑𝑥2
𝜓(𝑥) = (𝐸 − 𝑉(𝑥))𝜓(𝑥) 

This is a differential equation. 

We distinguish between 𝑥 ≠  0, the region outside the 𝛿-function and 𝑥 =  0, the “region” with 

the 𝛿 function. Outside the potential 𝑉(𝑥) is zero.  

Outside:  

𝑑2

𝑑𝑥2
𝜓(𝑥) = −

2𝑚𝐸

ℏ2
𝜓(𝑥) 

For easier writing we use: 

−
2𝑚𝐸

ℏ2
𝜓(𝑥) ≔ 𝑘2𝜓(𝑥) 

The energy 𝐸 for bound states must be negative, so 𝑘2 has correctly a positive value.  

The differential equation 

𝑑2

𝑑𝑥2
𝜓(𝑥) = 𝑘2𝜓(𝑥) 

has the solution 𝜓(𝑥) = 𝑒𝑘𝑥, 𝑒−𝑘𝑥 and any linear combination of these two.  

Step 3: We determine the two branches.  
A look at the graphic shows that on the left side the only possible 

solution is 𝐴𝑒𝑘𝑥 because we need the function to become zero for 

large negative values of 𝑥. 

The solution on the right side is 𝐵𝑒−𝑘𝑥. 

Both branches meet at 𝑥 =  0 and we get 𝐴 =  𝐵.  

Note: 𝜓(0) = 𝐴. 

Step 4: We investigate the discontinuity caused by the 𝜹-function.  
We use 𝜀 > 0 and integrate the Hamiltonian. This time the potential 𝑉(𝑥) does not vanish:  

𝑉(𝑥) = −𝑎𝛿(𝑥), 𝑎 > 0 

We integrate: 

−
ℏ2

2𝑚
∫

𝑑2

𝑑𝑥2
𝜓(𝑥)𝑑𝑥

𝜀

−𝜀

− 𝑎 ∫ 𝛿(𝑥)𝜓(𝑥)𝑑𝑥
𝜀

−𝜀

= ∫ 𝐸𝜓(𝑥)𝑑𝑥
𝜀

−𝜀
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We handle the parts.  

−
ℏ2

2𝑚
∫

𝑑2

𝑑𝑥2
𝜓(𝑥)𝑑𝑥

𝜀

−𝜀

= −
ℏ2

2𝑚
[

𝑑

𝑑𝑥
𝜓(𝑥)]

−𝜀

𝜀

 

Note: [
𝑑

𝑑𝑥
𝜓(𝑥)]

−𝜀

𝜀
=

𝑑

𝑑𝑥
𝜓(𝜀) −

𝑑

𝑑𝑥
𝜓(−𝜀).  

We write this as ∆
𝑑

𝑑𝑥
𝜓(𝜀).  

In the limit 𝜀 → 0 this becomes: 

∆ (
𝑑

𝑑𝑥
𝜓(0)) 

Note: This is a discontinuity. 

 

 

 

−𝑎 ∫ 𝛿(𝑥)𝜓(𝑥)𝑑𝑥
𝜀

−𝜀

= −𝑎𝜓(0) 

 

 

 

∫ 𝐸𝜓(𝑥)𝑑𝑥
𝜀

−𝜀

= 0 

Result:  

−
ℏ2

2𝑚
∫

𝑑2

𝑑𝑥2
𝜓(𝑥)𝑑𝑥

𝜀

−𝜀

− 𝑎 ∫ 𝛿(𝑥)𝜓(𝑥)𝑑𝑥
𝜀

−𝜀

= ∫ 𝐸𝜓(𝑥)𝑑𝑥
𝜀

−𝜀

→ −
ℏ2

2𝑚
∆ (

𝑑

𝑑𝑥
𝜓(0)) − 𝑎𝜓(0) = 0 

→ ∆ (
𝑑

𝑑𝑥
𝜓(0)) = −

2𝑚𝑎

ℏ2 𝜓(0) 

We use 𝜓(0) = 𝐴 and get: 

∆ (
𝑑

𝑑𝑥
𝜓(0)) = −

2𝑚𝑎

ℏ2 𝐴 

The discontinuity caused by the 𝛿-function is proportional to the strength of the wave function. 

The kink in the gradient becomes larger the larger the value 𝐴. For 𝐴 → 0 we get no kink. 

Step 5: We determine the value of 𝑘. 
𝑘 contains the value for the energy 𝐸. For bound states 𝐸 cannot take any value but only discrete 

ones. We use the discontinuity of 
𝑑

𝑑𝑥
𝜓(𝑥) at 𝑥 = 0. 

𝑑

𝑑𝑥
𝜓(𝜀) = 𝐴𝑘𝑒𝑘𝜀 

𝑑

𝑑𝑥
𝜓(−𝜀) = −𝐴𝑘𝑒−𝑘𝜀 

 

We calculate the limit: 

lim
𝜀→0

(
𝑑

𝑑𝑥
𝜓(𝜀) −

𝑑

𝑑𝑥
𝜓(−𝜀)) = lim

𝜀→0
(−𝐴𝑘𝑒𝑘𝜀 − (𝐴𝑘𝑒−𝑘𝜀)) = −2𝐴𝑘 ≔ ∆ (

𝑑

𝑑𝑥
𝜓(0)) 
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From step 4 we have:  

∆ (
𝑑

𝑑𝑥
𝜓(0)) = −

2𝑚𝑎

ℏ2 𝐴 

We get:  

−2𝐴𝑘 = −2
𝑚𝑎

ℏ2
𝐴 → 𝑘 =

𝑚𝑎

ℏ2
 

Step 6: We calculate 𝐸:  
From step 2 we have:  

𝑘2 = −
2𝑚𝐸

ℏ2
 

From step 5 we have:  

𝑘 =
𝑚𝑎

ℏ2
→ 𝑘2 =

𝑚2𝑎2

ℏ4
 

We combine and calculate 𝐸:  

𝑚2𝑎2

ℏ4
= −

2𝑚𝐸

ℏ2
 →  𝐸 = −

1

2

𝑚𝑎2

ℏ2
 

The energy of the bound state:  

𝐸 = −
1

2

𝑚

ℏ2
𝑎2 

Answer: the energy is proportional to the square of the strength 𝑎 of the 𝛿-potential.  
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Exercise 7  
Given a particle of mass 𝑚 moving in a one-dimensional region  

with two 𝛿-potentials: 

𝑉(𝑥) = −𝑉0(𝛿(𝑥 + 𝑎) + 𝛿(𝑥 − 𝑎)), 𝑎 > 0 

Shown is the odd bound wave function.  

Calculate the minimum energy for 𝑉0 to guarantee  

an odd bound solution.  

Note: there is always an even solution. The odd solution needs a 

minimum Energy for the potential to exist. 

Step 1: We solve the Schrödinger equation.  

−
ℏ2

2𝑚

𝑑2

𝑑𝑥2
𝜓(𝑥) + 𝑉(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥) 

−
ℏ2

2𝑚

𝑑2

𝑑𝑥2
𝜓(𝑥) = (𝐸 + 𝑉0(𝛿(𝑥 + 𝑎) + 𝛿(𝑥 − 𝑎))) 𝜓(𝑥) 

We distinguish between 𝑥 ≠  −𝑎, 𝑎, the region outside the 𝛿-functions and 𝑥 = −𝑎, 𝑎, the 

“regions” with the 𝛿-function. Outside the potential is zero.  

Outside:  

𝑑2

𝑑𝑥2
𝜓(𝑥) = −

2𝑚𝐸

ℏ2
𝜓(𝑥) 

For easier writing we use:  

𝑘2 = −
2𝑚𝐸

ℏ2
 

Note: the energy 𝐸 for bound states must be negative, so 𝑘2 correctly has a positive value.  

The differential equation 

𝑑2

𝑑𝑥2
𝜓(𝑥) = 𝑘2𝜓(𝑥) 

has the solution 𝜓(𝑥) = 𝑒𝑘𝑥, 𝑒−𝑘𝑥 and any linear combination of these two.  

Step 2: We determine the three (two) branches.  
A look at the graphic shows that on the left side −∞ < 𝑥 < −𝑎 the only possible solution is: 

𝜓𝑙(𝑥) = −𝐴𝑒𝑘𝑥 
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Note: This picture produced with parameters 𝐴 = 5, 𝑘 = 2, 𝑎 = ±1 

The wave function is antisymmetric, on the right side we have:  

𝜓𝑟(𝑥) = 𝐴𝑒−𝑘𝑥 

The solution in between has a zero at 𝑥 =  0 and is antisymmetric too:  

𝜓𝑚(𝑥) = 𝐵(𝑒𝑘𝑥 − 𝑒−𝑘𝑥) 

We concentrate on the right side. The left side then is the antisymmetric equivalent. The crucial 

point on the right side is 𝑥 =  𝑎. Both branches meet at 𝑥 =  𝑎. 

Right branch: 

𝜓𝑟(𝑎) = 𝐴𝑒−𝑘𝑎 

Middle branch:  

𝜓𝑚(𝑎) = 𝐵(𝑒𝑘𝑎 − 𝑒−𝑘𝑎) 

Note: Think of 𝑎 ± 𝜀 … 

Both branches meet at 𝑥 =  𝑎:  

𝐴𝑒−𝑘𝑎 = 𝐵(𝑒𝑘𝑎 − 𝑒−𝑘𝑎) → 𝐵 = 𝐴
𝑒−𝑘𝑎

𝑒𝑘𝑎 − 𝑒−𝑘𝑎
→ 𝐵 = 𝐴

1

𝑒2𝑘𝑎 − 1
 

We rename: 

𝑢 ≔
1

𝑒2𝑘𝑎 − 1
 

We get: 

𝜓𝑚(𝑎) = 𝐴𝑢(𝑒𝑘𝑎 − 𝑒−𝑘𝑎) 
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Step 3: We investigate the discontinuity at 𝒙 = 𝒂 caused by the 𝜹-function.  
We take 𝜀 > 0 and integrate the Hamiltonian close to 𝑥 = 𝑎. The potential 𝑉(𝑥) does not vanish:  

−
ℏ2

2𝑚
∫

𝑑2

𝑑𝑥2
𝜓(𝑥)𝑑𝑥

𝑎+𝜀

𝑎−𝜀

− 𝑉0 ∫ 𝛿(𝑥 − 𝑎)𝜓(𝑥)𝑑𝑥
𝑎+𝜀

𝑎−𝜀

= ∫ 𝐸𝜓(𝑥)𝑑𝑥
𝑎+𝜀

𝑎−𝜀

 

We handle the parts.  

−
ℏ2

2𝑚
∫

𝑑2

𝑑𝑥2
𝜓(𝑥)𝑑𝑥

𝑎+𝜀

𝑎−𝜀

= −
ℏ2

2𝑚
[

𝑑

𝑑𝑥
𝜓(𝑥)]

𝑎−𝜀

𝑎+𝜀

= −
ℏ2

2𝑚
(

𝑑

𝑑𝑥
𝜓(𝑎 + 𝜀) −

𝑑

𝑑𝑥
𝜓(𝑎 − 𝜀)) 

We write this as: 

= −
ℏ2

2𝑚
∆

𝑑

𝑑𝑥
𝜓(𝑎) 

−𝑉0 ∫ 𝛿(𝑥 − 𝑎)𝜓(𝑥)𝑑𝑥
𝑎+𝜀

𝑎−𝜀

= −𝑉0𝜓(𝑎) 

∫ 𝐸𝜓(𝑥)𝑑𝑥
𝑎+𝜀

𝑎−𝜀

= 0 

Result:  

−
ℏ2

2𝑚
∆

𝑑

𝑑𝑥
𝜓𝑟(𝑎) = 𝑉0𝜓𝑟(𝑎)  

 ∆
𝑑

𝑑𝑥
𝜓(𝑎) = −

2𝑚𝑉0

ℏ2
𝜓𝑟(𝑎) = −

2𝑚𝑉0

ℏ2
𝐴𝑒−𝑘𝑎 

 

Step 4: We determine the potential needed for the first excited state.  
Note: this will become a bit lengthy …  

We use the discontinuity of ∆
𝑑

𝑑𝑥
𝜓(𝑥). 

𝜓𝑚(𝑥) = 𝐴𝑢(𝑒𝑘𝑥 − 𝑒−𝑘𝑥) 𝜓𝑟(𝑥) = 𝐴𝑒−𝑘𝑥 

 

We differentiate: 

𝑑

𝑑𝑥
𝜓𝑚(𝑥) =

𝑑

𝑑𝑥
𝐴𝑢(𝑒𝑘𝑥 − 𝑒−𝑘𝑥) = 

𝐴𝑢(𝑘𝑒𝑘𝑥 + 𝑘𝑒−𝑘𝑥) 

𝑑

𝑑𝑥
𝜓𝑟(𝑥) =

𝑑

𝑑𝑥
𝐴𝑒−𝑘𝑥 = 

−𝑘𝐴𝑒−𝑘𝑥 

𝑑

𝑑𝑥
𝜓𝑚(𝑎 − 𝜀) = 𝐴𝑢(𝑘𝑒𝑘(𝑎−𝜀) + 𝑘𝑒−𝑘(𝑎−𝜀)) 

𝑑

𝑑𝑥
𝜓𝑟(𝑎 + 𝜀) = −𝑘𝐴𝑒−𝑘(𝑎+𝜀) 
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We calculate the limit 𝜀 → 0: 

lim
𝜀→0

𝑑

𝑑𝑥
𝜓𝑟(𝑎 + 𝜀) −

𝑑

𝑑𝑥
𝜓𝑚(𝑎 − 𝜀) = −𝑘𝐴𝑒−𝑘𝑎 − 𝐴𝑢(𝑘𝑒𝑘𝑎 + 𝑘𝑒−𝑘𝑎) = 

−𝐴𝑢𝑘𝑒𝑘𝑎 − 𝑘𝐴𝑒−𝑘𝑎 − 𝐴𝑢𝑘𝑒−𝑘𝑎 = −𝐴𝑢𝑘𝑒𝑘𝑎 − 𝐴𝑘𝑒−𝑘𝑎(1 + 𝑢) = 

−𝐴𝑢𝑘𝑒𝑘𝑎 − 𝐴𝑢𝑘𝑒−𝑘𝑎 (
1

𝑢
+ 1) = 

−𝐴𝑢𝑘 (𝑒𝑘𝑎 + 𝑒−𝑘𝑎 (
1

𝑢
+ 1)) 

We replace 𝑢 by its original expression: 

𝑢 ≔
1

𝑒2𝑘𝑎 − 1
 

We calculate: 

−
𝐴𝑘

𝑒2𝑘𝑎 − 1
(𝑒𝑘𝑎 + 𝑒−𝑘𝑎(𝑒2𝑘𝑎 − 1 + 1)) = −

𝐴𝑘

𝑒2𝑘𝑎 − 1
(𝑒𝑘𝑎 + 𝑒𝑘𝑎) = −

2𝐴𝑘𝑒𝑘𝑎

𝑒2𝑘𝑎 − 1
=

2𝐴𝑘

𝑒𝑘𝑎 − 𝑒−𝑘𝑎
 

Result: 

∆
𝑑

𝑑𝑥
𝜓(𝑎) =

2𝐴𝑘

𝑒𝑘𝑎 − 𝑒−𝑘𝑎
 

From step 3 we have:  

∆
𝑑

𝑑𝑥
𝜓(𝑎) = −

2𝑚𝑉0

ℏ2
𝐴𝑒−𝑘𝑎 

We get: 

−
2𝐴𝑘

𝑒𝑘𝑎 − 𝑒−𝑘𝑎
= −

2𝑚𝑉0

ℏ2
𝐴𝑒−𝑘𝑎 

𝑘

𝑒𝑘𝑎 − 𝑒−𝑘𝑎
=

𝑚𝑉0

ℏ2
𝑒−𝑘𝑎 

We search for the energy so we solve with respect to 𝑘: 

𝑘 =
𝑚𝑉0

ℏ2
𝑒−𝑘𝑎(𝑒𝑘𝑎 − 𝑒−𝑘𝑎) =

𝑚𝑉0

ℏ2 (1 − 𝑒−2𝑘𝑎) 

𝑘ℏ2

𝑚𝑉0
= (1 − 𝑒−2𝑘𝑎)  →  

𝑘ℏ2

𝑚𝑉0
− 1 = −𝑒−2𝑘𝑎 

Note: |𝑎| ≠ 0  
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This is a transcendental equation. We solve it graphically.  

We substitute     2𝑘𝑎 ≔ 𝑧. 

We use: 

𝑘ℏ2

𝑚𝑉0
≔ 𝑐𝑧 

We get an expression for c: 

𝑐 =
ℏ2

2𝑎𝑚𝑉0
 

The new transcendental equation: 

𝑒−𝑧 = 1 − 𝑐𝑧 

  

𝑐 = 1      𝑐 =
1

2
 

This equation always has a solution for 𝑧 = 0. It has a further solution (intersection) if the gradient 

of the linear function is smaller than the gradient of the exponential function at 𝑥 =  0.  

The slope of the linear function:  𝑓(𝑧)  =  1 −  𝑐𝑧 →  𝑓′(𝑧)  =  −𝑐  

The slope of the exponential function:  𝑔(𝑧)  =  𝑒−𝑧  →  𝑔′(𝑧)  =  −𝑒−𝑧 

Evaluated at 𝑧 =  0:      𝑓′(0)  =  −𝑐, 𝑔′(0)  =  −1  

The condition for intersection:   −𝑐 >  −1 →  𝑐 <  1  

From our substitution we get:  

𝑘ℏ2

𝑚𝑉0
= 2𝑐𝑘𝑎 → 𝑐 =

ℏ2

2𝑎𝑚𝑉0
 

We get an odd bound state if:  
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ℏ2

2𝑎𝑚𝑉0
< 1  →   

ℏ2

2𝑎𝑚
< 𝑉0 


