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This paper works through the problem of the spin of an electron in a magnetic field.  

We will look at: 

- a stationary magnetic field in 𝑧-direction 

- a field constantly pointing in 𝑧-direction but its strength changing from +𝑚𝑎𝑥 to −𝑚𝑎𝑥 

- a field with constant 𝑧-component rotating in the 𝑥 − 𝑦 plane 

The text follows a course on MIT of B. Zwiebach: 

https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/lecture-

notes/MIT8_05F13_Chap_07.pdf 

 

Hope I can help you with learning quantum mechanics. 

  

https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/lecture-notes/MIT8_05F13_Chap_07.pdf
https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/lecture-notes/MIT8_05F13_Chap_07.pdf
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Classic magnetic moment 
A current on a closed loop induces a magnetic moment.  

The vector of the magnetic moment 𝜇 is proportional to the 

current 𝐼 in the loop and the vector area 𝐴 of the loop: 

𝜇 = 𝐼 ∙ 𝐴 

For a planar loop, the vector area is a vector normal to the loop plane with length equal to the value 

of the area. 

The direction of the normal vector is determined by the right-hand rule. 

The product 𝜇𝐵 of the magnitude 𝜇 of the magnetic moment times the magnetic field 𝐵 has units of 

energy: 

[𝜇] =
𝑒𝑟𝑔

𝑔𝑎𝑢𝑠𝑠
 𝑜𝑟 

𝐽𝑜𝑢𝑙𝑒

𝑇𝑒𝑠𝑙𝑎
 

Any rotating charge distribution results in a magnetic moment. 

Any rotating mass has angular momentum too. 

The magnetic moment and the angular momentum are proportional to each other.  

Consider a ring with radius 𝑅 that has uniform charge distribution and a total 

charge 𝑄. The ring itself is not conducting, the charge fixed onto the ring. 

The ring is rotating about an axis perpendicular to the plane of the ring, going 

through its center.  

The tangential velocity be 𝑣.  

The current at the loop is equal to the charge density 𝑑𝑞 times the velocity: 

𝐼 = 𝑑𝑞 ∙ 𝑣 =
𝑄

2𝜋𝑅
∙ 𝑣 

Note: this formula not valid for 𝑅 = 0. 

In the situation shown we can omit the vector arrows because all directions are neatly arranged. We 

get the magnitude 𝜇 of the dipole moment of the loop: 

𝜇 = 𝐼 ∙ 𝐴 =
𝑄

2𝜋𝑅
∙ 𝑣 ∙ 𝑅2𝜋 =

1

2
𝑄𝑅𝑣 

The non-conduction Ring has mass 𝑀 and an angular momentum 𝐿: 

𝐿 = 𝑀 ∙ 𝑅𝑣 → 𝑅𝑣 =
𝐿

𝑀
 

We get the ratio: 

𝜇 =
𝑄𝐿

2𝑀
 

Note: this formula not valid for 𝑀 = 0. 

Note: the ratio is independent of the radius of the ring and the velocity it is rotating.  

A 
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Quantum mechanics, static magnetic field 
The electron is viewed as an elementary particle with zero size. 

We introduce the Bohr-magneton 𝜇𝐵: 

𝜇𝐵 ≔
𝑒ℏ

2𝑚𝑒
= 5.78 × 10−5

𝑒𝑉

𝑇𝑒𝑠𝑙𝑎
 

Note: 𝑒 is the charge of the electron. 

We write the magnetic moment of an electron: 

𝜇𝑒 = −𝑔𝜇𝐵
𝑆̂

ℏ
 

Note: dipole moment and angular momentum are antiparallel for electrons. 

Note: 𝑆̂ is the spin of the electron, 𝑔 is the Landé 𝑔-factor with value ≈ 2 for an electron. 

We simplify notation by defining the constant 𝛾 that holds 𝑔-factor, mass, and charge: 

𝛾:=
𝑔𝑒

2𝑚𝑒
 

With this constant we write the magnetic moment for electrons: 

𝜇 = −𝛾𝑆̂ 

Note: 𝑆 is the three-component spin operator: 

𝑆̂ ≔ 𝑆̂𝑥 + 𝑆̂𝑦 + 𝑆̂𝑧 

We insert the particle in the magnetic field 𝐵⃗⃗. The Hamiltonian 𝐻̂ for the spin: 

𝐻̂ = −𝜇 ∙ 𝐵⃗⃗ = −𝛾𝐵⃗⃗ ∙ 𝑆 = −𝛾(𝐵𝑥𝑆̂𝑥 + 𝐵𝑦𝑆̂𝑦 + 𝐵𝑧𝑆̂𝑧) 

The magnetic field is static along the 𝑧-axis: 

𝐻̂ = −𝛾(𝐵𝑧𝑆̂𝑧) 

For a time-independent Hamiltonian, we have an associated time evolution unitary operator: 

𝑈̂(𝑡, 0) = 𝑒−
𝑖𝐻̂
ℏ
𝑡 = 𝑒−

𝑖
ℏ
−𝛾𝐵𝑧𝑆̂𝑧𝑡 

A prototype for a 3D rotation operator we find in Griffiths: 

𝑅̂𝑛(𝜑) = 𝑒
−
𝑖
ℏ
𝜑𝑛⃗⃗∙𝑆 = 𝑒−

𝑖
ℏ
𝜑𝑆̂𝑛 

Note: 𝜑 is the rotation angle of a right-handed rotation, 𝑛⃗⃗ is the axis of the rotation, 𝑆̂ a set of 

angular momentum operators. 

This resembles our unitary operator: 

𝑒−
𝑖
ℏ
−𝛾𝐵𝑧𝑆̂𝑧𝑡~𝑒−

𝑖
ℏ
𝜑𝑆̂𝑛 

We conclude that 𝑈̂(𝑡, 0) should generate a rotation by the angle −𝛾𝐵𝑧𝑡 around the 𝑧-axis. 

We check this explicitly. 
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At time 𝑡 = 0 the spin state is pointing along the direction specified by 

angles 𝜃0, 𝜑0: 

|Ψ, 0⟩ = 𝑐𝑜𝑠
𝜃0
2
| +⟩ + 𝑠𝑖𝑛

𝜃0
2
𝑒𝑖𝜑0| −⟩ 

The magnetic field is pointing to the 𝑧-direction. We apply the 

Hamiltonian 𝐻̂ = −𝛾(𝐵𝑧𝑆̂𝑧) to the basis states | +⟩ ≔ (
1
0
) and 

 | −⟩ ≔ (
0
1
): 

𝐻̂| +⟩ = −𝛾𝐵𝑧
ℏ

2
(
1 0
0 −1

) (
1
0
) = −𝛾𝐵𝑧

ℏ

2
| +⟩ 

𝐻̂| −⟩ = −𝛾𝐵𝑧
ℏ

2
(
1 0
0 −1

) (
0
1
) = +𝛾𝐵𝑧

ℏ

2
| −⟩ 

We apply the time evolution unitary operator: 

|Ψ, 𝑡⟩ = 𝑒
−
𝑖𝐻̂𝑡
ℏ |Ψ, 0⟩ = 

𝑒−
𝑖𝐻̂𝑡
ℏ (𝑐𝑜𝑠

𝜃0
2
| +⟩ + 𝑠𝑖𝑛

𝜃0
2
𝑒𝑖𝜑0| −⟩) = 

𝑐𝑜𝑠
𝜃0
2
𝑒−
𝑖𝐻̂𝑡
ℏ | +⟩ + 𝑠𝑖𝑛

𝜃0
2
𝑒−
𝑖𝐻̂𝑡
ℏ 𝑒𝑖𝜑0| −⟩ = 

𝑐𝑜𝑠
𝜃0
2
𝑒

−(

−𝑖𝛾𝐵𝑧ℏ𝑡
2
ℏ )

| +⟩ + 𝑠𝑖𝑛
𝜃0
2
𝑒

−(

𝑖𝛾𝐵𝑧ℏ𝑡
2
ℏ )

𝑒𝑖𝜑0| −⟩ = 

𝑐𝑜𝑠
𝜃0
2
𝑒
𝑖𝛾𝐵𝑧𝑡
2 | +⟩ + 𝑠𝑖𝑛

𝜃0
2
𝑒−
𝑖𝛾𝐵𝑧𝑡
2 𝑒𝑖𝜑0| −⟩ = 

𝑒
𝑖𝛾𝐵𝑧𝑡
2 (𝑐𝑜𝑠

𝜃0
2
| +⟩ + 𝑠𝑖𝑛

𝜃0
2
𝑒−𝑖𝛾𝐵𝑧𝑡𝑒𝑖𝜑0| −⟩) = 

𝑒
𝑖𝛾𝐵𝑧𝑡
2 (𝑐𝑜𝑠

𝜃0
2
| +⟩ + 𝑠𝑖𝑛

𝜃0
2
𝑒𝑖(𝜑0−𝛾𝐵𝑧𝑡)| −⟩) 

We ignore the overall phase 𝑒
𝑖𝛾𝐵𝑧𝑡

2  and recognize the spin state as the state corresponding to the 

vector 𝑛⃗⃗𝑡, defined by angles 𝜃 and 𝜑: 

𝜃(𝑡) = 𝜃0 

𝜑(𝑡) = 𝜑0 − 𝛾𝐵𝑧𝑡 

𝜃 is constant over time. We get a rotation around the 𝑧-axis with constant angular speed: 

𝜕

𝜕𝑡
𝜑(𝑡) = −𝛾𝐵𝑧 

Conclusion:  

spin states in a magnetic field precess in the same way as classical 

magnetic dipoles.  
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We can ask: if the spin initially points into the 𝑥-direction – how long does it last till the spin points 

into the opposite (−𝑥)-direction? 

In this case 𝜑0 = 0. 

𝜑(𝑡) = 𝛾𝐵𝑧𝑡 = 𝜋 → 𝑡 =
𝜋

𝛾𝐵𝑧
 

Note: 𝛾𝐵𝑧 often called 𝜔0. 

Magnetic field with constant direction but varying in strength 
We have a magnetic field constantly pointing in 𝑧-direction. The strength of the field is oscillating 

between a maximum and a minimum: 

𝐵⃗⃗ = 𝐵0 ∙ 𝑐𝑜𝑠(𝜔𝑡)𝑒𝑧⃗⃗ ⃗⃗  

The spin at time 𝑡 = 0 is pointing in 𝑥-direction: 

|𝜓, 𝑡0⟩ =
1

√2
((
1
0
) + (

0
1
)) 

The Hamiltonian 𝐻̂ = −𝛾𝐵⃗⃗ ∙ 𝑆̂ in this case is time dependent. The Hamiltonians of different times 

commute (they are independent): 

[𝐻̂(𝑡0), 𝐻̂(𝑡1)] = 0 

The Hamiltonian: 

𝐻̂ = −𝛾𝐵⃗⃗ ∙ 𝑆 = −𝛾𝐵0 ∙ 𝑐𝑜𝑠(𝜔𝑡)𝑆𝑧⃗⃗ ⃗⃗  

For convenience we set 𝛾𝐵0 ≔ 𝜔0 and write: 

𝐻̂ = −𝜔0 ∙ 𝑐𝑜𝑠(𝜔𝑡)𝑆𝑧⃗⃗ ⃗⃗  

Approach with power series expansion 

Time evolution 

Time evolution in a quantum system is performed by a unitary operator 𝑈̂(𝑡0, 𝑡): 

|𝜓, 𝑡⟩ = 𝑈̂(𝑡, 𝑡0)|𝜓, 𝑡0⟩   ∀𝑡, 𝑡0 

Unitary operator properties: 

𝑈̂(𝑡0, 𝑡0) = 𝑖𝑑 

𝑈̂(𝑡2, 𝑡0) = 𝑈̂(𝑡2, 𝑡1)𝑈̂(𝑡1, 𝑡0) 

𝑈̂(𝑡0, 𝑡)𝑈̂(𝑡, 𝑡0) = 𝑖𝑑 

𝑈̂(𝑡0, 𝑡) = 𝑈̂
−1(𝑡, 𝑡0) = 𝑈̂

†(𝑡, 𝑡0) 

Time evolution of a state vector: 

|𝜓, 𝑡⟩ = 𝑈̂(𝑡, 𝑡0)|𝜓, 𝑡0⟩   ∀𝑡, 𝑡0 

We derive with respect to time: 

𝜕|𝜓(𝑡)⟩

𝜕𝑡
=
𝜕𝑈̂(𝑡, 𝑡0)

𝜕𝑡
|𝜓, 𝑡0⟩ = 

(*) 
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𝜕𝑈̂(𝑡, 𝑡0)

𝜕𝑡
𝑈̂(𝑡0, 𝑡)|𝜓, 𝑡⟩ = 

𝜕𝑈̂(𝑡, 𝑡0)

𝜕𝑡
𝑈̂†(𝑡, 𝑡0)|𝜓, 𝑡⟩ 

We rename: 

𝜕𝑈̂(𝑡, 𝑡0)

𝜕𝑡
𝑈̂†(𝑡, 𝑡0) → Λ̂(𝑡, 𝑡0) 

Note:  

Λ̂†(𝑡, 𝑡0) = 𝑈̂(𝑡, 𝑡0)
𝜕𝑈̂†(𝑡, 𝑡0)

𝜕𝑡
 

Properties of Λ̂(𝑡, 𝑡0): 

Λ̂(𝑡, 𝑡0) is antihermitian: 

Λ̂(𝑡, 𝑡0) = −Λ̂
†(𝑡, 𝑡0) 

Λ̂(𝑡, 𝑡0) is independent of 𝑡0: 

Λ̂(𝑡, 𝑡0) ≔ Λ̂(𝑡) 

With this we write: 

𝜕|𝜓(𝑡)⟩

𝜕𝑡
= Λ̂(𝑡)|𝜓, 𝑡⟩ 

We multiply Λ̂(𝑡) by iℏ and get the Hamiltonian: 

Ĥ(𝑡) ≔ iℏΛ̂(𝑡) = iℏ
𝜕𝑈̂(𝑡, 𝑡0)

𝜕𝑡
𝑈̂†(𝑡, 𝑡0) 

The operator Ĥ(𝑡) is Hermitian because Λ̂(𝑡) was anti-hermitian. 

We end up with the Schrödinger equation: 

iℏ
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = Ĥ(𝑡)|𝜓(𝑡)⟩ 

Hamiltonian 
If we know the unitary time evolution, we can derive the Hamiltonian. 

We can go this way backwards and calculate the time evolution operator from the Hamiltonian 𝐻̂. 

We use the Hamiltonian (*): 

𝐻̂(𝑡) = −𝜔0𝑐𝑜𝑠(𝜔𝑡)𝑆̂𝑧 

We get the Schrödinger equation: 

iℏ
𝜕𝜓(𝑡)

𝜕𝑡
= Ĥ(𝑡)|𝜓(𝑡)⟩ → 

iℏ
𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
= −𝜔0𝑐𝑜𝑠(𝜔𝑡)𝑆̂𝑧𝜓(𝑡) 

We calculate the time evolution operator from the Hamiltonian.  
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We have: 

𝐻̂(𝑡) = iℏ
𝜕𝑈̂(𝑡, 𝑡0)

𝜕𝑡
𝑈̂†(𝑡, 𝑡0) → 𝐻̂(𝑡)𝑈̂(𝑡, 𝑡0) = iℏ

𝜕𝑈̂(𝑡, 𝑡0)

𝜕𝑡
 

This is a differential equation for 𝑈̂(𝑡, 𝑡0). Since there is no confusion with time derivatives, we write: 

𝑑𝑈̂(𝑡, 𝑡0)

𝑑𝑡
= −

𝑖

ℏ
𝐻̂(𝑡)𝑈̂(𝑡, 𝑡0) 

If we view operators as matrices, this is a differential equation for the matrix 𝑈. 

The Hamiltonians for different times commute: 

[𝐻̂(𝑡1), 𝐻̂(𝑡2)] = 0 

The time evolution operator then is given: 

𝑈̂(𝑡, 𝑡0) = 𝑒𝑥𝑝 (−
𝑖

ℏ
∫ 𝐻̂(𝜏)𝑑𝜏
𝑡

𝑡0

) 

We concentrate on the exponential: 

𝑅̂(𝑡) ≔ −
𝑖

ℏ
∫ 𝐻̂(𝜏)𝑑𝜏
𝑡

𝑡0

 

𝑅̇̂(𝑡) = −
𝑖

ℏ
𝐻̂(𝑡) 

We get: 

𝑈̂(𝑡) = 𝑒𝑅̂(𝑡) 

The power series: 

𝑈̂(𝑡) = 1 + 𝑅̂(𝑡) +
1

2
𝑅̂(𝑡)𝑅̂(𝑡) +

1

3!
𝑅̂(𝑡)𝑅̂(𝑡)𝑅̂(𝑡) + ⋯ 

The time derivative: 

𝑈̇̂(𝑡) = 𝑅̇̂(𝑡) +
1

2
(𝑅̇̂(𝑡)𝑅̂(𝑡) + 𝑅̂(𝑡)𝑅̇̂(𝑡)) +

1

3!
(𝑅̇̂(𝑡)𝑅̂(𝑡)𝑅̂(𝑡) + 𝑅̂(𝑡)𝑅̇̂(𝑡)𝑅̂(𝑡) + 𝑅̂(𝑡)𝑅̂(𝑡)𝑅̇̂(𝑡)) =; 

Note: 𝑅̂(𝑡) 𝑎𝑛𝑑 𝑅̇̂(𝑡) are commuting. 

= 𝑅̇̂(𝑡) + 𝑅̇̂(𝑡)𝑅̂(𝑡) +
1

2!
𝑅̇̂(𝑡)𝑅̂(𝑡)𝑅̂(𝑡) + ⋯ → 

𝑑𝑈̂(𝑡)

𝑑𝑡
= 𝑅̇̂(𝑡)𝑒𝑅̂(𝑡) 

With this we can write: 

𝑑𝑈̂(𝑡)

𝑑𝑡
= −

𝑖

ℏ
𝐻̂(𝑡)𝑒𝑥𝑝 (−

𝑖

ℏ
∫ 𝐻̂(𝜏)𝑑𝜏
𝑡

𝑡0

) 
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We look at the exponent: 

−
𝑖

ℏ
∫ 𝐻̂(𝜏)𝑑𝜏
𝑡

𝑡0

= −
𝑖

ℏ
∫ −𝜔0𝑐𝑜𝑠(𝜔𝜏)𝑆̂𝑧𝑑𝜏
𝑡

𝑡0

= 

−
𝑖

ℏ
[−
𝜔0
𝜔
𝑠𝑖𝑛(𝜔𝜏)𝑆̂𝑧]

𝑡0

𝑡

=; 

We set 𝑡0 = 0: 

−
𝑖

ℏ
(−
𝜔0
𝜔
𝑠𝑖𝑛(𝜔𝑡)𝑆̂𝑧) =

𝑖𝜔0
ℏ𝜔

𝑠𝑖𝑛(𝜔𝑡)𝑆̂𝑧 

The complete derivative: 

𝑑𝑈̂(𝑡)

𝑑𝑡
= −

𝑖

ℏ
𝐻̂(𝑡)𝑒𝑥𝑝 (

𝑖𝜔0
ℏ𝜔

𝑠𝑖𝑛(𝜔𝑡)𝑆̂𝑧) = 

𝑖𝜔0
ℏ
𝑐𝑜𝑠(𝜔𝑡)𝑆̂𝑧𝑒𝑥𝑝 (

𝑖𝜔0
ℏ𝜔

𝑠𝑖𝑛(𝜔𝑡)𝑆̂𝑧) 

The time evolution operator 𝑈̂(𝑡): 

𝑈̂(𝑡) = 𝑒𝑥𝑝 (
𝑖𝜔0
ℏ𝜔

𝑠𝑖𝑛(𝜔𝑡)𝑆̂𝑧) 

We remember:  

𝑆̂𝑧 =
ℏ

2
𝜎̂𝑧 

The complete time evolution operator 𝑈̂(𝑡): 

𝑈̂(𝑡) = 𝑒𝑥𝑝 (
𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡)𝜎̂𝑧) 

Rotation 
We calculate the rotation by calculating the angles 𝜃 and 𝜑. 

The spin is precessing in the 𝑥 − 𝑦 plane, 𝜃 is 
𝜋

2
 (90° degree from the 𝑧-axis). 

We apply the unitary time evolution operator to the initial state (spin in 𝑥-direction). 

The time evolution operator: 

𝑈̂(𝑡) = 𝑒𝑥𝑝 (
𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡)𝜎̂𝑧) = 

𝑈̂(𝑡) = 𝑒𝑥𝑝 (
𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡) (
1 0
0 −1

)) = 

(

 
 
𝑒𝑥𝑝(

𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡)) 0

0 𝑒𝑥𝑝 (−
𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡))
)

 
 

 

We apply the matrix to the state |𝜓, 0⟩: 

𝑈̂(𝑡)|𝜓, 0⟩ = 
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(

 
 
𝑒𝑥𝑝 (

𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡)) 0

0 𝑒𝑥𝑝 (−
𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡))
)

 
 1

√2
((
1
0
) + (

0
1
)) = 

1

√2
((
𝑒𝑥𝑝(

𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡))

0

) + (

0

𝑒𝑥𝑝 (−
𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡))
)) = 

1

√2
𝑒𝑥𝑝 (

𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡)) (
1
0
) +

1

√2
𝑒𝑥𝑝 (−

𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡)) (
0
1
) = 

1

√2
𝑒𝑥𝑝 (

𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡))((
1
0
) + 𝑒𝑥𝑝 (−𝑖

𝜔0
𝜔
𝑠𝑖𝑛(𝜔𝑡)) (

0
1
)) 

Result: 

𝜑(𝑡) = −
𝜔0
𝜔
𝑠𝑖𝑛(𝜔𝑡) 

Note: 
1

√2
𝑒𝑥𝑝 (

𝑖𝜔0

2𝜔
𝑠𝑖𝑛(𝜔𝑡)) is a global outer phase that does not disturb the direction of the spin.  

As in the example above we ask: What is the time-dependent probability (the expectation value) to 

find the spin in the opposite direction? 

We calculate the expectation value for the transition: 

⟨
1

√2
(
1
−1
) |𝑈̂(𝑡)|

1

√2
(
1
1
)⟩ 

The right side is already done: 

𝑈̂(𝑡)|𝜓, 0⟩ =
1

√2
𝑒𝑥𝑝(

𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡)) (
1
0
) +

1

√2
𝑒𝑥𝑝(−

𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡)) (
0
1
) 

We calculate: 

⟨
1

√2
(
1
−1
) |
1

√2
𝑒𝑥𝑝 (

𝑖𝜔0
2𝜔 𝑠𝑖𝑛

(𝜔𝑡)) (
1
0
) +

1

√2
𝑒𝑥𝑝 (−

𝑖𝜔0
2𝜔 𝑠𝑖𝑛

(𝜔𝑡)) (
0
1
)⟩ = 

1

2
⟨(
1
0
) + (

0
−1
) |𝑒𝑥𝑝 (

𝑖𝜔0
2𝜔 𝑠𝑖𝑛

(𝜔𝑡)) (
1
0
) +

1

√2
𝑒𝑥𝑝 (−

𝑖𝜔0
2𝜔 𝑠𝑖𝑛

(𝜔𝑡)) (
0
1
)⟩ = 

1

2
(𝑒𝑥𝑝 (

𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡)) − 𝑒𝑥𝑝 (−
𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡))) = 

𝑖 ∙ 𝑠𝑖𝑛 (
𝜔0
2𝜔
𝑠𝑖𝑛(𝜔𝑡)) 

Note: for complex numbers hold:  

𝑧 − 𝑧̅ = 2 ∙  𝑖𝑚𝑔(𝑧) 
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The probability is the square of the probability amplitude, so we calculate: 

𝑃 = −𝑖 ∙ 𝑠𝑖𝑛 (
𝜔0
2𝜔
𝑠𝑖𝑛(𝜔𝑡)) ∙ 𝑖 ∙ 𝑠𝑖𝑛 (

𝜔0
2𝜔
𝑠𝑖𝑛(𝜔𝑡)) = 

𝑠𝑖𝑛2 (
𝜔0
2𝜔
𝑠𝑖𝑛(𝜔𝑡)) 

Physical interpretation 
This allows physical interpretation.  

- 𝑠𝑖𝑛(𝜔𝑡) does not change the maximum amplitude of the probability, only its frequency. 

- If 
𝜔0

2𝜔
<
𝜋

2
 we have no probability for 𝑃 of 100%. 

 

Note: the function shown is 𝑠𝑖𝑛2(0.8 ∙ 𝑠𝑖𝑛(𝑥)) 

With this we get the maximum frequency 𝜔 that allows a swing of 180°: 

𝜑(𝑡) = −
𝜔0
𝜔
𝑠𝑖𝑛(𝜔𝑡) = 𝜋 

𝜔0
𝜔
= 𝜋 

𝜔 =
𝜔0
𝜋

 

Approach via differential equations 
We calculate the unitary time development operator 𝑈̂(𝑡) by use of a differential ansatz. As before 

we have the Hamiltonian: 

𝐻̂ = −𝜔0 ∙ 𝑐𝑜𝑠(𝜔𝑡)𝑆𝑧⃗⃗ ⃗⃗  

We begin: 

𝑑𝑈̂(𝑡)

𝑑𝑡
=
−𝑖

ℏ
𝐻̂(𝑡)𝑈̂(𝑡) =

𝑖𝜔0
2
𝑐𝑜𝑠(𝜔𝑡) (

1 0
0 −1

) 𝑈̂(𝑡) 

This is a differential equation. We get: 

𝑈̂(𝑡) = 𝑒𝑥𝑝 (
𝑖𝜔0
ℏ𝜔

𝑠𝑖𝑛(𝜔𝑡) (
1 0
0 −1

)) 

We try: 
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𝑑𝑈̂(𝑡)

𝑑𝑡
=
𝑑

𝑑𝑡
𝑒𝑥𝑝(

𝑖𝜔0
ℏ𝜔

𝑠𝑖𝑛(𝜔𝑡) (
1 0
0 −1

)) = 

𝑒𝑥𝑝(
𝑖𝜔0
ℏ𝜔

𝑠𝑖𝑛(𝜔𝑡) (
1 0
0 −1

)) ∙ (
𝑖𝜔0
ℏ𝜔

𝜔𝑐𝑜𝑠(𝜔𝑡) (
1 0
0 −1

)) = 

𝑒𝑥𝑝 (
𝑖𝜔0
ℏ𝜔

𝑠𝑖𝑛(𝜔𝑡) (
1 0
0 −1

)) ∙ (
𝑖𝜔0
ℏ
𝑐𝑜𝑠(𝜔𝑡) (

1 0
0 −1

)) = 

𝑈̂(𝑡) ∙ (
𝑖𝜔0
ℏ
𝑐𝑜𝑠(𝜔𝑡) (

1 0
0 −1

)) 

The Schrödinger equation: 

𝜕

𝜕𝑡
|𝜓(𝑡)⟩ =

−𝑖

ℏ
𝐻̂|𝜓(𝑡)⟩ =

𝑖

2
𝜔0𝑐𝑜𝑠(𝜔𝑡)𝜎̂𝑧|𝜓(𝑡)⟩ =; 

We set: 

|𝜓(𝑡)⟩ ≔ (
𝑎(𝑡)

𝑏(𝑡)
) 

We get from the Schrödinger equation: 

(

𝜕𝑎(𝑡)

𝜕𝑡
𝜕𝑏(𝑡)

𝜕𝑡

) =
𝑖

2
𝜔0𝑐𝑜𝑠(𝜔𝑡) (

1 0
0 −1

)(
𝑎(𝑡)

𝑏(𝑡)
) =

𝑖

2
𝜔0𝑐𝑜𝑠(𝜔𝑡) (

𝑎(𝑡)

−𝑏(𝑡)
) 

From this we have: 

𝜕𝑎(𝑡)

𝜕𝑡
=
𝑖

2
𝜔0𝑐𝑜𝑠(𝜔𝑡)𝑎(𝑡) 

𝜕𝑏(𝑡)

𝜕𝑡
= −

𝑖

2
𝜔0𝑐𝑜𝑠(𝜔𝑡)𝑏(𝑡) 

These are differential equations with solutions: 

𝑎(𝑡) = exp(
𝑖

2

𝜔0
𝜔
𝑠𝑖𝑛(𝜔𝑡)) + 𝑐 

𝑏(𝑡) = exp(−
𝑖

2

𝜔0
𝜔
𝑠𝑖𝑛(𝜔𝑡)) + 𝑑 

𝑎(0) = 𝑏(0) ≈ 1 except for the normalization factor, so we set 𝑐 and 𝑑 zero and get the unitary 

operator that generates time evolution: 

𝑈̂(𝑡) =

(

 
 
exp (

𝑖

2

𝜔0
𝜔
𝑠𝑖𝑛(𝜔𝑡)) 0

0 exp (−
𝑖

2

𝜔0
𝜔
𝑠𝑖𝑛(𝜔𝑡))

)

 
 

 

 

 

 



Spin of an Electron in Magnetic Field 

D. Kriesell  Page 13 of 17 

Note: for diagonal matrices 𝐷 holds: 

𝑒
(
𝑎 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑛

)

= (
𝑒𝑎 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑒𝑛

) 

We write: 

𝑈̂(𝑡) = 𝑒𝑥𝑝 (
𝑖𝜔0
2𝜔

𝑠𝑖𝑛(𝜔𝑡)𝜎̂𝑧) 

The same result we got with the power series expansion. 

Rotating magnetic field 
We change from a static magnetic field to a rotating one. The field 𝐵⃗⃗(𝑡) is the sum of 𝐵0 constant in 𝑧-

direction and 𝐵1 rotating in the 𝑥 − 𝑦 plane: 

𝐵⃗⃗(𝑡) = 𝐵0 ∙ 𝑧 + 𝐵1(𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡)) 

Note: 𝐵1 is weak, 𝐵0 ≫ 𝐵1 > 0. 

Note: at time 𝑡 = 0, 𝐵1 points into 𝑥-direction. 

Note: the rotation is clockwise. 

The time-dependent Hamiltonian of the system: 

𝐻̂(𝑡) = −𝛾𝐵⃗⃗(𝑡) ∙ 𝑆 

Note: 𝑆 is the spin operator: 

𝑆̂ ≔ 𝑆̂𝑥 + 𝑆̂𝑦 + 𝑆̂𝑧 

We get: 

𝐻̂(𝑡) = −𝛾 (𝐵0 ∙ 𝑆̂𝑧 + 𝐵1 (𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡))) 

Note: the Hamiltonians at different time do not commute. We split the problem by  

- first working with a rotating frame Ψ𝑅 that brings us back to a constant field 

- generalizing the solution Ψ𝑅(𝑡) → Ψ(𝑡) 

Zero Hamiltonian 

Let 𝐵⃗⃗(𝑡) = 0. In this case the Hamiltonian is zero, 𝐻̂(𝑡) = 0.  

If we now rotate the frame, the (frame-)Hamiltonian cannot be zero because the spin states are 

rotating around the 𝑧-axis. 

The Hamiltonian for a “rotating” spin: 

𝐻̂𝑈 = 𝜔 ∙ 𝑆̂𝑧 

Note: we name the Hamiltonian 𝐻̂𝑈 because it is constructed by the rotating frame. The unitary 

operator constituting this frame: 

𝑈̂(𝑡) = 𝑒−
𝑖𝜔𝑆̂𝑧𝑡
ℏ = 𝑒−

𝑖𝐻̂𝑈𝑡
ℏ  
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Nonzero Hamiltonian 
Let 𝐵(𝑡) ≠ 0. In this case the Hamiltonian is not zero, 𝐻̂(𝑡) ≠ 0.  

The rotating-frame state: 

|Ψ𝑅 , 𝑡⟩ ≔ 𝑈̂(𝑡)|Ψ, 𝑡⟩ = 𝑈̂(𝑡)𝑈̂𝑆(𝑡)|Ψ, 0⟩ 

Note: |Ψ, 𝑡⟩ = 𝑈̂𝑆(𝑡)|Ψ, 0⟩ 

For operators 𝑈̂(𝑡) = 𝑒−
𝑖𝐻̂𝑈𝑡

ℏ  we have: 

𝜕

𝜕𝑡
𝑈̂ = −

𝑖𝐻̂𝑈
ℏ
𝑈̂ 

We calculate the Hamiltonian: 

𝑖ℏ (
𝜕

𝜕𝑡
𝑈̂) 𝑈̂† = 𝑖ℏ (−

𝑖𝐻̂𝑈
ℏ
𝑈̂) 𝑈̂† = 𝐻̂𝑈 

The Hamiltonian for the rotating frame: 

𝐻̂𝑅 = 𝑖ℏ(
𝜕

𝜕𝑡
𝑈̂(𝑡)𝑈̂𝑆(𝑡)) 𝑈̂𝑆

†
(𝑡)𝑈̂†(𝑡) = 

𝑖ℏ((
𝜕

𝜕𝑡
𝑈̂(𝑡)) 𝑈̂𝑆(𝑡) + 𝑈̂(𝑡) (

𝜕

𝜕𝑡
𝑈̂𝑆(𝑡))) 𝑈̂𝑆

†
(𝑡)𝑈̂†(𝑡) = 

𝑖ℏ ((−
𝑖𝐻̂𝑈
ℏ
𝑈̂(𝑡)) 𝑈̂𝑆(𝑡) + 𝑈̂(𝑡) (−

𝑖𝐻̂𝑆
ℏ
𝑈̂𝑆(𝑡))) 𝑈̂𝑆

†
(𝑡)𝑈̂†(𝑡) = 

((𝐻̂𝑈𝑈̂(𝑡)) 𝑈̂𝑆(𝑡) + 𝑈̂(𝑡) (𝐻̂𝑆𝑈̂𝑆(𝑡))) 𝑈̂𝑆
†
(𝑡)𝑈̂†(𝑡) = 

= 𝐻̂𝑈𝑈̂(𝑡)𝑈̂
†(𝑡) + 𝑈̂(𝑡)𝐻̂𝑆𝑈̂

†(𝑡) 

= 𝐻̂𝑈(𝑡) + 𝑈̂(𝑡)𝐻̂𝑆𝑈̂
†(𝑡) 

Note: in the case of no magnetic field, 𝐻̂𝑆 = 0, we get the Hamiltonian for the rotation, 𝐻̂𝑈. 

We resolve the composed Hamiltonian: 

𝐻̂𝑅 = 𝐻̂𝑈(𝑡) + 𝑈̂(𝑡)𝐻̂𝑆𝑈̂
†(𝑡) = 

𝜔 ∙ 𝑆̂𝑧 − 𝑒
−
𝑖𝜔𝑆̂𝑧𝑡
ℏ 𝛾 (𝐵0 ∙ 𝑆̂𝑧 + 𝐵1 (𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡))) 𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ = 

𝜔 ∙ 𝑆̂𝑧 − 𝑒
−
𝑖𝜔𝑆̂𝑧𝑡
ℏ 𝛾 ∙ 𝐵0 ∙ 𝑆̂𝑧 ∙ 𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ − 𝑒−

𝑖𝜔𝑆̂𝑧𝑡
ℏ 𝛾𝐵1 (𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡)) 𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ =; 

Note: 𝑒−
𝑖𝜔𝑆̂𝑧𝑡

ℏ  is commuting with 𝑆̂𝑧 

𝜔 ∙ 𝑆̂𝑧 − 𝛾 ∙ 𝐵0 ∙ 𝑆̂𝑧 − 𝑒
−
𝑖𝜔𝑆̂𝑧𝑡
ℏ 𝛾𝐵1 (𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡)) 𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ = 

(−𝛾𝐵0 +𝜔) ∙ 𝑆̂𝑧 − 𝛾𝐵1 ∙ 𝑒
−
𝑖𝜔𝑆̂𝑧𝑡
ℏ (𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡)) 𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ =; 
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We concentrate on the rotation: 

𝑒
−
𝑖𝜔𝑆̂𝑧𝑡
ℏ (𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡)) 𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ  

There is a chance that the rotation has no time dependence. In this case the time-derivative should 

give zero. We check this: 

𝜕

𝜕𝑡
(𝑒

−
𝑖𝜔𝑆̂𝑧𝑡
ℏ (𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡)) 𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ ) = 

−
𝑖𝜔𝑆̂𝑧
ℏ
𝑒
−
𝑖𝜔𝑆̂𝑧𝑡
ℏ (𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡)) 𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ

+ 𝑒
−
𝑖𝜔𝑆̂𝑧𝑡
ℏ (

𝜕

𝜕𝑡
𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡)) 𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ

+ 𝑒
−
𝑖𝜔𝑆̂𝑧𝑡
ℏ (𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡))

𝑖𝜔𝑆̂𝑧
ℏ
𝑒
𝑖𝜔𝑆̂𝑧𝑡
ℏ =; 

Note: 𝑆̂𝑧 commutes with 𝑒−
𝑖𝜔𝑆̂𝑧𝑡

ℏ . 

𝑒−
𝑖𝜔𝑆̂𝑧𝑡
ℏ (−

𝑖𝜔𝑆̂𝑧
ℏ
(𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡)) + (

𝜕

𝜕𝑡
(𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡)))

+ (𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡))
𝑖𝜔𝑆̂𝑧
ℏ
)𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ = 

𝑒−
𝑖𝜔𝑆̂𝑧𝑡
ℏ (−

𝑖𝜔

ℏ
[𝑆̂𝑧, 𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡)] + (

𝜕

𝜕𝑡
(𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡))))𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ = 

𝑒−
𝑖𝜔𝑆̂𝑧𝑡
ℏ (−

𝑖𝜔

ℏ
[𝑆̂𝑧 , (𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡))] + (−𝑆̂𝑥 ∙ 𝑠𝑖𝑛(𝜔𝑡) ∙ 𝜔 − 𝑆̂𝑦 ∙ 𝑐𝑜𝑠(𝜔𝑡) ∙ 𝜔)) 𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ = 

𝑒
−
𝑖𝜔𝑆̂𝑧𝑡
ℏ (−

𝑖𝜔

ℏ
([𝑆̂𝑧, 𝑆̂𝑥]𝑐𝑜𝑠(𝜔𝑡) − [𝑆̂𝑧, 𝑆̂𝑦]𝑠𝑖𝑛(𝜔𝑡))

+ (−𝑆̂𝑥 ∙ 𝑠𝑖𝑛(𝜔𝑡) ∙ 𝜔 − 𝑆̂𝑦 ∙ 𝑐𝑜𝑠(𝜔𝑡) ∙ 𝜔))𝑒
𝑖𝜔𝑆̂𝑧𝑡
ℏ =; 

We remember the commutator relations: 

[𝑆̂𝑥, 𝑆̂𝑦] = 𝑖ℏ𝑆̂𝑧;  [𝑆̂𝑦, 𝑆̂𝑧] = 𝑖ℏ𝑆̂𝑥;  [𝑆̂𝑧, 𝑆̂𝑥] = 𝑖ℏ𝑆̂𝑦 

𝑒−
𝑖𝜔𝑆̂𝑧𝑡
ℏ (−

𝑖𝜔

ℏ
(𝑖ℏ𝑆̂𝑦𝑐𝑜𝑠(𝜔𝑡) + 𝑖ℏ𝑆̂𝑥𝑠𝑖𝑛(𝜔𝑡)) + (−𝑆̂𝑥 ∙ 𝑠𝑖𝑛(𝜔𝑡) ∙ 𝜔 − 𝑆̂𝑦 ∙ 𝑐𝑜𝑠(𝜔𝑡) ∙ 𝜔))𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ = 

𝑒−
𝑖𝜔𝑆̂𝑧𝑡
ℏ (𝜔 (𝑆̂𝑦𝑐𝑜𝑠(𝜔𝑡) + 𝑆̂𝑥𝑠𝑖𝑛(𝜔𝑡)) + (−𝑆̂𝑥 ∙ 𝑠𝑖𝑛(𝜔𝑡) ∙ 𝜔 − 𝑆̂𝑦 ∙ 𝑐𝑜𝑠(𝜔𝑡) ∙ 𝜔)) 𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ = 0 

As we have no time dependence in: 

𝛾𝐵1 ∙ 𝑒
−
𝑖𝜔𝑆̂𝑧𝑡
ℏ (𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡)) 𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ  

… we have no time dependence in the rotating frame Hamiltonian 𝐻̂𝑅: 

(−𝛾𝐵0 + 𝜔) ∙ 𝑆̂𝑧 − 𝛾𝐵1 ∙ 𝑒
−
𝑖𝜔𝑆̂𝑧𝑡
ℏ (𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡)) 𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ  
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We are allowed to fix the rotation expression at any time. The simplest one is 𝑡 = 0: 

(−𝛾𝐵0 +𝜔) ∙ 𝑆̂𝑧 − 𝛾𝐵1 ∙ 𝑒
−
𝑖𝜔𝑆̂𝑧𝑡=0

ℏ (𝑆̂𝑥 ∙ 𝑐𝑜𝑠(𝜔𝑡 = 0) − 𝑆̂𝑦 ∙ 𝑠𝑖𝑛(𝜔𝑡 = 0)) 𝑒
𝑖𝜔𝑆̂𝑧𝑡=0

ℏ → 

(−𝛾𝐵0 +𝜔) ∙ 𝑆̂𝑧 − 𝛾𝐵1𝑆̂𝑥 =; 

To preserve both magnetic components 𝐵0 and 𝐵1, we do some tricky transformations: 

(−𝛾𝐵0 +
𝛾𝐵0𝜔

𝛾𝐵0
) ∙ 𝑆̂𝑧 − 𝛾𝐵1𝑆̂𝑥 = 

𝛾𝐵0 (−1 +
𝜔

𝛾𝐵0
) ∙ 𝑆̂𝑧 − 𝛾𝐵1𝑆̂𝑥 =; 

We remember the Larmor frequency 𝜔0 associated with a constant magnetic field: 

𝜔0 = 𝛾𝐵0 

𝛾𝐵0 (−1 +
𝜔

𝜔0
) ∙ 𝑆̂𝑧 − 𝛾𝐵1𝑆̂𝑥 = 

−𝛾𝐵0 (1 −
𝜔

𝜔0
) ∙ 𝑆̂𝑧 − 𝛾𝐵1𝑆̂𝑥 = 

−𝛾 (𝐵0 (1 −
𝜔

𝜔0
) ∙ 𝑆̂𝑧 + 𝐵1𝑆̂𝑥) 

Result: 

𝐻̂𝑅 = −𝛾 (𝐵0 (1 −
𝜔

𝜔0
) ∙ 𝑆̂𝑧 + 𝐵1𝑆̂𝑥) 

The Hamiltonian 𝐻̂𝑅 thus can be expressed with the scalar product: 

𝐻̂𝑅 = −𝛾𝐵̂𝑅 ∙ 𝑆̂ 

𝐵̂𝑅 = 𝐵1𝑥 + 𝐵0 (1 −
𝜔

𝜔0
) 𝑧 

The state |Ψ, 𝑡⟩ 
Back to our rotating-frame state.  We got the rotating frame state |Ψ𝑅 , 𝑡⟩ from the state |Ψ, 𝑡⟩ by 

applying the unitary rotation operator 𝑈̂(𝑡) = 𝑒−
𝑖𝜔𝑆̂𝑧𝑡

ℏ : 

|Ψ𝑅 , 𝑡⟩ ≔ 𝑈̂(𝑡)|Ψ, 𝑡⟩ 

We can extract |Ψ, 𝑡⟩ by applying the inverse operator 𝑈̂−1(𝑡): 

|Ψ, 𝑡⟩ = 𝑈̂−1(𝑡)|Ψ𝑅 , 𝑡⟩ = 𝑒
𝑖𝜔𝑆̂𝑧𝑡
ℏ |Ψ𝑅, 𝑡⟩ 

We know that 𝐻̂𝑅 is time-independent and calculate the time-evolution of |Ψ𝑅 , 𝑡⟩: 

|Ψ𝑅 , 𝑡⟩ = 𝑒
(−𝑖

𝐻̂𝑅
ℏ
𝑡)
|Ψ𝑅, 0⟩ 

At time 𝑡 = 0 the state |Ψ𝑅 , 0⟩ is equal to |Ψ, 0⟩: 

|Ψ, 𝑡⟩ = 𝑒
𝑖𝜔𝑆̂𝑧𝑡
ℏ 𝑒

(−𝑖
𝐻̂𝑅
ℏ
𝑡)
|Ψ𝑅 , 0⟩ = 
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𝑒
𝑖𝜔𝑆̂𝑧𝑡
ℏ 𝑒

(𝑖
𝛾𝐵̂𝑅∙𝑆̂
ℏ

𝑡)
|Ψ, 0⟩ 

Physical interpretation 
Note: the following discussion is valid for 𝐵1 ≪ 𝐵0. 𝜔 is the rotating speed of 𝐵1, 𝜔0 is the Larmor 

frequency associated with 𝐵0. 

If the magnetic field 𝐵1 is rotating slower than the leading field 𝐵0, 𝜔 ≪ 𝜔0 we have nearly no effect: 

𝐵̂𝑅 = 𝐵1𝑥 + 𝐵0 (1 −
𝜔

𝜔0
) 𝑧 → 𝐵1𝑥 + 𝐵0𝑧 

This resembles a slightly disturbed field 𝐵0 pointing to a slightly tilted 𝑧-axis: 

|Ψ, 𝑡⟩ = 𝑒
𝑖𝜔𝑆̂𝑧𝑡
ℏ 𝑒

(𝑖
𝛾𝐵̂𝑅∙𝑆̂
ℏ

𝑡)
|Ψ, 0⟩ 

The spin is precessing round this tilted 𝑧-axis with a rate about 𝜔0: 

𝑒
(𝑖
𝛾𝐵̂𝑅∙𝑆̂
ℏ

𝑡)
→ 𝑒

(𝑖
𝛾𝐵0∙𝑆𝑧
ℏ

𝑡)
 

𝑒
𝑖𝜔𝑆̂𝑧𝑡

ℏ  adds a rotation round the 𝑧-axis with smaller angular velocity 𝜔. The original precession is 

slightly disturbed. 

The interesting case comes up if we set 𝜔 = 𝜔0. Then we have: 

𝐵̂𝑅 = 𝐵1𝑥 + 𝐵0 (1 −
𝜔0
𝜔0
) 𝑧 = 𝐵1𝑥 

The strong magnetic field 𝐵0 seems to be cancelled out by frequency.  

We get: 

|Ψ, 𝑡⟩ = 𝑒
𝑖𝜔𝑆̂𝑧𝑡
ℏ 𝑒

(𝑖
𝛾𝐵1𝑥∙𝑆̂
ℏ

𝑡)
|Ψ, 0⟩ = 𝑒

𝑖𝜔𝑆̂𝑧𝑡
ℏ 𝑒

(𝑖
𝛾𝐵1𝑆𝑥
ℏ

𝑡)
 

In detail: 

𝑒
(𝑖
𝛾𝐵1𝑆𝑥
ℏ

𝑡)
 describes the spin precessing round the 𝑥-axis. The spin, initially pointing towards the 𝑧-

axis will rotate to the 𝑦-axis with angular velocity 𝛾𝐵1 ≔ 𝜔1. We have 𝐵1 ≪ 𝐵0, so: 

𝜔1 ≪ 𝜔0 

The spin will rotate round the 𝑥-axis and reach the 𝑦-axis after time 𝑇𝑦: 

𝑇𝑦 =
𝜋

2𝛾𝐵1
 

We still have the rotation round the 𝑧-axis. This rotation is faster than the rotation round the 𝑥-axis.  

The tip of the spin performs a spiral motion on the surface of a hemisphere till it reaches the 𝑥 − 𝑦-

plane. 


