Spin of an Electron in Magnetic Field

This paper works through the problem of the spin of an electron in a magnetic field.

We will look at:

- astationary magnetic field in z-direction
- afield constantly pointing in z-direction but its strength changing from +max to —max
- afield with constant z-component rotating in the x — y plane

The text follows a course on MIT of B. Zwiebach:

https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/lecture-
notes/MIT8 05F13 Chap 07.pdf

Hope | can help you with learning quantum mechanics.
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Spin of an Electron in Magnetic Field
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Spin of an Electron in Magnetic Field

Classic magnetic moment
A current on a closed loop induces a magnetic moment.

The vector of the magnetic moment ji is proportional to the
current I in the loop and the vector area A of the loop:

g=1-4

For a planar loop, the vector area is a vector normal to the loop plane with length equal to the value
of the area.

The direction of the normal vector is determined by the right-hand rule.

The product [iB of the magnitude fi of the magnetic moment times the magnetic field B has units of
energy:

erg Joule
= or
gauss Tesla

[u]

Any rotating charge distribution results in a magnetic moment.
Any rotating mass has angular momentum too.
The magnetic moment and the angular momentum are proportional to each other.

Consider a ring with radius R that has uniform charge distribution and a total
charge Q. The ring itself is not conducting, the charge fixed onto the ring.

The ring is rotating about an axis perpendicular to the plane of the ring, going
through its center.

The tangential velocity be v.

The current at the loop is equal to the charge density dg times the velocity:

Q

I=dgqg-v=——-

TV=2R""Y
Note: this formula not valid for R = 0.

In the situation shown we can omit the vector arrows because all directions are neatly arranged. We
get the magnitude [ of the dipole moment of the loop:

1
y=I-A=i-v-R27r=§QRv
The non-conduction Ring has mass M and an angular momentum L:
L=M-R R L
= Ry - Ry =—
M

We get the ratio:

QL
T 2M

Note: this formula not valid for M = 0.

Note: the ratio is independent of the radius of the ring and the velocity it is rotating.
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Spin of an Electron in Magnetic Field

Quantum mechanics, static magnetic field
The electron is viewed as an elementary particle with zero size.

We introduce the Bohr-magneton pg:

eh 5.78 x 107>
= =5.78 X
Hp 2m, Tesla
Note: e is the charge of the electron.
We write the magnetic moment of an electron:
. S
He = —QMBE

Note: dipole moment and angular momentum are antiparallel for electrons.
Note: S is the spin of the electron, g is the Landé g-factor with value ~ 2 for an electron.

We simplify notation by defining the constant y that holds g-factor, mass, and charge:

_ g¢
"~ 2m,

y:
With this constant we write the magnetic moment for electrons:

fi=-yS

Note: S is the three-component spin operator:

S=8+8,+5,

We insert the particle in the magnetic field B. The Hamiltonian H for the spin:

=

H=-ji-B=-yB-S=-y(B,S, +B,S, +B,S,)
The magnetic field is static along the z-axis:
ﬁ = _V(Bzgz)

For a time-independent Hamiltonian, we have an associated time evolution unitary operator:

if i s
U(t,0)=e ht=e 7 VB2t
A prototype for a 3D rotation operator we find in Griffiths:

i

Ry(p)=e 7" =e

%)
|
=
A
3

Note: ¢ is the rotation angle of a right-handed rotation, 71 is the axis of the rotation, S asetof
angular momentum operators.

This resembles our unitary operator:
i . i
e —7VBz5zt e —7PS5n
We conclude that U(t, 0) should generate a rotation by the angle —y B, t around the z-axis.

We check this explicitly.
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Spin of an Electron in Magnetic Field

At time t = 0 the spin state is pointing along the direction specified by ks
angles 8, @:
6o 0y .
|¥,0) = cos?| +)+ sm?el"’ol -)
The magnetic field is pointing to the z-direction. We apply the

(1)) and

Hamiltonian H = —y(B,S,) to the basis states | +) = (
— (9.
| =)= (1)

Al =—ya(l )0 =B

—~ hel1 0N/0 h
HI=) = _VBZE(O —1) (1) = +rB.31-)
We apply the time evolution unitary operator:
[P, t)=e 7 |¥,0)=
_iflt 0, 6y .
e h (cos?| +) + 51n7e“”0| —)) =

Oy _iHt 0, _it .
cos—e h|+)+sin—e he'¥|—)=
2 2
—iyB,ht iyB ht
(—= (=
Bo h . 6o )
cos—-e |+)+sm76 el¥o| —) =

90 iyB,t . 90 _iyBst .
cos—-e 2 |+)+sm?e 2 elPo|—) =

tyByt 6 o . .
e z (cos7o| +)+ sin?oe—lszteupq _>> —

iyB,t 4] 0, .
e 2 (cos70| +) + Sin?oel(‘Po—Vth)l _)>

iyBzt
We ignore the overall phase e 2 and recognize the spin state as the state corresponding to the
vector 11;, defined by angles 6 and ¢:

o) = po —VB,t

0 is constant over time. We get a rotation around the z-axis with constant angular speed:

Q\:

0
—o(t) = —yB

Conclusion:
spin states in a magnetic field precess in the same way as classical

7" magnetic dipoles.
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Spin of an Electron in Magnetic Field

We can ask: if the spin initially points into the x-direction — how long does it last till the spin points
into the opposite (—x)-direction?

In this case ¢y = 0.
T
§0(t)=Vth=7T—>t=E
Note: yB, often called wy.

Magnetic field with constant direction but varying in strength

We have a magnetic field constantly pointing in z-direction. The strength of the field is oscillating
between a maximum and a minimum:

B = B, - cos(wt)e,

The spin at time t = 0 is pointing in x-direction:

) =25((0)+ ()

The Hamiltonian H = —y§ - § in this case is time dependent. The Hamiltonians of different times
commute (they are independent):

[A(to), H(t)] =0
The Hamiltonian:
H=—-yB-S=—yB, cos(wt)S,
For convenience we set y By == w, and write:
(*) H=-w," cos(wt)S_Z)

Approach with power series expansion

Time evolution
Time evolution in a quantum system is performed by a unitary operator U(t,, t):

[, t) = U(t, to) P, to) Vit g

Unitary operator properties:
U(to, to) = id
U(ty, to) = U(ty, t1)U(ty, to)
U(to, )U(t, ty) = id
U(to,t) = U7 (t, t0) = UT (¢, &)

Time evolution of a state vector:

[, t) = U(t, to) Y, to) Vit g

We derive with respect to time:

o)) aU(t,ty) B
at  at I, to) =
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Spin of an Electron in Magnetic Field

aU(t,ty)
——U (£, t t) =
a0 (t, ty) -
— LUt ¢t t
at U (r 0)|ll), )
We rename:
aU(t, ty) ~ .
MUT(t,tO) _)A(t,to)
ot
Note:
_ . aUT (¢t
At(t,te) = O(t, to)%

Properties of A(t, tg):
A(t, to) is antihermitian:
A(t, ty) = —AT(t, ty)
A(t, to) is independent of ty:
A(t, to) = A(t)
With this we write:

aly(®)

= = KO,

We multiply A(t) by ik and get the Hamiltonian:

_ . aU(t, ty) ~
A(t) = ihA(D) = ih%m(a to)

The operator H(t) is Hermitian because A(t) was anti-hermitian.

We end up with the Schrédinger equation:

2 -
ih— [P (©) = HOY(®)

Hamiltonian
If we know the unitary time evolution, we can derive the Hamiltonian.

We can go this way backwards and calculate the time evolution operator from the Hamiltonian H.
We use the Hamiltonian (*):

H(t) = —wycos(wt)S,
We get the Schrédinger equation:

aY(t)

ih—— = HO[p (1)) -
ihw = —wqcos(wt)S,P(t)

We calculate the time evolution operator from the Hamiltonian.
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Spin of an Electron in Magnetic Field

We have:

al(t,ty) -

H() = ih——=07(t,to) > AU (¢, to) = 7,00 t)

at

This is a differential equation for U(t, t,). Since there is no confusion with time derivatives, we write:

dU(t,to)

| RN
e = — AU t)

If we view operators as matrices, this is a differential equation for the matrix U.

The Hamiltonians for different times commute:

[A(t),H(t)] =0

The time evolution operator then is given:

; t
0(t, t) = exp (—% ﬁ(r)dr)
to

We concentrate on the exponential:

We get:

The power series:
Ut)=1+R(®) + %}?(t)}?(t) + %ﬁ(t)ﬁ(t)ﬁ(t) + o
The time derivative:
U() = R(t) + %(f?(t)}?(t) + ﬁ(t)f?(t)) + %(ﬁ(t)ﬁ(t)ﬁ(t) +RIORWDR(E) + ﬁ(t)ﬁ(t)fq(t)) _.
Note: R(t) and R(t) are commuting.
= R(&) + ROR(®) + %f?(t)ﬁ(t)ﬁ(t) +o o

dU(t)
dt

= R(t)eR®

With this we can write:

dU(t) i i [t
Fra —EH(t)exp <—££OH(1)dT>
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Spin of an Electron in Magnetic Field

We look at the exponent:
it i [t .
——| H@)dt = —— | —wycos(wt)S,dt =
hle, hle,
i1 wo . s 1
—E[—Xsm(wr)Sz]to =;

We setty = 0:
i w . lw .
—% (— XO sin(wt)SZ) = h_a()) sin(wt)S,
The complete derivative:
dU(t)
dt

iwg . .
Esm(wt)b}) =

_ iﬁ
=-7 (t)exp(

19 ps(wt)s (i‘”" in( t)§)
o cos(w)Sexp (= sin(wt)S,

The time evolution operator U(t):
U(t) = exp (i 0 5'7l(a)t)SA )
hw ! z

We remember:

The complete time evolution operator U(t):
0 = exp (52 sinwi)3,
= exp (=—sin(wt)é
P\5e z

Rotation
We calculate the rotation by calculating the angles 8 and ¢.

The spin is precessing in the x — y plane, 8 is % (90° degree from the z-axis).

We apply the unitary time evolution operator to the initial state (spin in x-direction).

The time evolution operator:
0() = exp (52 sinwi)3,
= exp |—sin(wt)d, | =
p W z

U(t) = exp <iw_05in(wt) ((1) _01)> =

2w

lwy
(exp (Z sm(wt)) 0 w
\ 0 exp <—i2w—aj)sin(wt)>/

We apply the matrix to the state |, 0):

U®lp,0) =
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Spin of an Electron in Magnetic Field

lwg .
exp Zsm(wt) 0 1/ 0
o B O+O)-
0 exp —%sm(wt)

0

1 ex iw—osin(wt) -
NG P\20 + exp(—%sin(wt))

V2 0
o () o (- )-

%exp (?—jsin(wt)) <((1)) + exp <—i%sin(wt)) (2))
Result:
o(6) = — %sin(wt)

Note: %exp (i;o—cjsin(wt)) is a global outer phase that does not disturb the direction of the spin.

As in the example above we ask: What is the time-dependent probability (the expectation value) to
find the spin in the opposite direction?

We calculate the expectation value for the transition:

([P0l 50)

The right side is already done:

Uy, 0) = ? exp (i;()j sin(wt)) ((1)) + % exp <— i;)—a?sin(wt)> ((1))
We calculate:
< ‘ 12 exp (iz%)sm(“’t)> (é) + %exp <—i2(‘)—w°sin(wt)> ((1))> =
) .
> exp ( szn(wt)) (1) \}Eexp <—2—Sln(wt)> ((1))> =

1 iwo
E( —sm(wt)) — exp (— %sm(wt)>>

. . [Wo .
i-sin|—sin(wt)
2w

Note: for complex numbers hold:

z—Z=2-img(z)
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Spin of an Electron in Magnetic Field

The probability is the square of the probability amplitude, so we calculate:
p ..wo.(t)..wo.(t)
= —i-sin|—sin(wt) | i sin| —sin(w =
2w 2w

w
.2 0 .
sin“ | —sin(wt
Physical interpretation
This allows physical interpretation.
- sin(wt) does not change the maximum amplitude of the probability, only its frequency.
w
2

- If—:) < %we have no probability for P of 100%.

Y
1,59

1,25

Note: the function shown is sin(0.8 - sin(x))

With this we get the maximum frequency w that allows a swing of 180°:

p(t) = —%Sin(wt) =7

wWq
_:71'
w
Wo
w=—
T

Approach via differential equations

We calculate the unitary time development operator U(t) by use of a differential ansatz. As before
we have the Hamiltonian:

A= —w, - cos(wt)S,
We begin:
di) —i_ . _ iwg 1 0\~
o =5 AO0®) == cos@d) (; )0

This is a differential equation. We get:
Fon lwg 1 0
U(t) = exp <_hw sin(wt) (0 _1)>

We try:
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Spin of an Electron in Magnetic Field

di(t) d iwg . 1 0

Tt = 3 &P (h—(jsm(wt) (0 _1)> =
exp (f—a?sin(wt) (é _01)> . <:)—a()) wcos(wt) (é _01)> =
exp (%sin(wt) ((1) _01)> . (WTO cos(wt) ((1) _01)) =

U(t) - (lw?o cos(wt) ((1) _01)>

The Schrédinger equation:

; L .
S 1B() = = ARP(0)) = 5 wocos@OG,IP(O) =

We set:

v =(59)

We get from the Schrodinger equation:

da(t)
at | _ ¢ 1 0\ (a(®))_¢ a(t)
ab(t) | = z@ocos(@t) (o 1) (b(t)) =7 Wocos(w) (—b(t))
ot
From this we have:
da(t)
ol Ea)ocos(wt)a(t)
%(tt) = —%wocos(wt)b(t)

These are differential equations with solutions:
lwy |
a(t) = exp| =—sin(wt) | + ¢
2w

lwy .
b(t) = exp (—Ezsm(wt)> +d

a(0) = b(0) = 1 except for the normalization factor, so we set ¢ and d zero and get the unitary
operator that generates time evolution:

~ (exp (%%sin(wt)) 0 \
U(t) = \

0 exp (—%%sin(wt))/
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Spin of an Electron in Magnetic Field

Note: for diagonal matrices D holds:

We write:
0() = exp (52 sinwi)3,
= exp | —sin(wt)d,
p o z
The same result we got with the power series expansion.

Rotating magnetic field

We change from a static magnetic field to a rotating one. The field §(t) is the sum of By constant in z-
direction and B; rotating in the x — y plane:

§(t) =By z+ Bl(x ~cos(wt) —y - sin(a)t))
Note: B, is weak, B, > B; > 0.
Note: at time t = 0, B, points into x-direction.
Note: the rotation is clockwise.
The time-dependent Hamiltonian of the system:
A =-yB@®)-S

Note: S is the spin operator:

We get:
At) = —y (BO -S,+ B, (fx -cos(wt) — - sin(wt)))

Note: the Hamiltonians at different time do not commute. We split the problem by

- first working with a rotating frame W5 that brings us back to a constant field
- generalizing the solution W (t) — ¥(t)

Zero Hamiltonian
Let B(t) = 0. In this case the Hamiltonian is zero, A(t) = 0.

If we now rotate the frame, the (frame-)Hamiltonian cannot be zero because the spin states are
rotating around the z-axis.

The Hamiltonian for a “rotating” spin:
ﬁU =w" SAZ

Note: we name the Hamiltonian Hy because it is constructed by the rotating frame. The unitary
operator constituting this frame:

_ _iwS,t _iHyt
U(t) =e hn =e h
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Spin of an Electron in Magnetic Field

Nonzero Hamiltonian
Let B(t) # 0. In this case the Hamiltonian is not zero, H(t) # 0.

The rotating-frame state:
[Wr, t) = U)W, t) = U()Ts(6)|W, 0)

Note: |¥, t) = Us(t)|¥, 0)

~ _iRyt
For operators U(t) = e » we have:

05 _ iHy 0
ot h
We calculate the Hamiltonian:
0 .\ ~ idy \ ..,
'h(—U) ot=in(-"Yg)ot=a
ot : 7 u

The Hamiltonian for the rotating frame:

Hg = in (% ﬁ(t)ﬁsa)) 05" (00t (t) =

(250 o2 oo [ Lo ) gt g e —
in| |50 | 050 + 00 5:05® | | 05" @07 () =

ih (-“%”ﬁ(t)) Us(t) + U(t) <—%U5(t)> 05" ()0t () =

(A,00) 85 + 00 (A:050)) ) 05" 00 ©) =
= H,0)Ut(t) + U()HTT ()
= H,(t) + U()H T ()

Note: in the case of no magnetic field, Hg = 0, we get the Hamiltonian for the rotation, H;.

We resolve the composed Hamiltonian:
He = Hy(t) + UH 0 (t) =
iwS,t

_iwS,t . . .
(BO S, + B, (Sx -cos(wt) — 5, sin(wt))) e h

w-S,—e h y

. _iwS,t iwS,t _iw$,t R R iwS,t
w-S,—e h y-By'S,e h —e h yBl(Sx-cos(wt)—Sy-sin(a)t))e o=
_iwSzt .
Note: e » is commuting with S,
. . _iwS,t . . iwS,t
wS,—y*By:S,—e & yBl(Sx-cos(wt) —Sy-sin(wt))e [
_iwS,t . iwS,t
(=yBy+w):S,—yB;-e & (Sx -cos(wt) — S, sin(wt)) e h/=,
N
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Spin of an Electron in Magnetic Field

We concentrate on the rotation:

_iwS,t . iwS,t
e *h (Sx cos(wt) — S, sin(wt)) e h

There is a chance that the rotation has no time dependence. In this case the time-derivative should
give zero. We check this:

0 _iwSyt . iwS,t
G h (Sx -cos(wt) — S, sin(wt)) e h |=
iwS, _iwSt R iwS,t
—Te h (Sx - cos(wt) — S, - sin(wt)) e h
_iwS;t (9 . iwS,t
+e R &Sx cos(wt) — 8, sin(wt) |e R
_iwSst . R _ iwS, iwst
+e & (Sx cos(wt) — Sy, sm(a)t)) Te Ro=;

R iwSzt

Note: S, commutes withe™ .

_iwﬁzt ia),SA'Z N n . d /. A .
e R <— — (sx -cos(wt) = S, - sm(wt)) + (E (Sx -cos(wt) =S, - Sm(wt)))

A N l(,()§z iwszt
+ (Sx - cos(wt) — S, -sin(a)t))T e r =

_iwS,t iw. .. . . d /. . iwS,t
L 52,8y - cos(wt) =, - sin(wt)] + a(Sx -cos(wt) — S, - sin(wt)) e h =
iwS,t iwr. . R R R iwS,t
e h (—? [SZ, (Sx -cos(wt) — Sy, - sin(wt))] + (=S, - sin(wt) -0 — S, - cos(wt) - w)) e rn =

_iwSt [ iw . A A oA
e <—?([SZ, Sx]cos(a)t) — [SZ, Sy]sm(wt))
. . iwS,t
+ (=8, - sin(wt) - @ — S, - cos(wt) - w)> e h =
We remember the commutator relations:
[50.8,] = ihS,: [$,,5,] = ihSy; [S, 8] = kS,
_iwS,t iw R . . . iwS,t
e & <—7(ih5ycos(wt) + ithsin(wt)) + (—Sx -sin(wt) - w — Sy, - cos(wt) - w)) e h =

_iwS,t iwS,t

e (w (S‘ycos(a)t) + S‘xsin(a)t)) + (—S‘x ssin(wt) *w — .?y - cos(wt) - w)) e =0

As we have no time dependence in:

iwS,t iwS,t

yB;-e h (ﬁx - cos(wt) — §y . sin(a)t)) e h

... we have no time dependence in the rotating frame Hamiltonian Hp:
iwS,t iwS,t

(—yBy+w)-S,—yB;-e” & (§x -cos(wt) — §y -sin(wt)) e h
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Spin of an Electron in Magnetic Field

We are allowed to fix the rotation expression at any time. The simplest oneis t = 0:

iwS,t=0 , iwS,t=0

(—yBy + w)-S,—yB;-e” (Sx-cos(a)t=0)—.§y-sin(wt=0))e >

(=¥Bo + w) - S, — yB1 S, =;
To preserve both magnetic components By and B, we do some tricky transformations:

YBow\ . .
o) S By =
0

(—VBO +

w ~ A
)/BO <—1 + )/—BO) ' SZ - )/Ble =,

We remember the Larmor frequency w, associated with a constant magnetic field:

wo = ¥Bo
w ~ ~
yBo (—1+) -8, —vBiS, =
0
w A
~yBo (1= =) -5, — i =
0

Result:
~ w ~ ~
HR = —y (BO (1 - _) * SZ + B]_Sx)
Wo

The Hamiltonian Hp thus can be expressed with the scalar product:

B, =B;x+B (1 w)
= Bix —-——)z
R 1 0 wo

The state |¥, t)
Back to our rotating-frame state. We got the rotating frame state |Wg, t) from the state |V, t) by

. _iwSgt
applying the unitary rotation operator U(t) = e~ # :
|We, t) = U(t)|¥, t)
We can extract |W, t) by applying the inverse operator U~1(t):

Yty = 0-1(0)|Wp, t) = —iwrfzttp
I ,t)— (t)l th>_e | th}

We know that Hy is time-independent and calculate the time-evolution of | Wy, t):

_iflr
e, t) = L), 0)
At time t = 0 the state |Wg, 0) is equal to |V, 0):

iwS,e (_;Hr
|¥,t)=e H 6’( h t)lq’R,O) =
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Spin of an Electron in Magnetic Field

yBg'S

[ Rt s S

Br
h

w0y

Physical interpretation
Note: the following discussion is valid for B; < By. w is the rotating speed of By, w, is the Larmor
frequency associated with By.

If the magnetic field By is rotating slower than the leading field By, w < w, we have nearly no effect:

~ W
BR = le+B0(1 __)Z_>le+Boz
Wo
This resembles a slightly disturbed field B, pointing to a slightly tilted z-axis:

iwS,;t (:¥Br'S
Wty=e R o t>|w,0)

The spin is precessing round this tilted z-axis with a rate about w,:

YBr'$ ) ¥Bo-S,
e(l Rt —>e(l R t)

iwSzt
e * adds a rotation round the z-axis with smaller angular velocity w. The original precession is
slightly disturbed.

The interesting case comes up if we set w = w,. Then we have:

~ Wy
BR = B1x+B0 (1 __)Z = le
Wo

The strong magnetic field B, seems to be cancelled out by frequency.

We get:
iw$,t -VB1X‘§t iwS,t (.¥B1Sx
|l{”t>=e h e(l h )|l{’,0>=e A e(l h t)
In detail:
(inls"t) . . . . L -
e\” & describes the spin precessing round the x-axis. The spin, initially pointing towards the z-

axis will rotate to the y-axis with angular velocity yB; == w,. We have B; < By, so:
w1 K Wy
The spin will rotate round the x-axis and reach the y-axis after time T,

T - T
y_ZVB1

We still have the rotation round the z-axis. This rotation is faster than the rotation round the x-axis.

The tip of the spin performs a spiral motion on the surface of a hemisphere till it reaches the x — y-
plane.
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