This paper shows one way to get the 1D Schrödinger wavefunction out of the de Broglie relation.

Hope I can help you with learning quantum mechanics.

Contents

Plane wave 3
De Broglie 5
Nonrelativistic Schrödinger 5

Plane wave

For a plane wave in space holds the differential equation:

$$
\begin{equation*}
a^{2} \Delta \psi=\frac{\partial^{2} \psi}{\partial t^{2}} \tag{1}
\end{equation*}
$$

Note: Δ is the Laplace operator:

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

Note: $\psi(r, t)$ is a function of space and time.
Note: Plane waves are an approximation based on radial waves if the distance to the origin of the wave is large compared to the wave length.
Note: When dealing with plane waves we always can orient
 the measuring system in a way that the wave propagates along one axis. The Laplace operator reduces to the partial derivatives along this axis.

Note: The vector pointing in the direction of the wave is called wave vector \vec{k} with the magnitude:

$$
|\vec{k}|=k=\frac{2 \pi}{T} \cdot \frac{1}{c}=2 \cdot \pi \cdot v \cdot \frac{1}{c}=\frac{2 \cdot \pi \cdot v}{v \cdot \lambda}=\frac{2 \cdot \pi}{\lambda}
$$

We orient our system in a way that the wave propagates along the x-axis.
The differential equation (1) then becomes:

$$
\begin{equation*}
a^{2} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)=\frac{\partial^{2}}{\partial t^{2}} \psi(x, t) \tag{2}
\end{equation*}
$$

We try the wave function:

$$
\psi(x, t)=A \cdot e^{-i\left(2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)\right)}
$$

Note: A represents the amplitude, $-i\left(2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)\right)$ the oscillation.
Note: If we fix the position x, the oscillation is caused by changing in time.
Note: If we fix time t, the oscillation is caused by changing the position.
Note: Changing position can be done arbitrarily.
We check whether $\psi(x, t)$ is a solution to the differential equation (2):

$$
a^{2} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)=\frac{\partial^{2}}{\partial t^{2}} \psi(x, t)
$$

Right side:

$$
\frac{\partial^{2}}{\partial t^{2}} \psi(x, t)=\frac{\partial}{\partial t}\left(\frac{\partial}{\partial t} \psi(x, t)\right)=\frac{\partial}{\partial t}\left(\frac{\partial}{\partial t}\left(A \cdot e^{-i\left(2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)\right)}\right)\right)=
$$

$$
\begin{gathered}
\frac{\partial}{\partial t}\left(-\frac{i 2 \pi}{T} \cdot A \cdot e^{-i\left(2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)\right)}\right)=-\frac{4 \pi^{2}}{T^{2}} \cdot A \cdot e^{-i\left(2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)\right)}= \\
-\frac{4 \pi^{2}}{T^{2}} \psi(x, t)
\end{gathered}
$$

Left side:

$$
\begin{gathered}
a^{2} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)=a^{2} \frac{\partial}{\partial x} \frac{\partial}{\partial x} \psi(x, t)= \\
a^{2} \frac{\partial}{\partial x}\left(\frac{\partial}{\partial x}\left(A \cdot e^{-i\left(2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)\right)}\right)\right)=a^{2} \frac{\partial}{\partial x}\left(-\frac{i 2 \pi}{\lambda} \cdot A \cdot e^{-i\left(2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)\right)}\right)= \\
a^{2}\left(-\frac{4 \pi^{2}}{\lambda^{2}} \cdot A \cdot e^{-i\left(2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)\right)}\right)=-\frac{4 \pi^{2} a^{2}}{\lambda^{2}}\left(A \cdot e^{-i\left(2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)\right)}\right)= \\
-\frac{4 \pi^{2} a^{2}}{\lambda^{2}} \psi(x, t)
\end{gathered}
$$

We go back to the differential equation (2):

$$
a^{2} \frac{\partial^{2}}{\partial x^{2}} \psi=\frac{\partial^{2}}{\partial t^{2}} \psi
$$

We insert our results:

$$
-\frac{4 \pi^{2} a^{2}}{\lambda^{2}} \psi(x, t)=-\frac{4 \pi^{2}}{T^{2}} \psi(x, t)
$$

We get:

$$
\frac{a^{2} 4 \pi^{2}}{\lambda^{2}}=\frac{4 \pi^{2}}{T^{2}} \rightarrow a^{2}=\frac{\lambda^{2}}{T^{2}} \rightarrow a=\frac{\lambda}{T}=\lambda v
$$

Note: a is the phase velocity of the plane wave. For an electromagnetic wave we have $c=\lambda v$ with c being the speed of light.

Note: The group velocity is the velocity of an envelope of the wave - e. g. a wave packet. For more information please see https://en.wikipedia.org/wiki/Group velocity

Result: $\psi(x, t)$ is a solution to the differential equation (2):

$$
\psi(x, t)=A \cdot e^{-i\left(2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)\right)}
$$

De Broglie

De Broglie:	Classic physics:
A particle with momentum along the x-axis	From classic physics we use:
can be described as a plane wave with wave	
number	
$\qquad k=\frac{p}{h} \rightarrow p=h \cdot k$	$E=\frac{p^{2}}{2 m}$
and frequency	
$\qquad v=\frac{E}{h} \rightarrow E=h \cdot v$	

Note: h is the Planck constant.
Note: Working in one dimension we omit vector notation: $\vec{p}=p$ etc.
We combine de Broglie and classic:

$$
h \cdot v=E=\frac{p^{2}}{2 m}=\frac{h^{2} k^{2}}{2 m} \rightarrow v=\frac{h k^{2}}{2 m}
$$

Note: This is the de Broglie relation.
Note: v is the frequency of the wave, $v=\frac{\omega}{2 \pi}$.

Nonrelativistic Schrödinger

We rewrite the classic energy equation:

$$
E=\frac{p^{2}}{2 m} \rightarrow E-\frac{p^{2}}{2 m}=0
$$

We rewrite by use of the de Broglie relation:

$$
\begin{gather*}
h \cdot v-\frac{h^{2} k^{2}}{2 m}=0 \\
v-\frac{h k^{2}}{2 m}=0 \\
\frac{\omega}{2 \pi}-\frac{h k^{2}}{2 m}=0 \tag{3}
\end{gather*}
$$

We use the wave function:

$$
\psi(x, t)=A \cdot e^{-i\left(2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)\right)}
$$

We rewrite the wave function with k and ω :

$$
\psi(x, t)=A \cdot e^{-i(\omega \cdot t-k \cdot x)}
$$

For this wave function holds:

$\frac{\partial}{\partial x} \psi(x, t)=i \cdot k \cdot \psi(x, t)$	$\frac{\partial}{\partial t} \psi(x, t)=-i \cdot \omega \cdot \psi(x, t)$
Short form:	$i \cdot \frac{\partial}{\partial t}=\omega$
$\frac{\partial^{2}}{\partial x^{2}} \psi(x, t)=-k^{2} \cdot \psi(x, t)$	$\frac{\partial^{2}}{\partial t^{2}} \psi(x, t)=-\omega^{2} \cdot \psi(x, t)$
Short form: $-\frac{\partial^{2}}{\partial x^{2}}=k^{2}$	$-\frac{\partial^{2}}{\partial t^{2}}=\omega^{2}$

We take the de Broglie relation (3):

$$
\frac{\omega}{2 \pi}-\frac{h k^{2}}{2 m}=0
$$

We insert ω and k^{2} :

$$
\omega=i \frac{\partial}{\partial t}, k^{2}=-\frac{\partial^{2}}{\partial x^{2}}
$$

We get:

$$
\frac{i}{2 \pi} \frac{\partial}{\partial t}+\frac{h}{2 m} \frac{\partial^{2}}{\partial x^{2}}=0
$$

To get this in the form wanted we modify:

$$
\begin{aligned}
& \frac{i}{2 \pi} \frac{\partial}{\partial t}+\frac{h}{2 m} \frac{\partial^{2}}{\partial x^{2}}=0 \\
& i \frac{\partial}{\partial t}+\frac{2 \pi h}{2 m} \frac{\partial^{2}}{\partial x^{2}}=0
\end{aligned}
$$

By using $\hbar=\frac{h}{2 \pi} \rightarrow h=\hbar \cdot 2 \pi$, we get:

$$
i \frac{\partial}{\partial t}+\frac{\hbar}{2 m} \frac{\partial^{2}}{\partial x^{2}}=0
$$

This is the nonrelativistic Schrödinger equation in one dimension for a free particle.
Note: Together with:

$$
\psi(x, t)=A \cdot e^{-i\left(2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)\right)}
$$

we could also use:

$$
\psi(x, t)=A \cdot e^{i\left(2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)\right)}
$$

This would represent a particle running into the opposite direction and finally lead to:

$$
-i \frac{\partial}{\partial t}+\frac{\hbar}{2 m} \frac{\partial^{2}}{\partial x^{2}}=0
$$

From a classic point of view the energy of the particle is either positive or negative, depending on the direction we watch it.

